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A new adaptive iterative learning control (AILC) scheme is proposed to solve the
finite-time hybrid function projective synchronization (HFPS) problem of chaotic
systems with unknown periodic time-varying parameters. Fourier series expansion
(FSE) is introduced to deal with the problem of uncertain time-varying parameters.
The bound of the expanded remaining items is unknown. A typical convergent series
is used to deal with the unknown bound in the design process of the controller. The
adaptive iterative learning synchronization controller and parameter update laws are
designed. Two different chaotic systems are synchronized asymptotically according
to different proportional functions on a finite time interval by Lyapunov stability
analysis. The simulation example proves the feasibility and effectiveness of the
proposed method.
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Introduction

Chaos synchronization has a wide range of applications in physical systems, biological
networks, and secure communications [1]. However, due to the unpredictability, pseudo-
randomness, and extreme sensitivity to initial values of chaotic systems [2], hybrid function
projection synchronization of chaotic systems is widely concerned. In 1990, the pioneer workers
Pecora and Carroll first proposed the concept of chaos synchronization and solved the
synchronization problem of two identical chaotic systems under different initial conditions
[3]. Since then, chaos synchronization control has become a very active research topic [4–16],
for example, projective synchronization control and hybrid function projective synchronization
control. Many control methods have been used to synchronize different chaotic systems, such as
feedback linearization method [17], optimal control [18], and neural network control [19–24].
However, few people study the problem of chaos synchronization on a finite time interval.

When studying chaos synchronization, the problem of system parameter uncertainty will be
encountered. The adaptive control method is often used to solve this problem and improve
control performance [25–27]. Chaotic systems are vulnerable to encounter the problem of
uncertain parameters due to external interference. These uncertain parameters may disrupt
synchronization. Therefore, this is an important problem to study the synchronization of
chaotic systems with unknown time-varying parameters.
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The adaptive iterative learning control method can solve the
finite-time tracking control problem of uncertain non-linear
systems [28] by modifying the input information according to
the previous output data. This ensures that the output of the
system tracks the given trajectory on a finite time interval
accurately. This is one of the most effective control methods of
the non-linear systems’ repetitive tracking control. Because
synchronization is similar to tracking, the synchronization
problem of chaotic systems on a finite time interval can be
solved by adaptive iterative learning control [29, 30]. Achieving
finite-time hybrid function projection synchronization control of
chaotic systems with time-varying parameters is an interesting
topic.

This paper proposes a new adaptive iterative learning control
method to solve the HFPS problem of chaotic systems with
uncertain periodic time-varying parameters. FSE is introduced to
deal with the problem of uncertain parameters. Convergent series is
used to deal with the unknown upper bounds of uncertain parameters.
The parameter updating laws and AILC law are designed to synchronize
the states of two chaotic systems according to different proportion
functions asymptotically. The simulation example illustrates the
correctness and effectiveness of the research results in this paper.

The main contributions of this paper are listed as follows:

(1) The problem of chaos synchronization on a limited time interval is
very important. We proposed an adaptive iterative learning
control scheme to solve the finite-time hybrid function
projective synchronization of chaotic systems with unknown
periodic time-varying parameters.

(2) The problem of system parameter uncertainty of chaos
synchronization must be solved. Fourier series expansion (FSE)
is introduced to solve the problem of time-varying parameters.

(3) The residual term after expansion is bounded, but the bound is
unknown. Based on the author’s previous work, a typical convergent
series is used to deal with the remaining items after expansion.

