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In this article, dynamical robustness of a directed complex network with additive
noise is inverstigated. The failure of a node in the network is modeled by injecting
noise into the node. Under the framework of mean-square stochastic stability, a new
robustness metric is formulated to characterize the robustness of the network in
terms of synchronization to the additive noise. It is found that the node dynamics
plays a pivotal role in dynamical robustness of the directed network. Numerical
simulations are shown for illustration and verification.
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1 Introduction

In practical applications, power grids [1, 2], communication networks, secure
communication [3] and public transportation systems [4, 5] often encounter failures and
attacks [6–9]. A failure of a very small fraction of nodes in a network may lead to complete
fragmentation of the whole network. Therefore, the robustness of complex networks subjected
to failures or attacks is an important issue to study in network science and engineering [10].
Exploring the network robustness can help better understand various networked systems and
enable us to design more robust infrastructural or social systems.

In the past 2 decades, the issue of network robustness has attracted a lot of attention
[10–15]. Most of the previous works focus on the structural robustness of complex networks,
which is defined as the ability to maintaining their functionalities when they are disturbed or
attacked [16, 17]. Therein, the failure of a node or an edge in the network is modeled by the
removal of the node or the edge. To quantify structural robustness of complex networks, many
measures with respect to the network structure have been formulated, such as connectivity,
maximum strongly connected subgraph, natural connectivity, and average shortest path [18,
19]. Moreover, a variety of attack strategies, such as random attack and deliberate attack, have
been proposed to test the robustness of different kinds of networks [20–22]. The structural
robustness of complex networks can also be measured using some metrics derived from
statistical physics and percolation theory [23].

Recently, the network robustness with respect to the system dynamics has stimulated even
more interest [24–26]. A new concept of dynamical robustness [27] can be used to quantify the
ability of a network to maintain its dynamical activities against local perturbations. Different
from structural robustness where topological perturbations are considered, dynamical
robustness is concerned with the robustness of network dynamics. In [27], node failure is
modeled as the inactivation of diffusively coupled oscillators. In [28], dynamical robustness is
quantified through the synchronization error as a function of the noise variance, where node
failure is modeled by injecting noise into a node. In [29], a mathematical framework is
established to quantify the effect of noise injected at one of the nodes on the synchronization
performance of coupled dynamical systems. Indeed, noise is inevitable in real-world networks
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[30, 31]. It is natural to ask whether a networked system subjected to
noise can recover to its synchronous state? On the one hand, noise
may destroy the network’s stability and prevent network
synchronization [32, 33]. On the other hand, noise-induced
synchronization can be beneficial for coupled chaotic systems [34].
In order to clarify the influence of noise on the network, in [35]
networks of different structure and complexity are analyzed, showing
that many networks are better in coping with both intrinsic and
extrinsic noise.

Motivated by the above discussions, this article further investigates
the dynamical robustness of stochastic complex networks. The
network topology is directed and the nodes are higher-dimensional
non-linear dynamical systems. Similar to [29], the failure of a node in
the network is modeled by injecting noise into the node. However,
differing from [29], in this article it is not assumed that the network is
symmetric. From a technical perspective, this introduces more
challenges than its undirected counterpart [36]. A novel metric
measuring the dynamical robustness of a directed networked
system with additive noise is formulated. Notice that the proposed
robustness metric uncovers the complex interplay between node
dynamics and network topology on the overall network robustness.

The main contributions of this article are as follows. First, a
mathematical framework is established to examine the dynamical
robustness of a directed network of coupled dynamical systems. In this
article, the notion of dynamical robustness refers to the ability of a
network of coupled dynamical systems to return to its synchronous
state when it encounters the disturbance of noise. The new metric is
used to characterize the degree to which the networked system
withstand failures and perturbations. Assume that the networked
system synchronizes before the noise is introduced. The system’s
robustness is defined related to the synchronization error of the
network. Moreover, different from the methods used for undirected
networks, the Laplacian matrix of a directed network is decomposed to
two simpler matrices. In the context of mean-square stochastic
stability, the new robustness metric is precisely formulated. This
metric highlights the importance of the node dynamics in network
robustness. Finally, numerical simulations are presented for
illustration and verification using three chaotic systems (namely,
Rössler system, Chen system and Wang system). The study of
dynamical robustness can help better understand the roles of node
dynamics and network topology, thereby better designing noise-
tolerant networks.

