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Maxwell fluids display viscous flow on a long timescale but exhibit additional
elastic resistance during rapid deformations. Among various types of rate-type
fluids, the Maxwell fluid has achieved prominence in numerous study fields. This
viscoelastic fluid has viscous and elastic properties. Due to their reduced
complexity, this Maxwell fluid is utilized used in the polymeric industries. We
have established a mathematical model based on the applications. This article
examines the mathematical and graphical analysis for steady-state
magnetohydrodynamic flow in a horizontal flat plate of Maxwell viscoelastic
fluid for a permeable medium with heat and thermal radiation. The non-
dimensional and similarity transformation used to frame the partial differential
equations with restored ordinary differential equations. The shooting technique is
originated to find solutions to nonlinear boundary value problems with the help of
MATLAB software via the Runge-Kutta Fehlberg method. The primary idea behind
this strategy is to change the boundary conditions of boundary value problems
into initial value problems. Several plots illustrate the leading parameters such as
Prandtl number (Pr), Deborah number (De), Eckert number (Ec), heat generation
(Q), radiation (Rd), Lewis number (Le), magnetic parameter (M), and thermal slip
condition (β) on the velocity profile and energy transfer behaviour. We validated
our results with published work. The most significant impact of this study is that
the Nusselt number drops as the Eckert number rises and climbs when heat
radiation increases. The skin friction coefficient increases as Deborah number
increases.
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1 Introduction

Numerous natural phenomena, such as the flight of birds, the swimming of fish, and the
evolution of the weather, are studied with fluid dynamics. Researchers have become
interested in free convective transport with saturated porous media due to its
applications, which include petroleum reservoirs, geothermal processes, chemical
catalytic reactors, and nuclear waste deposits. Standard procedures in nature and
industry include the extrusion of metals and plastics, drying and cooling, paper and
textiles. Flow models in porous media have biologically relevant applications in brain
tissue diffusion, tissue development, bioheat transfer in tissues, blood flow in tumors, and
bioconvection. Mabood and Shateyi [1] studied temperature for concentration flow affecting
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a stretched sheet based on the radiation effect. Dawar et al. [2]
addressed the MHD flow on copper-nanofluid across a horizontal
plate under the influence of solar light. Nath et al. [3] discussed the
analytical solutions for Maxwell fluids in a microchannel with a zeta
perspective. Lin et al. [4] considered the possibility of mixed-
convectional fluids with an arbitrary Prandtl value. The above
research’s drawback is that non-Newtonian flow on a flat plate
needs to be included.

The study of fluid flows and energy in a non-Newtonian fluid
has gathered considerable notice due to its many engineering
applications. The majority of investigations in the literature
involve conventional Newtonian fluids. It is common knowledge
that the bulk of fluids encountered in non-Newtonian is the process
of terms under parameter estimations. Oil engineering, biology,
physiology, technology, and industry utilize these fluids. Maxwell
fluids are a subclass of non-Newtonian fluids that accurately capture
fluids’ pseudo-plastic and dilatant properties. Adegbie et al. [5]
discovered the behaviour of heat and mass transport in Maxwell
fluid flow with the impact of thermo-physical parameters over a flat
melting surface. Mustafa et al. [6] researched the flux as non-Fourier
in thermal variables for the rotation of Maxwell fluid flow. It was
derived by Shafique et al. [7] within the context of a rotating frame.
Olabode et al. [8] studied Maxwell fluids with the impact on
temperature-dependent variable characteristics and the influence
of quadratic thermo-solutal convection. Heyhat and Khabazi [9]
observed the non-isothermal flow of Maxwell fluid over fixed
horizontal plates influenced by a transverse magnetic field. In the
above articles, authors used Maxwell fluid on different geometries
but not on a flat plate. So, Maxwell fluid flow on the flat plate must be
included with the existing.

Porous medium is a material that contains either connected or
unconnected voids (pores) spread in a regular or randompattern. These
pores may contain various fluids, including air, water, oil, etc. If pores
represent a percentage of the bulk volume, a composite network capable
of fluid transport can be constructed. The permeability of the porous
medium was the partial and overall bulk quantity of volume. The
structure of the porous material determines permeability, a measure of
the material’s mean square pore diameter. The following authors
included porous media in their study.