System specification and
synchronization controller design

System specification

Consider the following continuous time chaotic systems with
unknown time-varying parameters:

_xk � Axk + f xk( ) +D xk( )M t( ), (1)
where xk ∈ Rn is the state. A ∈ Rn×n is the
coefficient matrix which is linear.f(xk): Rn → Rnis the non-
linear part. D(xk): Rn → Rn×d, M(t) � M + ΔM(t) �
[m1 + Δm1(t),/, md + Δmd(t)]T ∈ Rd is the uncertain parameter
vector. k is the number of iterations. Here, M is the nominal
value of M(t) andΔM(t) is a time-varying parameter. System (1) is
a driving system, and the response system containing controller
uk(t) ∈ Rn is shown in system (2):

_yk � Byk + g yk( ) + uk t( ), (2)
where yk ∈ Rn is the state. B ∈ Rn×n is the matrix. g(yk): Rn → Rn is
the non-linear function of (2) which is continuous. uk(t) ∈ Rn is the

control vector. Here, supposeM(t) ∈ Rd is an uncertain function with
a known period T, then M(t) � M(t − T). This assumption is
reasonable because many things in nature occur periodically, so the
parameters of the system often exist periodically.

According to the Fourier series expansion, the continuous period
vector Δmi(t), i � 1,/, d can be expressed as shown in (3):

Δmi t( ) � ΞT
i t( )Θi + σ i t( ), σ i t( )| |≤ �σ i, (3)

where Θi � [φi1, φi2,/,φiq]T ∈ Rq×d, φij ∈ Rq, j � 1,/, q is
composed of the first q parameters in the FSE of mi(t). σ i(t) is the
truncation error and �σ i > 0. Ξi(t) � [φi1(t),/,φiq(t)]T, where
φi1(t) � 1, φi(2j)(t) � sin(2πjtT ), φi(2j+1)(t) � cos(2πjtT ), j � 1,/, q−12 ,
and their nth derivative are smooth and
bounded. Take Θ � [Θ1,/,Θd]T,Ξ(t) � diag Ξ1(t),/,Ξd(t){ },
σ(t) � [σ1(t),/, σd(t)]T, and �σ � [�σ1,/, �σd]T. Then, by
substituting (3) into system (1), system (1) can be rewritten as follows:

_xk � Axk + f xk( ) +D xk( ) M + ΞT t( )Θ + σ t( )( ). (4)
According to (3), ‖σ(t)‖≤ ‖�σ‖ � s, suppose the upper bound s is an

unknown parameter.
Define the synchronization error as

ek t( ) � xk −H t( )yk. (5)
Here, H(t) � diag h1(t), h2(t),/hn(t){ } is the scale matrix and
hi(t), i � 1, 2,/, n is a bounded non-zero continuous differentiable
function.

The control objective of this paper is to design an appropriate
controller uk(t) and related parameter adaptive laws for response
system 2) on the finite time [0, T], so that response system 2) can
synchronize with drive system 1) using different scale functions as
k → ∞ asymptotically. That is to say, lim

k ����→∞
ek(t) � 0.

Design of the adaptive iterative learning
synchronization controller

In the process of controller design, the following definition and
lemma of the convergence series sequence will be used.

Definition. 1[31]: The sequence Zk{ } is defined as

Zk � b

kl
. (6)

This sequence is a convergence series. Here, k � 1, 2,/; b and l are
parameters to be designed, b> 0 ∈ R, l≥ 2 ∈ N.

Lemma. 1 [31]: For the sequence 1
kl{ }, k � 1, 2,/, l≥ 2, the following

conclusion holds:

lim
k ����→∞

∑k

j�1
1
jl
≤ 2. (7)

The specific design process of the controller is as follows:
From system (4) and system (2), it is easy to get (8)

_ek � Axk + f xk( ) +D xk( )ΞT t( )Θ +D xk( ) M + σ t( )( )
−H t( )Byk −H t( )g yk( ) −H t( )uk t( ). (8)

From (8), the following controller is designed:
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uk t( ) � H−1 t( ) Kek + Axk + f xk( ) +D xk( )ΞT t( )Θ̂k +D xk( )M̂k[ ]
+ 1
Zk

D xk( )DT xk( )ekŜk −H t( )Byk −H t( )g yk( ).
(9)

Here, K ∈ Rn×n is a positive feedback gain matrix, S � s2. Θ̂k, M̂k, and
Ŝk are estimates of Θ, M, and S, respectively.