The remainder of this article is organized as follows. Section 2
introduces the notation and some basic graph theory. In Section 3,
problem formulation is presented and a new robustness metric is
formulated. In Section 4, numerical simulations are shown for
illustration and verification. Section 5 concludes the
investigation.

2 Preliminaries

2.1 Notation

Let R denote the set of real numbers, Rn the set of the n-
dimensional real vectors, and Rn×m the set of n × m real matrices.
Let In be the n × n identity matrix, 1n the column vector of all ones, 0
the zeromatrix with appropriate dimensition, and diag (a1, . . . , an) the
n × n diagonal matrix with the diagonal elements being a1, . . . , an. Let

the trace of matrix A be denoted by Tr(A). Moreover, let ‖ · ‖ denote
the 2-norm of a matrix or a vector, ⊗ the Kronecker product, and ⊕ the
Kronecker sum. Let the superscript T denote the transpose. Let j
denote the imaginary unit satisfying j2 = −1. For a matrix A ∈ Rm×n,
Vec(A) � [colT1 (A), . . . , colTn(A)]T ∈ Rmn is the colum vector of size
mn × 1 obtained by stacking all columns of A, where coli(A) ∈ Rm

denotes the ith column of A.

2.2 Graph theory

A directed graph G � (V, E) consists of a node set V � {1, . . . , N}
and an edge set E � {(j, i)}. Let A � (aij) ∈ RN×N denote the
adjacency matrix of a digraph, where aij = 1 if there is a directed
edge from node j to node i, and aij = 0 otherwise. Moreover, aii = 0 for
all i = 1, . . . , N. Let D � diag(din1 , . . . , dinN) be the in-degree matrix,
where dini represents the in-degree of node i. The Laplacian matrix is
then defined by L � D −A. The Laplacian matrix can be decomposed
as L � U + Δ, where U � 1

2 (L + LT) is a symmetric matrix and Δ �
1
2 (L − LT) is an anti-symmetric matrix satisfying ΔT = −Δ.

For the anti-symmetric matrix Δ, the following lemma is obtained.

Lemma 1. Let Δ ∈ RN×N be an anti-symmetric matrix satisfying
ΔT = −Δ. Then, there exists an orthogonal matrix C such that

CTΔC � diag 0, . . . , 0,
0 b1
−b1 0

( ), . . . , 0 bl
−bl 0

( )( ), (1)

where 0, . . . , 0, ±b1j, . . . , ±blj (bi ≠ 0) are the eigenvalues of the matrix
Δ. Here, l � N−r

2 with r being the multiplicity of the zero eigenvalue of Δ.
Proof: Let μ1 = b1j be an eigenvalue of Δ and χ1 the corresponding

eigenvector. Let �μ1 � −b1j. It follows that Δχ1 = μ1χ1, Δ�χ1 � �μ1�χ1, and
χ1 ≠ �χ1, where �χ1 is an eigenvector of Δ associated with �μ1.

Recall that Δ is anti-symmetric. Consequently, it is a normal
matrix and is unitary similar to a diagonal matrix. Particularly, let
P � (0, . . . , 0, ς1, �ς1, . . . , ςl, �ςl), where ςi ∈ RN, �ςi ∈ RN, i = 1, . . . , l,
and ςi ≠ �ςi. It follows that

P−1ΔP � diag 0, . . . , 0, μ1, �μ1, . . . , μl, �μl( ). (2)
Let φ1 � ς1+�ς1�

2
√ and φ2 � ς1−�ς1�

2
√

j . One has

Δφ1 �
1�
2

√ Δς1 + Δ�ς1( ) � 1�
2

√ μ1ς1 + �μ1�ς1( ) � −b1φ2,

Δφ2 �
1�
2

√
j
Δς1 − Δ�ς1( ) � 1�

2
√

j
μ1ς1 − �μ1�ς1( ) � b1φ1.

Because p is a unitary matrix, φT
1φ1 � 1, φT

2φ2 � 1, and
�ςTj φ1 � 0 (j � 2, . . . , l). Similarly, φ3, . . . , φ2l have the same
property. It follows that C = (0, . . . , 0, φ1, . . . , φ2l) is an
orthogonal matrix, in which the number of zero eigenvalues is r
and r + 2l = N. Therefore,

CTΔC � diag 0, . . . , 0,
0 b1
−b1 0

( ), . . . , 0 bl
−bl 0

( )( ).