Bhattacharyya [10] investigated chemically reactive flow’s first-
order diffusion equations across a porous flat plate focused on force
and changing wall concentration. Sadia et al. [11] examined the
convection of energy–mass transfer with generalized Maxwell fluid
impact, chemical reaction and exponential heating utilizing
fractional derivatives models such as Caputo–Fabrizio. Shenoy
[12] researched heat transport in non-Newtonian fluids
throughout porous media. In the above research, a few authors
have used a porous medium in different geometries, especially not in
flat plates over Maxwell fluid.

Radiation is the energy transfer from a body via electromagnetic
radiation emission or absorption. Thermal radiation spreads in the
absence of substances through the vacuum of space. In contrast to
conduction and convection, heat radiation can be concentrated in a
limited area using reflecting mirrors, which produce focused solar
energy. Venkatadri et al. [13] discussed the melting energy transfer
investigation through an exponentially widening permeable sheet. In
contrast, radiative heat flux was present in an MHD. Mahanthesh
et al. [14] conducted research on the study of nonlinear convective

flow in a nano Maxwell fluid combined with nonlinear radiation.
According to the research by Kumar et al. [15], the properties of
mass transfer on the 3D flow on a horizontal plate with a chemical
reaction were investigated. Hsiao [16] described a thermal extrusion
system that combines electrical MHD heat transfer with Maxwell
fluid, considered radiative and viscous dissipation. In the above
research, the authors have used radiation and heat generation in
other fluids that flow on a flat porous medium.

Reddy et al. [17] published the outcomes of a numerical
computation study on how thermal outlines along the side walls
of an annular enclosure made up of various hybrid nanofluids
with insulated horizontal borders are affected by axially
variable temperature. Sankar et al. [18] investigated free
convection heat transport in an annular cylindrical chamber
with distinct heat sources on the inner wall. On the other hand,
the exterior wall is cooled isothermally to a lower temperature.
Makinde and Sankar [19] investigated two thermal conditions
in which the opposite wall of a cylinder is insulated while the
inner or outer wall of the cylinder is continuously heated.
Sudarmozhi et al. [20] inspected the possessions of heat
generation, thermal radiation, and also with the
consideration of chemical reaction on double diffusion in a
porous MHD Maxwell fluid medium. The dual results of a
nanofluid flow on a convectively heated, nonlinearly
contracting sheet were examined by Roy and Pop [21]. The
double results of MHD mixed convection flow of an Oldroyd-B
nanofluid on a shrinking sheet with a heat source and sink were
discussed by Roy and Pop [22]. Zahir Shah et al. [23] solved the
Darcy–Forchheimer magnetic flow of water-based silver and
copper nanofluids by generating entropy. Joule heating and the
effects of viscous dissipation were used to analyze the model.
Tang et al. [24] looked at the energy transfer and flow of
magnetized gold-blood Oldroyd-B nanofluids in narrow
stenotic arteries using a computational approach.

Maxwell was the first to model a non-Newtonian fluid; its
examples include polymer extrusion, nuclear reactor emergency
cooling systems, food processing, and thermal welding. As far as
the authors know, Maxwell fluid’s steady-state boundary layer flow
across a permeable flat plate with the above-mentioned physical
consequences has yet to be documented in the literature. Many
authors have conducted a study using different geometries and
parameters. But they have yet to study a porous flat plate
combining thermal radiation, MHD and heat generation over a
Maxwell fluid flow with a moving velocity in the boundary
condition (U).

Consequently, the original aim and objective of this research is
to analyze a model for the flow of magnetic flow of Maxwell fluid
across a porous flat plate and to examine the combined impacts of
heat generation, mass diffusion and thermal radiation over the
moving flat plate. The governing equations are transmuted to a
system of differential equations. The investigation will be
conducted numerically using the computing software MATLAB
(RKF). Possible flow patterns will also be produced to visualize
velocity and temperature flow behaviour. Finally, the numerical
values are validated with the current work. Even though similar
problems have been covered in existing literature in recent years, it
is worth noting that the study provides logical answers to the
research questions.
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1. What is the increasing effect of the Nusselt number for the Rd
versus the magnetic field?

