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Plasma simulation is an important but sometimes time-consuming approach to
study the discharge behaviors of atmospheric pulsed discharges. In this work, an
efficient simulation method is proposed by introducing deep learning to investigate
the discharge characteristics driven by very short pulsed voltages. A loss function is
designed and optimized to minimize the discrepancy between the Deep Neural
Network (DNN) and the verified fluid model. The prediction data obtained via well-
trained DNN can accurately and efficiently reveal the key discharge characteristics,
such as the waveforms of discharge current and gap voltage, spatial profiles of
charged particles density and electric field. The spatial distributions of charged
particles density and electric field obtained from DNN are also given to unveil the
underlying mechanisms. Additionally, the predictions from deep learning and the
formula analysis both highlight that the breakdown voltage and current density can
be effectively reduced by increasing repetition frequency, which quantitatively
agrees well with the experimental observations. This study provides a great
potential promise for vastly improving the simulation efficiency by introducing
deep learning in the field of atmospheric plasmas computation.

KEYWORDS

pulsed discharge, numerical simulation, fluid model, deep learning, electron density

1 Introduction

In recent years, atmospheric plasmas excited by the pulsed voltage with millisecond to
nanosecond duration have attracted ever-growing attention for its promising advantages in
many application fields, such as polymeric surfaces modification [1], carbon dioxide splitting [2,
3], and plasma biomedical treatment [4, 5]. The pulsed voltage with a sharp rising edge provides
intensified electric field and larger breakdown voltage in the discharge space, which could bring
abundant energetic electrons and improved plasma species density in an extremely energy-
efficient way, instead of heating the ambient gas [6–9]. The comparisons have also revealed that
the short pulsed excitation contributes greatly to generating large-volume and homogeneous
atmospheric plasmas over the whole discharge space [10–13], which are expected in the view of
practical applications [14]. Furthermore, due to the presence of a large number of high-energy
electrons and continual collisions at atmospheric pressure, quantities of reactive species can be
generated in pulsed discharges with appropriate mixtures of chemically rich gases, such as He +
O2, He + N2 and He + Ar, etc., which are supposed to be very crucial in many potential
applications [15–17], especially in the novel application of plasma medicine [4, 5, 18, 19].
Further experimental and simulation researches have illustrated that the pulsed discharges can
be deeply optimized by tailoring the pulsed voltage waveforms to gain desirable plasma
properties [7, 20–22], and the repetition frequency of pulsed voltage has also been
demonstrated to have a remarkable influence on the characteristics of pulsed discharges
[23, 24]. However, due to the extreme transient nature of pulsed discharges and the limited
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applicability of conventional experimental diagnosis developed for
low-pressure plasmas, the essential evolution processes and the ways
of optimization of atmospheric pulsed discharges are still difficult to
assess quantitatively [7]. On the other hand, as an important
investigation approach, numerical simulation overcomes the
experimental difficulties and can offer the insights into the
underlying physics of the atmospheric pulsed discharges with
broad range of discharge parameters and high credibility [22, 25,
26], which is helpful to select appropriate discharge operation
parameters to achieve more desirable atmospheric plasmas with
higher chemical activity and less risk of filamentation.