3 The new robustness metric

Consider a directed network consisting of N identical nodes with
linearly diffusive couplings, in which each node is an n-dimensional
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dynamical system. The network can be described by the following
coupled stochastic differential equation:

_xi t( ) � f xi t( )( ) − α∑N
j�1

lijh xj t( )( ) + υiHηη t( ),
i � 1, . . . , N,

(3)

where xi(t) ∈ Rn is the state vector of node i, f (·) a smooth function
describing the self-dynamics of each node, α > 0 the coupling strength,
lij the (i, j)th entry of the Laplacian matrix, and h (·) the inner-coupling
function of the nodes. The variable υi indicates whether node i is
subjected to noise. That is, υi = 1 when node i is contaminated with
additive noise, and υi = 0 otherwise. The vectorHη ∈ Rn describes how
the noise η(t) enters the dynamics of a node, where η(t) is a zero-mean
Gaussian white noise with variance θ

2 (θ > 0).
For network (3),L � (lij) ∈ RN×N is the Laplacian matrix defined by

lij =−1 if there is a directed edge fromnode j to node i, and lij= 0 otherwise,
with lii � −∑N

j�1,j≠ilij, for all i, j = 1, . . . ,N. Therefore,L is a zero row-sum
matrix. Recall from Section 2.2 thatL � U + Δ, in whichU � 1

2 (L + LT)
is a symmetric matrix and Δ � 1

2 (L − LT) is an anti-symmetric matrix
with ΔT = −Δ. Therefore, network (3) can be rewritten as

_xi t( ) � f xi t( )( ) − α∑N
j�1

uijh xj t( )( ) − α∑N
j�1

δijh xj t( )( )
+υiHηη t( ), i � 1, . . . , N,

(4)
where uij is the (i, j)th element of U and δij is the (i, j)th element of Δ.

The network is said to achieve synchronization if limt→∞‖xi(t) −
s(t)‖ � 0 for all i = 1, . . . ,N, where s(t) is the solution of _s(t) � f(s(t))
(see [37]).

Define the node synchronization error ξi(t) = xi(t) − s(t). The
linearized error system is given by

_ξ i t( ) � Jf s( )ξ i t( ) − α∑N
j�1

uijJh s( )ξj t( )

−α∑N
j�1

δijJh s( )ξj t( ) + υiHηη t( ), i � 1, . . . , N, (5)

where Jf(s) ∈ Rn×n and Jh(s) ∈ Rn×n are, respectively, the Jacobian
matrices of f and h, i.e., Jf(s) � zf(x)

zx |x�s(t) and Jh(s) � zh(x)
zx |x�s(t).

Let ξ(t) � [ξT1 (t), . . . , ξTN(t)]T ∈ RNn. The linearized error system
5) can be rewritten in a compact form as

_ξ t( ) � IN ⊗ Jf s( ) − αU ⊗ Jh s( ) − αΔ ⊗ Jh s( )[ ]ξ t( )
+ υ ⊗ Hη( )η t( ),

(6)
where υ � [υ1, . . . , υN]T ∈ RN denotes the location of the node where
noise is injected.

The objective is to provide a thorough analysis of (6) to illustrate
the overall effect of noise on network synchronization. Define the
network synchronization error as

ϕ t( ) � ξ t( )‖ ‖2. (7)
The expected value of ϕ(t) is given by

E ϕ t( )[ ] � E ξT t( )ξ t( )[ ] � Tr E ξ t( )ξT t( )[ ]( ). (8)

Let Σ(t) � E[ξ(t)ξT(t)]. Note that the analysis of the effect of noise
injected at the network node can be reduced to the study of the time
evolution of the trace of the correlation matrix Σ(t). Since UT = U and
ΔT = −Δ, one has

_Σ t( ) � E _ξ t( )ξT t( ) + ξ t( ) _ξT t( )[ ]
� IN ⊗ Jf s( ) − αU ⊗ Jh s( ) − αΔ ⊗ Jh s( )[ ]Σ t( )
+Σ t( ) IN ⊗ JTf s( ) − αU ⊗ JTh s( ) + αΔ ⊗ JTh s( )[ ]
+ υ ⊗ Hη( )E η t( )ξT t( )[ ] + E ξ t( )η t( )[ ] υT ⊗ HT

η( ).
(9)