2. What is the decreasing effect of the Nusselt number for the Eckart
number versus the magnetic field?

3. How do large values of theDe versus the magnetic field affect skin
friction?

4. How do large values of the porosity parameter versus the MHD
affect skin friction?

2 Mathematical modelling

Let’s use the effect of heat generation and radiation on a flat
porous plate to define the laminar, two-dimensional, incompressible
and steady flow of a non-Newtonian Maxwell fluid. It is supposed
that the x-axis is on the plate, the y-axis is perpendicular to the plate,
and the flow’s motion is considered towards the positive x-axis. Let u
and v be the horizontal and vertical velocity mechanisms along the x
and y directions. T is known as temperature, and C is the
concentration of the fluid. The geometry of this modelling can be
displayed in Figure 1. The wall’s convective boundary conditions
affect the local temperature. The flat porous plate is subjected to an
MHD with a constant strength of B0 and applied along the y-axis
and perpendicular to the plate. And the magnetic Reynolds number
is minimal, so the induced magnetic field can be neglected. Let
temperature be the constant, and the concentration of the horizontal
plate is Tw and Cw that of the ambient fluid known as T∞ and C∞. U
is the constant velocity of the free stream, or that of a moving
horizontal plate. U∞ denotes free stream velocity. The following are
the governing equations, written in Cartesian form, along with the
assumptions mentioned above and boundary layer approximations
by adding the porous medium, heat generation, and mass equation
from Mustafa [25].

The Cauchy equations of motion can be used to derive the
boundary layer equations for all viscoelastic fluid. In the presence of
an MHD, the y-axis experiences continuous 2D flow. Based on the
idea of conventional boundary layers, the equation of continuity can
be stated as

zu

zx
+ zv

zy
� 0. (1)

The motion equation is formulated for an incompressible
viscous fluid based on Newton’s second law of motion, often
known as the momentum conservation law. Viscoelastic flows are
mathematically fascinating because their spectral features change
significantly from the Newtonian case. The Maxwell model has an
unrealistic creep function, hence in the presence of a Maxwell fluid,
the momentum equation is derived as follows:

u
zu

zx
+ v

zu

zy
� υ

z2u

zy2
( ) − σB2

0

ρ
u − λ1 u2z

2u

zx2
+ v2

z2u

zy2
+ 2uv

z2u

zxzy
( )

− υ

K
u.

(2)
The energy conservation principle, which states that the total

time rate of change of kinetic and internal energies is equal to the
sum of the work done by external forces per unit of time and the sum

of the other energies given per unit of time, is the foundation for the
heat transfer equation. The heat transport equation can be derived
from this method as

ρCp u
zT

zx
+ v

zT

zy
( ) � k

z2T

zy2
+ 16σ*T3

∞
3k*

z2T

zy2
+ μ

zu

zy
( )

2

+ Q0 T − T∞( ). (3)
qr is the radiative heat flux measured as qr = −(4 σ */3 k*) zT 4/z y,
Rosseland [26] here σ *& k* are the mean absorption coefficient &
the Stephan-Boltzmann coefficient, respectively. As resulting Raptis
and Perdikis [27], the temperature differences in the flow are
consider to be sufficiently small so that T4 may be stated as a
linear function of energy. This is skilled by expanding T 4 about the
ambient temperature T∞ and then ignoring the squares and higher-
order terms to attain T4 � 4TT3

∞ − 3T3
∞.

Thus, by using the above. zqrzy � −4σ*
3k*

z2T4

zy2 ≈ − 16σ*T3∞
3k*

z2T
zy2 .

The medium’s conductivity affects mass diffusion, but the
magnetic field does not disturb this process. As a result, when
the right conditions are met, the ordinary differential equation can
be applied to MHD problems. Fick’s law can calculate the
differential equation that describes the field of any component in
a moving binary mixture when a fluid is incompressible and does
not have an internal mass source.