From the perspective of numerical simulation, the steep rise rate of
pulsed voltage and large discharge current density in pulsed discharges
bring huge challenges to the simulation code, and in order to describe the
dynamic evolvement of pulsed dischargesmore accurately, the selection of
time step and spatial step in the computational model needs to be strictly
limited, which presents a great computational cost to achieve the dynamic
steady state of pulsed discharges after several pulse repetition periods in
time scales of milliseconds. Therefore, it is necessary to develop a more
efficient computationmethodology for the atmospheric pulsed discharges
to cope with the further potential challenges. With the rapid development
of Artificial Intelligence (AI) and Machine Learning (ML) technology,
deep learning, as a promising branch of ML, has drawn growing
attentions in recent years [27–29]. The fundamental idea in deep
learning is that training a multilayered AI-driven model for predicting
or discovering patterns in the behavior of a complex system by learning
representations of data with multiple levels of abstraction [30, 31], which
can be significantly more efficient than developing a commonly used
purely physics-based model [27]. With the advancement of high
performance computing and the increasing size of available data sets,
deep learning has been widely implemented for data analytics, such as
pattern recognition [32], gene discovery [33], medical image processing
[34] and semantic analysis [35], etc. Recent studies have shown that deep
learning, in form of the DNN, exhibits surprising capabilities in modeling
low-temperature plasmas [30, 36, 37]. DNN is constructed using the
simulation data from physics-based models and can be used as a black-
box method to approximate the physical systems [31, 38–40]. The critical
step of developing a deep learning algorithm for accurately simulating the
properties of discharge plasmas is to construct a DNN which can
continuous minimize the discrepancy between the corresponding
prediction and simulation data. Simulating discharge properties is
therefore reduced to solving optimization problems. Although the
validity of deep learning in the pulsed discharge simulation is still not
well explained, the DNN with multi-hidden layers that follow universal
approximation theorems are supposed to be able to approximate a set of
governing equations in the numerical model for the atmospheric pulsed
discharge simulations [30, 41], which makes the practice of deep learning
in discharge plasma simulations have a solid theoretical basis. Compared
with the conventional physics-based simulation methods, the deep
learning-based approaches is considered as a powerful tool which
could markedly improve the computational efficiency of atmospheric
pulsed discharge simulations [37, 41, 42].

In this paper, a deep learning-based algorithm is constructed and
trained to predict the discharge characteristics of pulsed discharges with
various pulse rise rates and repetition frequencies in atmospheric pure
helium, which shows the great exploitation foreground of deep learning
technology in the field of discharge plasma simulation. In Section 2, the
numerical model used to calculate the training data and the deep learning
method in form of the DNN with constructed four hidden layers applied

in this study are described briefly. Based on the prediction results from
deep learning, the validity of the well-trained DNN is verified in Section 3
by comparing with the simulation results, then the discharge evolutions of
atmospheric pulsed discharges with the varying of pulse rise rate and
repetition frequency, and the corresponding fundamental mechanisms
are further investigated via deep learning with high accuracy and
efficiency, the predicted data are also validated by the corresponding
derived analytical equations from the numerical model. In Section 4, a
summary is concluded.

2 Description of methodology

In this study, the numerical model for atmospheric pulsed
discharges is based on the one-dimensional fluid description, which
is used as the data source of the DNN to investigate the characteristic
quantities that govern the pulsed discharges. A parallel-plate structure
is adopted to generate and sustain the discharge plasmas, the discharge
gap distance is set to 2 mm and both two electrodes are covered with
dielectric with the relative permittivity of 6.1 and the thickness of
1 mm. The applied pulsed voltage waveform is depicted by a piecewise
function with the smooth approximation
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(1)

whereV0 is the voltage amplitude, T1, T2 and T3 are the durations of pulse
rising phase, plateau phase and falling phase respectively. The smooth
approximation is used heremainly to numerically satisfy the requirements
of the continuity of equations [22, 43], and the effects of this
approximation on the discharge characteristics can be considered
negligible. The working gas in the simulation model is pure helium at
a pressure of 760 Torr, and six pivotal plasma species are taken into
consideration, which are electrons (e), helium atoms (He), atomic helium
ions (He+), molecular helium ions (He+2 ), metastable helium atoms (He*)
and metastable helium molecules (He2*), the chemical reactions and the
corresponding rate coefficients considered for these plasma species are
derived from Refs. [26, 44].

In the fluid model, the continuity equations coupled with the
diffusion-drift approximation are given to describe the generation and
loss of plasma species, Poisson equation is to determine the electric
field in the electrode spacing, and the electron energy conservation
equation is to calculate the mean electron temperature [26, 45, 46],
which are briefly described as follows:
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where the subscripts i, e and He denote the ith species, electrons and
background helium gas, respectively. N indicates the number density,
Γ represents the flux density in the diffusion-drift approximation, and
S denotes the source term.The sign marker sgn(qi) is negative (−) for
electrons, positive (+) for ions and nil for neutral species. μ and D are
the drift and diffusion coefficients respectively. E is the electric field, ε0
and q are the vacuum permittivity and elementary charge, respectively.
ε represents the mean electron energy, ΔEj and Kj are the energy loss
and the corresponding rate coefficient of jth reaction. me and mHe are
the masses of electron and helium respectively, and Kel is the
momentum transfer collision frequency between electrons and
background helium. kb is the Boltzmann constant. Te and THe are
the electron temperature and background gas temperature
respectively. THe is fixed at 300 K in this model because it has only
a slight variation in the low-temperature plasmas [47]. At the
boundary of the discharge region, the flux boundary conditions for
plasma species and electron energy are adopted [26], and the emission
of secondary electrons is also taken into consideration with a
simplified coefficient value of 0.03 [19, 48].