Select the following parameter update laws:

Θ̂k � Γ1Ξ t( )DT xk( )ek,
M̂k � Γ2DT xk( )ek,
Ŝk � Γ3

1
Zk

eTkD xk( )DT xk( )ek,
(10)

where Γi, i � 1, 2, 3 is a positive definite diagonal gain matrix of the
appropriate dimension.

The initial conditions satisfy the following relations: for any k,
when t � 0, xk(0) � H(t)yk(0), Θ̂k(0) � Θ̂k−1(T), M̂k(0) �
M̂k−1(T), Ŝk(0) � Ŝk−1(T) .

Stability analysis

According to the aforementioned controller design process, the
following theorem is given in this paper:

Theorem 1. For the given scaling functionH(t), designing the control
law 9) and parameter update laws (10) for response system (2) can obtain
that all closed-loop signals are bounded on [0, T], and lim

k ����→∞
ek(t) � 0.

Proof. For convergence analysis, the following Lyapunov functions
are selected:

Vk t( ) � 1
2
eTk ek +

1
2
~ΘT

kΓ−11 ~Θk + 1
2
~M

T

kΓ−12 ~Mk + 1
2
Γ−13 ~S

2

k, (11)

where ~Θk � Θ − Θ̂k, ~Mk � M − M̂k, ~Sk � S − Ŝk.
According to the assumptions, definition, and lemma, it is easy to

prove that the conclusion of Theorem 1 is true.
The derivation process of _Vk(t) according to system 8) is as

follows:

_Vk t( ) � eTk ek − ~ΘT

kΓ−11
_̂Θk − ~M

T

kΓ−12
_̂Mk − Γ−13 ~S _̂Sk

� eTk Axk + f xk( ) +D xk( )ΞT t( )Θ( +D xk( ) M + σ t( )( )
−H t( )Byk −H t( )g yk( )−H t( )uk t( )) − ~ΘT

kΓ−11
_̂Θk

− ~M
T

kΓ−12
_̂Mk − Γ−13 ~S _̂Sk ≤ eTk Axk + f xk( ) +D xk( )ΞT t( )Θ(

+D xk( )M −H t( )Byk −H t( )g yk( ) −H t( )uk t( ))
+ eTkD xk( )



 



 σ t( )‖ ‖ − ~ΘT

kΓ−11
_̂Θk − ~M

T

kΓ−12
_̂Mk − Γ−13 ~S _̂Sk

FIGURE 1
(A) Change of the 10th iteration trajectories x1,10(t),h1(t)y1,10(t) and
error e1,10(t) on time t; (B) Change of the 10th iteration trajectories
x2,10(t),h2(t)y2,10(t) and error e2,10(t) on time t; (C) Change of the 10th
iteration trajectories x3,10(t),h3(t)y3,10(t) and error e3,10(t) on time t.

FIGURE 2
(A) Change of trajectories x1,0(t),h1(t)y1,0(t) and error e1,0(t)
without iteration on time t; (B) Change of trajectories x2,0(t),h2(t)y2,0(t)
and error e2,0(t) without iteration on time t; (C) Change of trajectories
x3,0(t),h3(t)y3,0(t) and error e3,0(t) without iteration on time t.
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≤ eTk Axk + f xk( ) +D xk( )ΞT t( )Θ( +D xk( )M −H t( )Byk

−H t( )g yk( ) −H t( )uk t( )) + eTkD xk( )