Concentration Equation,

u
zC

zx
+ v

zC

zy
� DB

z2C

zy2
. (4)

The boundary conditions associated with the present problem
are as below (Mustafa [25])

u � U, v � 0,−kfzT
zy

� hf Tf − T( ), C � Cw when y � 0,

u � 0, T � T∞, C � C∞ when y � ∞ .

(5)

here hf � h�
x

√ is the heat transfer coefficient

FIGURE 1
Flow description.
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Using the below similarity variables (η & ψ) and dimensionless
variables for the energy and flow equations are transferred into
ODEs

η � U∞
υx

( ) 1
2y,ψ � υxU∞( ) 1

2f, θ � T − T∞
Tw − T∞

, ϕ � C − C∞
Cw − C∞

. (6a)

u � zψ

zy
, v � −zψ

zx
. (6b)

By introducing Eqs 6a, 6b, the momentum, heat, and mass
equations are turned into ordinary differential equations.

f‴ + 1
2
ff″ − De

4
f2f‴ + ff′f″ + ηf′ 2f″( ) −M2f′ − λf′ � 0.

(7)
In the nonlinear approximation, the issue is regulated by the

Prandtl number, the radiation parameter, and the energy ratio
parameter.

Dimensionless energy equation,

1 + 4
3
Rd( )θ″ + PrEcf″ 2 + PrQ θ + Pr

2
fθ′ � 0. (8)

Dimensionless concentration equation,

ϕ″ + 1
2
Le fϕ′( ) � 0. (9)

The transformed boundary conditions are compact to a
dimensionless form

f′ � 1, f � 0, ϕ � 1, θ′ � −β 1 − θ( ) at η � 0,
f′ � 0,ϕ � 0, θ � 0 at η � ∞ .

(10)

Here
De � λ1]

2x is the local Deborah number,
α � k

(ρcp) is Thermal diffusivity
Le � α

DB
is Lewis Number,

Rd � 4σ*T3∞
kk* is Radiation parameter,

Pr � ]
α is Prandtl number,

M �
���
σB2

0

√
ρ] is the magnetic field parameter,

γ � α
K is porosity parameter

Using Fick’s law and Fourier’s law, the following
expressions hold for the local Sherwood number (shx) & the
local Nusselt number (Nux), which are given here
respectively by

Nux � xqw
k Tw − T∞( ) and Shx � xjw

D Cw − C∞( )
where heat f lux qw � −k zT

zy
wheremass f lux jw � −D zC

zy

The above-expressed similarity quantities and Nux are
simplified by applying the aforementioned dimensionless
quantities.

With the presence of the local Reynolds number Rex � Ux
]

Nux���
Rex

√ � − 1 + 4
3
Rd( )θ′ 0( ), Shx���

Rex
√ � −ϕ′ 0( ).

3 Method of the solution

This section solves dimensionless governing equations using the
MATLAB function Bvp4c and dimensionless boundary value
conditions. The MATLAB function bvp4c is the Runge-Kutta-
Fehlberg method. To define mesh and control approximation
solution mistakes. The comparative error acceptance was set to
10−6. The linked and highly nonlinear modified governing equations
make it challenging to obtain closed-form solutions. Consequently,
the Runge-Kutta-Fehlberg technique numerically solves these
equations with boundary conditions in the symbolic computation
software MATLAB. Following is a reduction of the strongly coupled
boundary value problem to a system of first-order differential
equations:

The substitutions are f � l1, f′ � l2, f″ � l3, θ � l4, θ′ � l5,

θ″ � l5
′,ϕ � l6, ϕ′ � l7, ϕ″ � l7

′.

as follows.

l1′ � l2 and then

l2″ � l3,

l3′ �
−1
2
l1l3 + De

4
l1l2l3 + ηl2l2l3( ) +M2l2 + λl2[ ]
1 − De

4
l1l1( )

l4′ � l5,

l5′ �
−PrEcl3l3 − Pr

2
l1 l5 − PrQl5

1 + 4
3
Rd

l6′ � l7,

l7′ � −1
2
Lel1l7

Additionally, boundary conditions need to be considered in
Eq. 10, as

l2 � 1, l1 � 0, l5 � −β 1 − l4( ), l6 � 1 at η � 0,
l2 � 0, l4 � 0, l6 � 0 at η � ∞ .