Generally speaking, in atmospheric pulsed discharges, there are
two current pulses of opposite polarity can be observed during one
applied voltage cycle, which has been extensively investigated by
experimental measurements and numerical simulations [20, 22, 26,
44, 49]. The first current pulse is generated during the voltage rising
phase after the gap voltage exceeds the breakdown voltage in the
electrode spacing, and the second current pulse is induced by the
surface charges accumulated on the dielectric barriers during the
falling phase of the applied voltage [6]. Therefore, the discharge

current varies dramatically that its Full Width Half Maximum
(FWHM) is only dozens of nanoseconds during the pulse rising
phase and falling phase, on the other hand, it becomes very weak
with a minor derivative during the plateau phase and afterglow phase.
From point of view of mathematical analysis, this relatively complex
discharge evolution characteristics of pulsed discharges poses a great
challenge to the application of the deep learning. After full technical
comparison and demonstration, a fully connected four-hidden-layer
Back Propagation (BP) DNN is developed to predict the
corresponding discharge characteristics of atmospheric helium
pulsed discharges [31, 50]. As shown in Figure 1, the DNN has
three layers of units: the input layer, the hidden layer, and the
output layer. Time and pulse rise rate are adopted as the inputs of
the DNN, and the outputs are the predicted temporal evolutions of the
atmospheric pulsed discharges, such as discharge current density and
the gap voltage. The DNN also supports more diverse inputs and
outputs, for instance, with the spatial position and pulse rise rate as
inputs, the profiles of charged particles density and electric field at
characteristic moments can be output. Four hidden layers with
30 neurons in each layer are used in the DNN, in which the
Rectified Linear Unit (ReLU) function, hyperbolic tangent (tanh)
function, hyperbolic tangent (tanh) function, and sigmoid function
are successively adopted as the activation functions [51]. A detailed
description of the DNN with multiple hidden layers can be found in
Refs. [31, 36]. In order to achieve the high precision prediction of the
discharge characteristics, a loss function L is designed to measure the
discrepancy between the prediction and simulation data, which can be
expressed as

FIGURE 1
Structure diagram of the DNN constructed based on the characteristics of atmospheric pulsed discharges.
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L � 1
M

∑ ypre − ysim( )2, (6)

Where M denotes the number of the scattered points which can be
uniformly or randomly selected in the corresponding calculation
domain. ypre stands for the predicted data output from the DNN,
and ysim represents the simulation data obtained from the numerical
model. This deep learning-based algorithm is based on the open-
source software package Google’s TensorFlow [52], which supports
Graphics Processing Unit (GPU) acceleration to improve learning
efficiency [53], and uses the well-known optimizer Adam to minimize
the loss function L and achieve the optimization of the DNN [54].

3 Results and discussion

3.1 Validation of the method

In this study, the training datasets are calculated from the fluid
model, then the DNN is trained against these data and eventually
applied to make new predictions. In the fluid model, the governing
equations are numerically discretized and solved with the
improved Scharfetter-Gummel (ISG) scheme [55–57]. Generally
speaking, to achieve a dynamic steady state of the atmospheric
pulsed discharge with a repetition frequency of 5 kHz, at least
10 repetition periods need to be applied before the final calculation
results are obtained, which will cost about 24 h by means of a
powerful computing platform (3.0 GHz Core i7-9700 CPU with
16 G RAM), something computationally expensive. On the other
hand, the application of fluid model to the description of
atmospheric pulsed discharges under sub-microsecond has been
widely validated by the experimental observations under various
discharge conditions [7, 8, 20, 24, 26], thus this work mainly
focuses on improving the efficiency and effectiveness of the
pulsed discharge simulation by introducing deep learning. In
addition, the formed datasets from experiments can also be used
as the training datasets to predict various discharge properties of
the atmospheric pulsed discharges.