 



s − ~ΘT

kΓ−11
_̂Θk − ~M

T

kΓ−12
_̂Mk

− Γ−13 ~S _̂Sk

≤ eTk Axk + f xk( ) +D xk( )ΞT t( )Θ( +D xk( )M −H t( )Byk

−H t( )g yk( ) −H t( )uk t( )) + 1
Ζk

eTkD xk( )DT xk( )eks2 + 1
4
Ζk

− ~ΘT

kΓ−11
_̂Θk − ~M

T

kΓ−12
_̂Mk − Γ−13 ~S _̂Sk

� eTk Axk + f xk( ) +D xk( )ΞT t( )Θ( +D xk( )M −H t( )Byk

−H t( )g yk( ) −H t( )uk t( )) + 1
Ζk

eTkD xk( )DT xk( )ekS + 1
4
Ζk

− ~ΘT

kΓ−11
_̂Θk − ~M

T

kΓ−12
_̂Mk − Γ−13 ~S _̂Sk

� eTk Axk + f xk( ) +D xk( )ΞT t( )Θ( +D xk( )M + 1
Ζk

D xk( )DT xk( )ekS

−H t( )Byk −H t( )g yk( )−H t( )uk t( )) + 1
4
Ζk − ~ΘT

kΓ−11
_̂Θk

− ~M
T

kΓ−12
_̂Mk − Γ−13 ~S _̂Sk.

(12)
Substituting (9) and (10) into (12), we get

_Vk t( )≤ − eTkKek + 1
4
Ζk, (13)

where mn≤ 1
rm

2 + 1
4n

2r (r � Ζk) for any r> 0.
According to the initial conditions, we have ek(0)2 � 0≤ ek(T)2.

By (11), we get

FIGURE 3
Norm variation curve of controller ‖ui,k‖(A. i � 1;B. i � 2;C. i � 3) with iteration k.

FIGURE 4
Norm variation curve of parameter ‖Mi,k‖(A. i � 2;B. i � 3) with iteration k.
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Vk ek 0( ), Θ̂k T( ), M̂k T( ), Ŝk T( )( )≤Vk ek 0( ), Θ̂k 0( ), M̂k 0( ), Ŝk 0( )( )
+ ∫T

0

_Vkdt.

(14)
Substituting (12) into (14), we get

Vk ek 0( ), Θ̂k T( ), M̂k T( ), Ŝk T( )( )≤V1 e1 0( ), Θ̂1 0( ), M̂1 0( ), Ŝ1 0( )( )
−∑k

i�1∫T

0
eTi Keidt +

1
4
T∑k

i�1Zi

.

(15)
Taking V0(k) � V1(e1(0), Θ̂1(0), M̂1(0), Ŝ1(0)) + 1

4T∑k
i�1Ζi,

formula (15) is rewritten as

∑k

i�1∫T

0
eTi Keidt≤V0 k( ) − Vk ek 0( ), Θ̂k T( ), M̂k T( ), Ŝk T( )( ). (16)

From (7), we get lim
k ����→∞

V0(k)≤V1 + 2b 1
4T,V0(k), which is

bounded, and Vk(ek(0), Θ̂k(T), M̂k(T), Ŝk(T))≥ 0. Therefore,

lim
k ����→∞

∫T

0
eTkKekdt � 0. (17)

From (11), for any k, we have Vk(t) � Vk(0) + ∫t

0
_Vk(τ)dτ.

Substituting (12), we get

Vk t( )≤Vk 0( ) − ∫t

0
eTkKekdτ + t

1
4
Ζk. (18)

By (17), ∫t

0
eTkKekdτ is bounded. According to Definition 1, when

t ∈ [0, T],Ζk is bounded. So t 14Ζk is bounded and Θ̂k(0) �
Θ̂k−1(T), M̂k(0) � M̂k−1(T), Ŝk(0) � Ŝk−1(T). From (11), for any k,
Vk(0, Θ̂k(T), M̂k(T), Ŝk(T)) is bounded;
Vk(0, Θ̂k(0), M̂k(0), Ŝk(0)) � Vk−1(0, Θ̂k−1(T), M̂k−1(T), Ŝk−1(T)) is
bounded. When Vk(t) is bounded, Θ̂k(T), M̂k(T), Ŝk(T) is also
bounded. According to 9), uk(t) is bounded. By (8), _ek is bounded,
so ek is uniformly continuous. According to the aforementioned
parameters, we can draw the conclusion lim

k ����→∞
ek(t) � 0.