Choosing the correct finite value of infinity is the most challenging
aspect of the procedure. Both the technique’s longitudinal step size of
0.0001 and its tolerance value of 10−6 are highly effective convergence
measurements. The exactness of the current approach is evaluated by
associating the results to those found in the literature [1]. The parameters
effect is examined in the present study to compute the numerical values
of Nusselt number and the skin friction as depicted in Figures 1–20.

3.1 Validation

To check the accuracy of our numerical calculations, Table 1
compares the present result and the above work by Mabood et al.
The numerical results are compared to Mabood et al. [1] for various
Prandtl number values. This comparison demonstrates that the
present and earlier studies are in perfect accord.
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4 Discussion of results

The current work analyses the boundary layer steady, MHD
Maxwell fluid on a permeable flat plate with heat generation and
radiation impact. This section discoursed the effects on

concentration, temperature and velocity fields by applying the
numerical values to different flow parameters. This article
examines radiative MHD Maxwell fluid flow on a flat plate on a
permeable medium in the occurrence of heat generation impacts. To
draw graphs, fixed parameter values are De = 0.1; Pr = 4; Ec = 0.1;
Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0; the parameter
values are taken from formal studies in the literature. These numbers
are standard throughout the investigation, except that distinct values
are displayed in separate figures.

4.1 Explanation for velocity profile

• The consequences of De on boundary layer velocity are
depicted in Figure 2. Due to a rise in Deborah number, the

FIGURE 2
Influence of Deborah number on velocity profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 3
Impact of Magnetic field parameter on velocity profile with De =
0.1; Pr = 4; Ec = 0.1; Rd = 1;Q = 0.1;M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 4
Impact of porosity parameter on velocity profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 5
Impact of Prandtl number on temperature profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

TABLE 1 Assessment of the current results with existing work (Mabood et al.
[1]) for heat transfer rate in temperature profile when porous and heat
generation parameters are zero.

Pr 0.72 1 3 10

Mabood et al. [1] 0.8088 1.0000 1.9237 3.7207

Current result 0.8086334 1.0000042 1.9235921 3.720650
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resulting rate also rises. According to the data, Deborah
number makes the border layer faster and more efficient.
Physically speaking, fluid will reach equilibrium when
shear stress is gone. Numerous polymeric liquids
exhibit this phenomenon, which the viscous fluid
model cannot describe. A more excellent Deborah
number estimation will result in a retarding force
between two adjacent layers in the flow. As an
outcome, the velocity and thickness of the layer
decrease. This is because an upsurge in Deborah
number implies that the fluid is experiencing a
significant viscous force; this force restricts fluid flow.

• The outcome of M on the velocity distribution is depicted
in Figure 3. Magnetic fields in electrically conducting
liquids produce Lorentz force. The magnetic region
slows boundary-layer transport. A magnetic variable
weakens boundary layers. Physically, the magnetic
parameter possesses Lorentz force, which restricts fluid
flow. This Lorentz force provides resistance to the
velocity.

• Variations in the velocity distribution on a flat plate for
different porosity parameter values are depicted in
Figure 4. The graph demonstrates decreasing velocities

FIGURE 6
Impact of Eckert number on temperature profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 7
Impact of Heat generation on temperature profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 8
Impact of thermal radiation parameter on temperature profile
withDe = 0.1; Pr = 4; Ec = 0.1; Rd = 1;Q= 0.1;M= 0.1; β = 0.2; λ = 0.1;
Le = 2.0.

FIGURE 9
Impact of Magnetic field parameter on temperature profile with
De = 0.1; Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1;
Le = 2.0.
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as λ rises. Increasing the porous media parameter creates
resistance to flow, which explains this phenomenon.