A good deep learning model should present good performance not
only on a training set, but more importantly on a testing set [58]. The
validation of the predicted data from well-trained DNN is performed
in this section by comparing with the testing set obtained from the
fluid simulations. Figure 2 displays the discharge current density and
the gap voltage predicted by the DNN, together with the
corresponding waveforms simulated by the fluid model. The
amplitude of applied pulsed voltage is 5000 V with a repetition
frequency of 5 kHz, the durations of pulse rising phase, plateau
phase and falling phase are 100 ns, 1,000 ns and 100 ns
respectively, which suggests the corresponding pulse rise rate is
50 V/ns. It is clear in Figure 2 that the DNN achieves a perfect
agreement compared to the simulation results, even in domains
with rapidly changing profiles. The variance between deep learning
prediction and fluid simulation for the current density and gap voltage
are only 7.79 × 10−9 and 1.42 × 10−8 respectively with a mean
prediction time of 3.11 s, which saves four orders of magnitude of
computation time compared to the fluid simulation. As shown in
Figure 2, the current density rises slightly just as the pulsed voltage is
applied, which is mainly due to the displacement current, and for the
main discharge process of pulsed discharges, the displacement current

FIGURE 2
Prediction on current density and gap voltage in the atmospheric
pulsed discharge via deep learning with comparison of the simulation
results. The insert figure is to show details.

FIGURE 3
Prediction on spatial distributions of (A) electron density and ion
density and (B) electric field at the moment when the current density
gets to the peak value in the atmospheric pulsed discharge via deep
learning with comparison of the simulation results.

Frontiers in Physics frontiersin.org04

Zhang et al. 10.3389/fphy.2023.1125548

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1125548


is negligible. The insert Figure 2 enlarges the rising phase of the pulsed
voltage to show more details. As the applied voltage increases, the gap
voltage is enhanced almost linearly at a rise rate slightly less than that
of the applied voltage, then it reaches its peak value of 1.83 kV, which is
denoted as breakdown point Tb; and approximately at this point, the
current density starts to rapidly rises and reaches its amplitude of
0.398 A/cm2. Then due to the gas breakdown, charges produced by the
intense discharge event and accumulated on the dielectric barriers
induce a memory voltage leading to a sharp drop in the gap voltage
until the current becomes too weak to compensate for the increase of
the applied voltage [59]; Based on the prediction data, the FWHM of
the positive current pulse in Figure 2 is 21.66 ns under the given
discharge conditions. In the following discussion, the data about the
peak current and breakdown voltage are both taken from the positive
current pulse ignited during the pulse rising phase.

The deep learning predictions for the spatial distributions of
electron density, ion density and electric field at the moment when
the discharge current reaches its peak value are also compared with the
simulation data in Figure 3. It can be seen that the predicted profiles
are in good agreement with the simulation results, particularly in the
sheath region where the values changes dramatically. The variance of
the electron density, ion density and electric field are only 3.40 × 10−8,
5.71 × 10−8 and 2.36 × 10−8 respectively, and the mean prediction time
is only 3.01 s. When the discharge current achieves its positive peak,
the atmospheric pulsed discharge develops a prominent cathode fall
region on the right side of the electrode spacing, where the ion has a
large density gradient in Figure 3A and the electric field reaches a large
peak of 3.87 × 104 V/cm in Figure 3B, which is the results of both the
flow of the electrons toward the anode (the left hand side) and the
movement of the ions toward the cathode (the right hand side) under
the action of the applied electric field [44], and the much stronger
electric field in the cathode sheath leads to intense ionization events,
together with the greatly increase in electron density and ion density
nearby the cathode. On the left side of the cathode sheath, Figure 3
shows that the electric field declines rapidly to almost zero and the
electron density reaches its peak, indicating the formation of the
negative glow region, which agrees well with the dark zone as observed
by iCCD camera in experimental observations [7, 46], and it is
supposed to be essential in maintaining the current continuity in
the sheath region in discharges with large current density [60–64]. The
rest of the electrode spacing is identified as the positive column, which
is a large quasi-neutral plasma region where the electron density and
ion density are almost equal with a relatively lower electric field. These
features indicate that the pulsed discharge is in the glow mode at this
instant, and the DNN could precisely capture the main dynamics of
the atmospheric pulsed discharges with a remarkable computational
efficiency.