Simulation analysis

Consider the hybrid function projection synchronization of the
following two systems. The specific system is as follows:

The drive system is the Lorenz system:

FIGURE 5
Variation curve of parameter ‖Θ̂k‖ with iteration k.

FIGURE 6
Variation curve of parameter ‖Ŝk‖ with iteration k.
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_x1,k � m1 t( ) x2,k − x1,k( ),
_x2,k � −x1,kx3,k − x2,k +m2 t( )x1,k,
_x3,k � x1,kx2,k −m3 t( )x3,k.

(19)

The response system is the Chen system:

_y1,k � 35 y2,k − y1,k( ) + u1,k,

_y2,k � −y1,ky3,k + 28y2,k − 7y1,k + u2,k,

_y3,k � y1,ky2,k − 3y3,k + u3,k.
(20)

By comparing system (19) and system (20) with system (1) and system
(2), we can get

A �
0 0 0
0 −1 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, f xk( ) �
0

−x1,kx3,k

x1,kx2,k

⎛⎜⎝ ⎞⎟⎠,D xk( )

�
x2,k − x1,k 0 0

0 x1,k 0
0 0 −x3,k

⎛⎜⎝ ⎞⎟⎠,

B �
0 0 0
0 −1 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, g xk( ) �
0

−y1,ky3,k

y1,ky2,k

⎛⎜⎝ ⎞⎟⎠,

where the uncertain parameters are m1(t) � 10 + a1 sin t,
m2(t) � 28 + a2 cos t, and m3(t) � 8

3 − a3 sin t. During the
simulation, the parameters are chosen as T � 5, q � 5, l � 3,
b � 100, Γ1 � 0.0001I5, Γ1 � 0.1I3, and Γ3 � 1. The proportional
functions are chosen as h1(t) � 100 + 10 sin(2πt99 ),
h2(t) � 100 − 10 cos(2πt99 ), and h3(t) � 100 + 10 sin(2πt99 ). The initial
values of the drive system and response system are chosen as x0(0) �
[0.1, 0.1, 0.1]T and y0(0) � [0.0001, 0.0001, 0.0001]T, respectively.

According to controller 9) and adaptive iterative learning laws (10)
given in this paper, the results of Figure 1, Figure 2, Figure 3, Figure 4,
Figure 5, and Figure 6 can be obtained. It can be seen from Figure 1
and Figure 2 that there will be large errors between the drive signals
xi,0(t) and the response signals hi(t)yi,0(t), i � 1, 2, 3 (Figures 2A–C)
when there is no iteration, but in the 10th iteration, their errors tend to
zero (Figures 1A–C) basically. It can be seen that the synchronization
errors decrease as the number of iterations increases. Therefore, this
method can realize synchronization using different scale functions
between two different chaotic systems, which proves the correctness
and effectiveness of the proposed method.

At the same time, it can be seen from Figure 3 to Figure 6 that as
the number of iterations increases, the controllers ui,k, i � 1, 2, 3 and
the estimated system parameters will remain within a certain range,
which ensures the boundedness of system parameters M̂k, Θ̂k, and Ŝk.
This also satisfies the content of the theorem.

Conclusion

The AILC method is proposed to solve the different proportional
synchronization problems on finite time interval with uncertain
parameters. The adaptive iterative learning controller and
parameter update laws make the drive system and the response
system synchronize along different scale functions asymptotically.

The proposed controller solves the problem of hybrid function
projection synchronization between the Lorenz system and Chen
system successfully. The correctness of the method is verified by
theory and numerical simulation. Further work is needed on how
to realize the finite-time synchronization between hyper-chaotic
systems with time-varying parameters or chaotic systems with
different dimensions. As far as the author knows, these studies are
very difficult and interesting topics in the field of chaos
synchronization control.
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