Notice that the solution of (6) is

ξ t( ) � Φξ t, 0( )ξ 0( ) + ∫t

0
Φξ t, τ( ) υ ⊗ Hη( )η τ( )dτ, (10)

where Φξ(t, τ) is the state transition matrix associated with the state
matrix IN ⊗ Jf(s) − αU ⊗ Jh(s) − αΔ ⊗ Jh(s), and ξ(0) is the initial value.
Recall that η(t) is a zero-mean Gaussian white noise with variance θ

2.
According to the analysis in [38], E[η(t)η(τ)] � θ

2 δ(t − τ) and
E[ξ(0)η(τ)] � θ

21Nn, where δ(t) is the Dirac delta function. Eq. 9
can be rewritten as the following time-varying Lyapunov equation for
the time evolution of the correlation matrix:

_Σ t( ) � IN ⊗ Jf s( ) − αU ⊗ Jh s( ) − αΔ ⊗ Jh s( )[ ]Σ t( )
+Σ t( ) IN ⊗ JTf s( ) − αU ⊗ JTh s( ) + αΔ ⊗ JTh s( )[ ]
+θ υυT ⊗ HηH

T
η( ).

(11)
Recall the definition of the matrix C in Lemma 1. Particularly, let C =

[c1, . . . , cN], ci ∈ RN. Let D = CTΔC, M = CTUC, ~C � C ⊗ In, and
~Σ(t) � ~C

TΣ(t)~C. Multiplying (11) from the left by ~C
T
and from the right

by ~C leads to

_~Σ t( ) � IN ⊗ Jf s( ) − αM ⊗ Jh s( ) − αD ⊗ Jh s( )[ ]~Σ t( )
+~Σ t( ) IN ⊗ JTf s( ) − αM ⊗ JTh s( ) + αD ⊗ JTh s( )[ ]
+θ CTυυTC ⊗ HηH

T
η( ).

(12)
Since the trace of a matrix does not change under a similarity

transformation, one has Tr(Σ(t)) � Tr(~Σ(t)) and
E[ϕ(t)] � Tr(~Σ(t)). Let

~Σ t( ) � ∑N
i,j�1

eie
T
j ⊗ ~σ ij t( ), (13)

where ei ∈ RN denotes the ith canonical vector and ~σ ij(t) ∈ Rn×n is the
(i, j)th block of the matrix ~Σ(t). It then follows that

E ϕ t( )[ ] � ∑N
i�1

Tr ~σ ii t( )( ). (14)

The dynamics of ~σ ii(t) are given by

_~σ ii t( ) � Jf s( ) − αmiiJh s( )[ ]~σ ii t( )
+~σ ii t( ) JTf s( ) − αmiiJ

T
h s( )[ ] + θ cTi υ( )2HηH

T
η ,

i � 1, . . . , N,

(15)

where mii is the ith diagonal element of M.
Let ζ i(t) � ~σ ii(t), κi = αmii, and βi � cTi υ. Eq. 15 can be rewritten as

_ζ i t( ) � Jf s( ) − κiJh s( )[ ]ζ i t( )
+ζ i t( ) JTf s( ) − κiJ

T
h s( )[ ] + θβ2i HηH

T
η ,

i � 1, . . . , N.

(16)

Rewrite (16) as follows:

Vec _ζ i t( )( ) � Jf s( ) − κiJh s( )[ ] ⊕ Jf s( ) − κiJh s( )[ ]( )
× Vec ζ i t( )( ) + θβ2i Vec HηH

T
η( ),

i � 1, . . . , N,

(17)
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where Vec indicates matrix vectorization defined in Section 2.1. The
solution of (17) is given by

Vec ζ i t( )( ) � ΦVec ζ i( ) t, 0( )Vec ζ i 0( )( )
+θβ2i∫t

0
ΦVec ζ i( ) t, τ( )dτVec HηH

T
η( ),

i � 1, . . . , N,

(18)

where ΦVec(ζ i)(t, τ) is the state transition matrix, which is associated
with the state matrix [Jf(s) − κiJh(s)] ⊕ [Jf(s) − κiJh(s)], and Vec (ζi
(0)) is the initial value.

Based on (14)–(18), the expectation of the network
synchronization error can be rewritten as

E ϕ t( )[ ] � ∑N
i�1

VecT In( )ΦVec ζ i( ) t, 0( )Vec ζ i 0( )( )

+∑N
i�1

VecT In( )θβ2i∫t

0
ΦVec ζ i( ) t, τ( )dτVec HηH

T
η( ).