3.2 Deep learning for pulse rise rate variation

In this section, the DNN is used to predict the pulsed discharge
properties with various pulse rise rates at a fixed voltage amplitude of
5000 V, in which 36 sets of data obtained from the fluid simulation
along the pulse rise rate ranging from 15 to 85 V/ns are uniformly
selected as the training datasets. Based on the prediction results via
deep learning, Figure 4 displays the waveforms of discharge current
density with different pulse rise rates of 20, 50, and 80 V/ns, and
the insert figure is to show details. When the pulse rise rate is set to

20 V/ns, the peak current density is about 0.17 A/cm2, and if the pulse
rise rate is increased to 50 V/ns at a fixed voltage amplitude, the pulsed
discharge is obviously enhanced with a peak of 0.398 A/cm2, then
when the pulse rise rate is further increased to be larger than 80 V/ns,
the peak current density of 0.61 A/cm2 is remarkably stronger than
either of the above; the negative discharge current is also enhanced by
increasing the pulse rise rate in Figure 4. The prediction data indicate
that at a given voltage amplitude, increasing the pulse rise rate can
effectively enhance the discharge current density of pulsed discharges.
From the foregoing discussion in Figure 2, the gap voltage evolution is
particularly important for the discharge characteristics because it
determines the breakdown voltage Vb, which is the maximum
value of the gap voltage and directly governs the peak value of the
discharge current density. Thus a more deeply investigation on the

FIGURE 4
Prediction on current density in the atmospheric pulsed discharges
via deep learning with various pulse rise rates at a fixed voltage amplitude
of 5000 V. The insert figure is to show details.

FIGURE 5
Breakdown voltage as a function of pulse rise rate at a fixed voltage
amplitude of 5000 V.
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breakdown voltage should be performed via deep learning to unveil
the corresponding underpinning physics.

Correspondingly, the predicted breakdown voltage as a function of
pulse rise rate is given in Figure 5. It is shown that as the pulse rise rate
is increased from 15 to 85 V/ns at a fixed voltage amplitude of 5000 V,
the breakdown voltage has a weak linear dependence on the pulse rise
rate, increasing from 1.49 to 2.01 kV. The prediction data obtained by
deep learning can be further validated by the derived equations from
the fluid model. In the governing equations of the fluid model, the
derivation of the gap voltage Vg can be expressed by

zVg

zt
� dg

dg + 2ds/εrKr − 2ds

ε0εr dg + 2ds/εr( )σpVg, (7)

where dg and ds are the thickness of gas gap and dielectric respectively,
and εr is the relative dielectric constant. Kr represents the rise rate of
the pulsed voltage, which is given by Kr � dVa

dt σp is the equivalent
conductivity of the discharge plasma, which can be defined as σp =
qeμeNξ [65], where Nξ denote the electron density at a specific position
in the electrode spacing, which can be approximately considered as the
spatial-averaged electron density for the convenience of qualitative
analysis. As shown in Figure 2, the derivation of the gap voltage should
be zero at the breakdown point Tb, that is

zVg

zt
|Tb

� 0, (8)

thus Eq. 7 can be further derived as

dg

dg + 2ds/ε( )Kr � 2ds

ε0εr dg + 2ds/ε( )σpVb, (9)

consequently, the expression of breakdown voltageVb can be explicitly
given by

Vb � ε0εrdg

2qeμeds

1
Nξ

Kr. (10)

In Eq. 10, dg, ds and εr are both the constants for the present
discharge conditions. At the breakdown point Tb, the discharge is still
not fully ignited and thus the electron density Nξ has not yet varied

significantly. So roughly speaking, Eq. 10 analytically illustrates that
the breakdown voltage is mainly dependent on the pulse rise rate Kr, of
course to be exact, it should linearly depend on the ratio of Kr

Nξ
, which

theoretically verifies the prediction profile in Figure 5.
Figure 6 shows the predicted peak current density and the FWHM

of the current pulse as functions of the pulse rise rate at a given voltage
amplitude of 5000 V. As can be seen, the peak current density is almost
linearly dependent on the pulse rise rate. When the pulse rise rate
increases from 15 to 85 V/ns, the peak value of the discharge current
density rises from 0.13 to 0.65 A/cm2, which demonstrates that the
larger pulse rise rate indicates the larger discharge current at a given
applied voltage amplitude. Meanwhile as the peak current density
increases, the deep learning prediction shows that the corresponding
FWHM of current pulse eventually reduces from 43.66 to 15.67 ns,
which clearly suggests that the larger current peak tends to rise and
drop more rapidly, agreeing well with the experimental observations
[20, 66].