4.2 Explanation for temperature profile

• The temperature profile for several Prandtl values is
shown in Figure 5. Based on the numbers, the
temperature falls as the Prandtl number rises. The
breadth of the energy boundary layer and the
temperature contour decrease as Pr increases. As a
result, heat may spread out from the heated area
considerably more quickly. Thicker thermal barriers

and slower heat transfer occur at lower Prandtl values.
Physically, greater Pr values reduce thermal diffusivity,
resulting in a diminished capacity for energy transfer.
Because Pr is the combination of thermal and momentum
diffusivity, this is the case. Small values of Pr thus indicate
that thermal diffusivity predominates. For more precise
estimates of Pr, momentum diffusivity dominates.

• The inspiration of the Eckert number on the contour of the
temperature distribution is depicted in Figure 6. The enthalpy
difference is a measurement of the temperature of the flow
compared to the point of the energy boundary layer. An
upsurge in temperature was observed alongside a rise in Ec.
Physically, this is true due to the fact that the occurrence of
heat generates heat energy within the fluid. In fluid flow ideas,

FIGURE 10
Impact of porosity parameter on temperature profile with De =
0.1; Pr = 4; Ec = 0.1; Rd = 1;Q = 0.1;M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 11
Impact of thermal slip condition on temperature profile withDe=
0.1; Pr = 4; Ec = 0.1; Rd = 1;Q = 0.1;M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 12
Impact of Deborah number on temperature profile withDe = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 13
Impact of Lewis number on temperature profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.
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the Eckert number Ec is used to quantify dissipative effects. Ec
measures the energy dissipation of the flow arrangement.

• The temperature outline can be seen in Figure 7 as the heat
source/sink values rise. The negative value ofQ < 0 is known as
heat absorption and the positive value of Q > 0 is known as
heat transfer. By increasing the significance of the heat
generation parameter, the temperature of the fluid rises due
to an associated heat source that generates heat for the fluid;
consequently, the temperature of the fluid increases.

• The impact of Rd on the temperature contour is shown in
Figure 8. It has been detected that increasing Rd causes a rise in
fluid temperature. Physically, this occurs because the fluid
absorbs heat from the plate.

• The result of magnetic factors on temperature
distributions is depicted in Figure 9. It has been
detected that a rise in M causes a rapid rise in fluid
temperature. Moreover, it can be got that the imposed
MHD has no substantial impact on the thermal boundary
layer thickness. This phenomenon generates a minor
upsurge in the temperature outline due to the Lorentz
force addition to the existing skin friction, which results
in a rise in plate heat.

• The temperature delivery on a flat plate for several values of
the porous parameters is showed in Figure 10. It was found
that raising the value of λ rapidly increases the fluid’s
temperature. Due to thermal resistance, the thickness of the
thermal boundary layer rises.

FIGURE 14
Impact of Magnetic field parameter on concentration profile with
De = 0.1; Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1;
Le = 2.0.

FIGURE 15
Impact of porosity parameter on concentration profile with De =
0.1; Pr = 4; Ec = 0.1; Rd = 1;Q = 0.1;M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 16
Impact of Lewis number on concentration profile with De = 0.1;
Pr = 4; Ec = 0.1; Rd = 1; Q = 0.1; M = 0.1; β = 0.2; λ = 0.1; Le = 2.0.

FIGURE 17
Impact of Eckert number over local Nusselt number profile
against Magnetic field parameter.
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• Figure 11 shows the result of β on the temperature outline. The
results show that the temperature and momentum boundary
layer improve for the rising values of β.

• Deborah’s number effect on fluid temperature is revealed
in Figure 12. The Deborah number quantified fluidity.
Outcomes show that De has a beneficial impact on the
temperature field and boundary layer. Whenever the
Deborah number is of the order of 1, assumed a high
Deborah number; in other words, high Deborah number
flows correspond to solid-like behavior and low Deborah
numbers to fluid-like behavior. Due to a rise in the shear
stress property of a non-Newtonian fluid, the fluid’s layer
becomes slightly adhesive as it moves. As stated
previously, because of the resistance, more heat is created.

• As shown in Figure 13, the energy and thermal boundary layer
grows with the Lewis number. This behavior is more easily
observed in shear-thinning fluids. Physically, the ratio between
heat and mass diffusivity is known as the Lewis number.