(19)

In the following, consider the stochastic linear system (6), where
Jf(s) and Jh(s) are Jacobian matrics of f and h evaluated at s(t),
respectively. Constant α > 0 is the coupling strength and υ ∈ RN

denotes the location of the node where noise is injected. The vector
Hη ∈ Rn describes how the noise η(t) enters the dynamics of a node,
where η(t) represents zero-mean Gaussian white noise with variance θ

2.
Assume that one of the network nodes denoted by inoise is
contaminated with additive noise. Let ρ � VecT(In)Vec(ζ inoise(t)) be
the measurement metric of the system error, which is referred to as the
robustness metric.

Remark 1. It follows from the above analysis that the robustness of
the directed network subjected to noise is quantified by the robustness
metric ρ. Here, the networked system synchronizes before noise is
introduced. The notion of dynamical robustness refers to the ability
of a network of coupled dynamical systems to return to its synchronous
state after it encountered the disturbance of noise. The robustness metric
ρ is used to characterize the degree to which the networked system
withstand failures and perturbations. It is thus defined related to the
synchronization error of the network. The smaller the value of ρ, the
more robust the network. Furthermore, given the location of the node
where noise is injected, the dynamical robustness of the network
depends not only on the node dynamics but also on the network
topology. In particular, it is determined by the inherent dynamics of
the isolated node Jf(s), the inner-coupling function Jh(s), the coupling
strength α, the variance θ of the noise, and the network topology. Note
that Jf(s) and Jh(s) are the Jacobian matrices of f and h evaluated at s(t),
respectively. This implies that the robustness matric ρ is also determined
by the synchronization trajectory s(t).

4 Interplay between dynamics and
topology

In this section, the effects of node dynamics and network topology
on the system robustness are investigated in detail.

4.1 Node dynamics

In the following, three representative non-linear systems, namely,
Rössler system, Chen system, and Wang system, are introduced. In

simulations, these three systems with chaotic behaviors are adopted as
the self-dynamics of the nodes, respectively.

4.1.1 Rössler system
A single Rössler system [39] is described by

_x1 � −x2 − x3,
_x2 � x1 + ax2,
_x3 � b + x1x3 − cx3,

⎧⎪⎨⎪⎩ (20)

which has a chaotic attractor when a � b � 1
5 and c = 9. The Jacobian

matrix evaluated at s(t) � [s1(t), s2(t), s3(t)]T is given by

Jf s( ) �
0 −1 −1
1

1
5

0

s3 0 s1 − 9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (21)

FIGURE 1
The results are obtained under Rössler systems when a directed
path graph is considered.
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4.1.2 Chen system
A single Chen system [40] is described by

_x1 � a x2 − x1( ),
_x2 � c − a − x3( )x1 + cx2,
_x3 � x1x2 − bx3,

⎧⎪⎨⎪⎩ (22)

which has a chaotic attractor when a = 35, b = 3, and c = 28. The
Jacobian matrix evaluated at s(t) � [s1(t), s2(t), s3(t)]T is given by

Jf s( ) �
−35 35 0

−7 − s3 28 −s1
s2 s1 −3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (23)

4.1.3 Wang system
A single Wang system [41] is described by

_x1 � x2x3 + a,
_x2 � x2

1 − x2,
_x3 � 1 − 4x1,

⎧⎪⎨⎪⎩ (24)

which has a chaotic attractor when a = 0.006. The Jacobian matrix
evaluated at s(t) � [s1(t), s2(t), s3(t)]T is given by

Jf s( ) �
0 s3 s2
2s1 −1 0
−4 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (25)

4.2 Dynamical robustness beyond directed
path graphs

In simulations, consider a directed path graph with five nodes.
Assume that θ = 1. The noise is injected into the fourth node and the
third state variable of this node, that is the fourth element of υ is one
and Hη � [0, 0, 1]T.

Figure 1 shows the simulation results for the network of Rössler
systems. Assume that the nodes are coupled on the second and third
variables thereby Jh(s) = [0,0,0; 0.1,0; 0,0,1]T. As can be seen from

FIGURE 2
The results are obtained under Chen systems when a directed path
graph is considered.

FIGURE 3
The results are obtained under Wang systems when a directed path
graph is considered.
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Figure 1A, the robustness metric ρ first continuously oscillates and then
converges to around zero with the increase of the coupling strength α. As
shown in Figure 1B, the synchronization error exhibits a similar behavior.