In order to unravel the underlying mechanisms of atmospheric
pulsed discharges via deep learning, the spatial distributions of
charged particles density and electric field at the instant when the

FIGURE 6
Peak current density and FWHM of current pulse as functions of
pulse rise rate at a fixed voltage amplitude of 5000 V.

FIGURE 7
Prediction on spatial distributions of (A) electron density and ion
density and (B) electric field at the moment when the current density
gets to the peak value in the atmospheric pulsed discharges via deep
learning with various pulse rise rates at a fixed voltage amplitude of
5000 V. The insert figure is to show details.
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discharge current gets to the peak value are predicted in Figure 7A and
7B respectively with various pulse rise rates at the fixed voltage
amplitude of 5000 V. As the pulse rise rate increases in Figure 7A,
the larger electron density and ion density can be observed especially
in the sheath region, meanwhile the location of the density peak moves
toward the cathode together with the sustained shrinkage of the sheath
thickness. When the pulse rise rate is set to 80 V/ns, the predicted
results indicate that the maximums of electron density and ion density
reach 2.94 × 1012 and 4.18 × 1012 cm−3 respectively near the cathode,
which suggests the density of the space charge is approximately 1.24 ×
1012 cm−3 in the sheath region, then the large space charge density
greatly enhances the electric field in the cathode sheath, as predicted
and plotted in Figure 7B, the peak value of the electric field is 3.19 ×
104 V/cm at a pulse rise rate of 20 V/ns, and it gets to 3.87 × 104 and
4.27 × 104 V/cm with the increasing pulse rise rate from 50 to 80 V/ns.
By accelerating the secondary electrons toward anode, the enhanced
electric field in cathode sheath could effectively improve the ionization
rates in the discharge region, leading to a significantly increase in
discharge current density in Figure 6.

Based on the ultra prediction efficiency of the well-trained DNN,
Figure 8 gives the spatial profiles of electron density at the instant
when the discharge current gets to the peak value and its

corresponding maximum value as functions of pulse rise rate. As
the pulse rise rate is increased from 15 to 85 V/ns, Figure 8A shows
that the electron density tends to get larger values throughout the
discharge space, especially in the sheath region, and its peak rises from
1.01 × 1012 to 3.04 × 1012 cm−3 in Figure 8B. Meanwhile as the pulse
rise rate increases, the corresponding electric field and its maximum
value are eventually enhanced in Figure 9. These prediction data
explicitly indicate that a larger discharge current is commonly
accompanied by a higher plasma species density and a stronger
electric field in the sheath region. More importantly, the prediction
profiles in Figures 8, 9 propose that by constructing a training dataset
containing 36 sets of simulation data at various pulse rise rates and
after the fully training, an effective and efficient deep learning-based
algorithm is developed, which could quickly and accurately predict the
essential discharge properties of the atmospheric pulsed discharges,
such as temporal evolutions of discharge current density and gap
voltage, spatial distributions of electron density, ion density and
electric field, for the pulse rise rate range of 15–85 V/ns at a fixed
voltage amplitude of 5000 V. That is to say, not only can any point on
the curves in Figures 5, 6, 8, and 9 be exactly obtained via deep
learning, but the prediction process takes only a few seconds for a
single case compared to tens of hours of CPU time adopting the

FIGURE 8
(A) spatial distribution of electron density and (B) its maximum value
at the moment when the current density gets to the peak value as
functions of pulse rise rate at a fixed voltage amplitude of 5000 V.

FIGURE 9
(A) spatial distribution of electric field and (B) its maximum value at
themoment when the current density gets to the peak value as functions
of pulse rise rate at a fixed voltage amplitude of 5000 V.
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conventional fluid simulation, indicating a remarkable improvement
in computational efficiency in the atmospheric pulsed discharge
simulations.