4.3 Explanation for concentration profile

Figure 14 depicts concentration variations as a function of M.
Boosting concentration profiles is possible by altering the magnetic
parameter values. The concentration distribution changes as the
porosity parameter are adjusted, as shown in Figure 15. Figure 16
depicts the impact of Le on sharpness. Higher Lewis numbers
decrease concentration and result in a narrower concentration
boundary layer. The Le is the ratio between the mass and heat
diffusion rates. As the Lewis number rises, the mass diffusivity
declines.

4.4 Explanation for skin friction and Nusselt
number profile

Figure 17 depicts the relationship between the Eckert and
Nusselt numbers about M. Nusselt number falls as Ec grows.
Figure 18 shows as thermal radiation increases, so do the Nusselt
number. The effect of porosity and skin friction is depicted in
Figure 19. Skin friction diminishes as the porosity parameter
increases. Deborah number (Maxwell’s parameter) and magnetic
field skin friction are shown in Figure 20. Skin friction increases as
De increases.

5 Concluding remarks

This investigation aims to analyze the MHD radiative Maxwell
fluid flow with the joint result of heat generation and mass diffusion
over a flat porous plate. After converting modelled PDEs into ODEs,

FIGURE 18
Impact of thermal radiation parameter over local Nusselt number
profile against Magnetic field parameter.

FIGURE 19
Impact of porosity parameter over skin friction profile against
Magnetic field parameter.

FIGURE 20
Impact of Deborah number over skin friction profile against
Magnetic field parameter.
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the numerical solutions for ongoing boundary value problems are
carried out by means of the Runge-Kutta Fehlberg technique in
MATLAB software. The skin friction coefficient and Nusselt
number in heat transfer for the Maxwell fluid are computed, as
well as the effects of the nonlinear solved problem for numerous
governing parameters on the flow quantities. The novel findings of
this research are to investigate the Nusselt number for the Eckert
number versus the MHD and the Nusselt number for the radiation
parameter versus the magnetic field. In addition to the skin friction
study, investigate the porosity and the Deborah number in the
occurrence of a magnetic field. To draw graphs, fixed parameter
values are Pr = 4; De = 0.1; Ec = 0.1; Rd = 1; Q = 0.1;M = 0.1; β = 0.2;
λ = 0.1; Le = 2.0; Some of the significant critical findings of the paper
are giving the answers to the research questions:

• The velocity outline reduced with rising values of Deborah
number, magnetic parameter, and porosity parameter.

• Temperature profile values increased with rising Eckert
number, heat generation, thermal radiation, Magnetic field
parameter, porosity parameter, thermal slip condition,
Deborah number, and Lewis number. Still, they decreased
with an increasing Prandtl number value.

• The concentration profile increased as theMagnetic field parameter
andpermeability values increased, whereas the concentration profile
decreased when the Lewis number value enlarged.

• The Nusselt number increased as the Eckert number
increased, while it decreased for thermal radiation.

• The coefficient of friction declines as the porosity parameter
rises, but the coefficient growths as the Deborah number
rises.

Applying the Runge-Kutta Fehlberg technique in MATLAB
dramatically enhances efficacy and precision. Our outcomes

indicate that this strategy is effective and sufficiently potent for
solving fluid flow problems.
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Nomenclature

qr Radiative heat flux

D Diffusion term

Cf Skin Friction Coefficient

Q0 Dimensional heat generation

K Dimensional porous medium (Permeability)

Rd Radiation parameter

Le Lewis number

M Magnetic field

DB Mass diffusion rate

De Deborah number

Q non-dimensional heat generation

f non-dimensional stream Function

Nu Nusselt number

Sh Sherwood number

k Thermal conductivity of the fluid

Ec Viscous dissipation number (Eckert number)

Cp Specific heat

Greek symbol

ϕ non-dimensional concentration

μ Dynamic viscosity

σ Electric conductivity

ρ Fluid density

ρcp Heat capacity

υ Kinematic viscosity

θ non-dimensional temperature

β Thermal slip parameter

λ1 Fluid relaxation time

λ non-dimensional porosity parameter
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