Figure 2 shows the simulation results for the network of Chen
systems. Assume that the nodes are coupled through all state variables
thereby Jh(s) = [1,0,0;0,1,0;0,0,1]T. It is interesting to see from

FIGURE 4
Network topology.

FIGURE 5
The results are obtained under Rössler systems when a general
directed graph is considered.

FIGURE 6
The results are obtained under Chen systems when a general
directed graph is considered.
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Figure 2A that, after a sharp fall, the robustness metric ρ begins to
continuously oscillate and then converges to zero with the increase of
the coupling strength α. Figure 2B shows that the synchronization
error exhibits a similar behavior of the robustness metric.

Figure 3 illustrates the results for the network of Wang systems.
Assume that the nodes are coupled on the first and third variables
thereby Jh(s) = [1,0,0; 0,0,0; 0,0,1]T. It follows from Figure 3A that the
robustness metric first sharply decreases and gradually converges to
zero with the increase of the coupling strength. Also, the
synchronization error approaches to zero when the coupling
strength increases.

Recall that the networked system synchronizes before the
noise is introduced. This means that the choice of Jh(s) in the
simulation section can ensure the existence of the synchronized
region.

4.3 Dynamical robustness beyond general
digraphs

In this subsection, consider a general directed graph [42] as shown
in Figure 4. Assume that noise is injected into the fourth node, so the

FIGURE 7
The results are obtained under Wang systems when a general
directed graph is considered.

FIGURE 8
The main results are obtained under a general directed graph:
α = 20.

Frontiers in Physics frontiersin.org07

Sun et al. 10.3389/fphy.2023.1129844

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1129844


element of υ is one into the fourth row and others are 0. In addition,
θ = 1 and Hη � [0, 0, 1]T.

Figures 5A, B are obtained under Rössler systems with Jh(s) =
[0,0,0; 0.1,0; 0,0,1]T. Notice that a much more complex scenario
emerges. The robustness metric increases rapidly with intermittent
descent when the coupling strength is larger than 19. From Figure 5B,
the synchronization error decreases after continuously oscillating.
When the coupling strength is larger than 19, the synchronization
error begins to increase rapidly with intermittent descent.

Figures 6A, B are obtained under Chen systems with Jh(s) = [1,0,0;
0.1,0; 0,0,1]T. After a sharp fall, the robustness metric is monotonically
decreasing. The synchronization error exhibits a similar behavior to
the robustness metric.

Figures 7A, B are obtained underWang systems with Jh(s) = [1,0,0;
0.0,0; 0,0,1]T. When the coupling strength gradually increases, the
curves in Figure 7A and Figure 7B both converge to zero, which
illustrates that the network of Wang systems is robust to noise and can
reach the synchronization when the coupling strength is enough large.

In summary, the 10-node network of Rössler systems shows
greatly different robustness from other systems.

In order to illustrate the effect of the location of the injected noise,
the robustness metrics are examined in Figure 8 for Rössler system,
Chen system, and Wang system, respectively, all with α = 20. Recall
that a smaller value of ρ implies a more dynamically robust network. It
is clear that, for Rössler system, Chen system, and Wang system, the
network shows a similar robustness. The results shown in Figure 8
provide guidance for minimizing the effect of noise on the network
robustness. For example, the network is more robust to noise if node
five is subjected to noise. Therefore, node five is the best choice to
minimize the effect of noise from the dynamical robustness
perspective.

5 Conclusion

This article investigates the dynamical robustness of a directed
network with noise. A novel robustness metric is formulated and
analyzed under the framework of mean-square stochastic stability. It is
found that the dynamical robustness of the directed network is
determined by both the node dynamics and the network topology.
Particularly, for networks of Rössler systems, with the increase of the
coupling strength, different network topologies show different effects
on the robustness metric. While for Wang systems, the robustness to
noise is stronger than other systems. These findings demonstrate that
node dynamics plays an important role in the network robustness. The
results of this study can provide theoretical and technical guidances for
designing a dynamically robust networked system.

In the future, it will be interesting to investigate dynamical
robustness of higher-order networks [37, 43]. Moreover, it will be
interesting to investigate the effects of different types of noise on the
network robustness. The dynamical robustness of stochastic complex
networks with time-delays [44] or heterogeneous node dynamics [45]
are challenging but also worthy of further investigation.
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