3.3 Deep learning for repetition frequency
variation

In the atmospheric pulsed discharges, the repetition frequency of
pulsed voltage also strongly influences the discharge behaviors, which
has been widely observed in experimental measurements [23, 24, 67].
For exactly predicting the pulsed discharge properties at various
repetition frequencies, 65 sets of data ranging from 4 to 100 kHz
were uniformly selected as the training datasets of the DNN
considering the variation of discharge behaviors with repetition
frequency is relatively complicated. Figure 10 gives the temporal
evolutions of discharge current density and gap voltage predicted
via deep learning with various repetition frequencies from 4.75 to
60.75 kHz, and the pulsed voltage waveform remains unchanged.
Figure 10 shows that the predicted peak value of the current
density is 4.06 A/cm2 and the breakdown voltage is 1.85 kV at a
repetition frequency of 4.75 kHz. Then as the repetition frequency is
increased to 13.75 kHz, the current density only peaks at 2.56 A/cm2,

dropping by 36.95%, and the breakdown voltage is 1.45 kV, decreasing
by a factor of 21.62%. When the repetition frequency rises to
60.75 kHz, the deep learning prediction suggests that the peak
current density is nearly 1.85 A/cm2, and the breakdown voltage is
close to 0.99 kV. The prediction data are summarized in Figure 11,
where the peak values of discharge current density and the breakdown
voltage are plotted with various repetition frequencies at a fixed pulsed
voltage waveform. From Figure 11, when the repetition frequency is
increased, the breakdown voltage and discharge current density will
decrease very sharply especially when the repetition frequency is lower
than 20 kHz. The evolution profiles predicted by deep learning is
quantitatively consistent with the experimental observations [23, 24].

Generally speaking, the afterglow phase is shortened with the increase
of repetition frequency, thus more plasma species could stay in the
electrode spacing until the next breakdown event just because they
have less time to completely recombine and accumulate on the
dielectric barriers by traveling across the gas gap. Therefore, as the
electron density Nξ increases with the increasing repetition frequency,
the breakdown voltage is indicated by Eq. 10 to decrease at a fixed pulse
rise rateKr, thus the prediction results in Figure 11 are eventually validated
by the derived equation from the fluid model. Furthermore, the predicted
curves in Figure 11 show that the well-trained DNN is fully competent to
describe various discharge properties of atmospheric pulsed discharges at
different repetition frequencies under a fixed pulsed voltage waveform,
while the computational efficiency is much higher than that of the fluid
model, which will help to greatly extend the traversal range of discharge
parameters and facilitate the understanding of atmospheric pulsed
discharge evolutions.

4 Conclusion

In this paper, a deep learning-based method is developed to
investigate the discharge characteristics in pulsed discharges controlled
by dielectric barriers at atmospheric pressure. The feasibility and validity
of the deep learning algorithm in describing the discharge behaviors are
verified by comparing with the simulation data obtained from the fluid
model. After fully training, the essential quantities of pulsed discharges,

FIGURE 10
Prediction on (A) current density and (B) gap voltage in the
atmospheric pulsed discharges via deep learning with various repetition
frequencies at a fixed pulsed voltage waveform.

FIGURE 11
Breakdown voltage and peak current density as functions of
repetition frequency at a fixed pulsed voltage waveform.
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such as the temporal evolution of discharge current density and gap
voltage, spatial distribution of electron density, ion density and electric
field, can be efficiently and accurately yielded from DNN, which agrees
well with the data from the heavy-cost physics-based model solution. The
prediction results via DNN show that the breakdown voltage can be
effectively enhanced by increasing the pulse rise rate, and the peak current
density is linearly dependent on the pulse rise rate. The analysis of the
derived equation also confirms this conclusion. The predicted spatial
profiles of charged particles density and electric field are further given to
illustrate the underpinning physics, which shows a significant increase in
electron density and electric field with the pulse rise rate, especially in the
sheath region. Further prediction data and formula analysis suggest that
the residual plasma species from previous breakdown event can also
seriously influence the discharge properties, and increasing repetition
frequency can obviously reduce the breakdown voltage and discharge
current density in pulsed discharges. These evolution profiles from DNN
show a good agreement with the experimental observations. This study
provides a great potential promise for vastly improving the simulation
efficiency by introducing DNN in the field of atmospheric plasmas
computation, which could contribute to a better understanding of
discharge mechanisms in pulsed discharges.
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