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This paper analyzes the performance of sample matrix inversion (SMI) filter used by
antenna array receivers in pulse interference environment. Firstly, from the
perspective of comparison, it is proved that the theoretical optimal signal to
interference noise ratio (SINR) of SMI filter under pulse interference is the same
with that under continuous interferences. Then the convergence characteristics of
SMI filter under pulse interference are deduced, and the relationship between the
convergence speed and length of training samples and duty of interferences is given.
Finally, the results of signal simulation are consistent with those of numerical analysis,
which verifies the correctness of theoretical analysis. The results show that the
convergence speed of SMI filter decreases under pulse interference, and the SMI
filter needs more training samples to suppress the pulse interference effectively.
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1 Introduction

Due to its excellent anti-jamming ability, antenna array receivers are widely used in satellite
navigation, communication and other fields [1, 2]. It is clear that antenna array receivers have
perfect interference suppression performance under continuous and stationary interferences [3,
4]. But the interferences faced by antenna array receivers are diverse and constantly occurring,
and non-stationary and intermittent interferences are part of the threats [5–9]. Pulse
interference is one type of intentional interferences from jammers [6, 10, 11]. As the input
mutation caused by pulse interference destroys the steady state of the filter and even makes the
filter hardly converge to the steady state [12], the pulse interference has a great impact on the
anti-jamming processing based on recursive algorithm, such as recursive least-squares (RLS)
algorithm. The focus is to catch the interference samples [13, 14] when the sample matrix
inversion (SMI) algorithm was used for anti-jamming processing in antenna array receivers.
Even if the interference samples are caught, the convergence characteristics of the SMI filter in
the pulse interference environment need to be further analyzed. And analyzing the loss of
theoretical optimal SINR is also necessary when studying the impact of pulse interference on
SMI filter. The convergence characteristics of SMI filter in stationary environment were first
given by Reed [15]. It is proved that in order to make the expected loss of SINR less than 3 dB,
the length of training samples should be greater than 2D − 3, where D is the degree of freedom
(DOF) of the filter. The conlusion was widely verified [16]. Some literature have also proved that
the convergence speed of SMI filter based on eigenanalysis can be faster under stationary
environment [17–19]. In order to solve the problem of slow convergence speed of SMI and poor
anti-jamming performance with fewer samples, diagonal loading sample matrix inversion
(LSMI) filter was suggested to improve the convergence speed of the filter [20, 21]. The
convergence characteristics of LSMI have been analyzed and demonstrated in theory [22]. Tang
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[23] studied the convergence characteristics of LSMI filter in the
amplitude heterogeneous clutter environment, which assumes that the
amplitude of training signal is proportional to that of signal under test.
At present, there is no research report on the convergence
characteristics of SMI filter under pulse interferences.

The main contributions of this paper include: it is proved that the
theoretical optimal SINR of SMI filter under pulse interferences is
same with that under continuous interferences. The distribution
function of SINR loss of SMI filter under pulse interferences is
derived, and the expression of expected SINR loss with different
number of samples and the duty of interferences is given. The
numerical analysis and signal simulation with typical parameters
are given, and their results are consistent. The conclusion of this
paper shows that the performance of SMI filter may still deteriorate
even the length of training samples is greater than the pulse period
and 2D − 3.

2 Model of pulse interference and
antenna array receiver

2.1 Model of pulse interference

We assume that the pulse interference is extracted from a
wideband continuous signal with rectangular pulse. The time
domain waveform is described as

j t( ) � c t( )cos 2πf0t( )p t( ) � jc t( )p t( ) (1)
where c(t) is the baseband signal, f0 is the carrier frequency which is the
same with the interest signal, p(t) is a square wave with the
expression as

p t( ) � A, −τ
2
+ nTs ≤ t≤

τ

2
+ nTs n � 1, 2/

0, else.

⎧⎪⎨⎪⎩ (2)

where A represents the amplitude of the rectangular pulse, here we set
A as 1. τ is the pulse width, and Ts is the pulse period.

The spectrum of pulse interference is

J f( ) � ∑+∞
n�−∞

anJc f − nfs( ) (3)

where Jc(f) is the spectrum of the continuous signal jc(t),
an � τfssa(πnfsτ), where fs � 1

Ts
and sa(x) = sin(x)/x.

Since the low-pass filter exist before analog-to-digital conversion,
the bandwidth of the interference entering the space-time filter is
limited.

2.2 Model of antenna array receiver

Taking the array satellite navigation receiver as an example, in the
signal process flow, the antenna array receivers based on digital signal
processing add the array anti-jamming processing segment compared
with the single antenna receivers as shown in Figure 1. The signal
process of the satellite navigation antenna array receivers mainly
includes RF front-end, AD conversion, anti-jamming filter, channel
process and other segments. Pulse interferences will have a certain
impact on all the above segments. In the paper [11], the impact of
pulse interferences on the baseband processing was analyzed. This
paper mainly focuses on the impact of pulse interference on anti-
jamming processing.

The filter based on SMI use different optimization criteria to solve
the filter weight vector. For example, minimum variance distortionless
response (MVDR) filter solves the weight vector by minimizing the
output power and constraining the satellite signal gain to 1, and the
optimal weigth vector is

wopt �
R−1

y as
aHs R

−1
y as

(4)

where as is the steer vector of the interest signal, which is calculated
from the incident angle of the signal θ0 and the layout of the array. Ry

is the covariance matrix of noise and interference, which can not be
obtained accurately. Because the satellite signal power is much small
than noise power, it is assumed that the sampled signal is the noise and
interference signal, which means that

Ry^Rj + Rn � Rj + σ2I (5)
where σ2 is the noise power, Rj represents the covariance matrix of the
interference signal. Under the assumption that the input signals are
stationary, the covariance matrix of the samples is used to replace the
real covariance matrix in the processing.

FIGURE 1
Signal processing flow of antenna array receiver.

FIGURE 2
The curve of loss of SINR with different β.
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3 Performance analysis

3.1 Loss of theoretical optimal SINR

The performance is analyzed by taking the ratio of output SINR of
space-time filter under continuous interference and pulse interference
as the metric. Rc and Rp are the theoretical covariance matrices under
continuous interference and pulse interference respectively. When the
signal power is 1, after anti-jamming processing based on MVDR
method, the optimal SNR of filter output in two cases are SINRc

o �
aHs R

−1
c as and SINRp

o � aHs R
−1
p as respectively. Set vi as the eigenvector of

the covariance matrix and λi is the corresponding eigenvalue. Under
single interference, for the space-time filter with N elements and M
time-taps, the covariance matrix of interference has M larger
eigenvalues, and the other eigenvalues are equal to noise power σ2n.
And under the narrowband assumption, the space-time covariance
matrix of the interference can be expressed as [24].

Rj � Rθ ⊗ Rf � vθv
H
θ ⊗ Rf (6)

where vθ is the steer vector of interference. ⊗ denotes the Kronecker
product [25]. Rf is time domain covariance matrix of interference,
whose eigenvalues and corresponding eigenvectors are λi, vfi (i = 1,
/M). So the larger eigenvalues of Rj are λi (i = 1, /M) and the
corresponding eigenvectors are vi = vθ ⊗vfi. To simplify the analysis, we
assume that the time-domain covariance matrix of the interest signal
has only one non-zero eigenvalue and the corresponding eigenvector
is af, the space-time steer vector of the navigation signal is as = aθ ⊗af,
aθ is the spatial steer vector of the interest signal. Then the optimal
output SINR of the filter is

SINRo � aHs R
−1as � aHs ∑NM

i�1

viv
H
i

λi + σ2n
as

� aHs
1

σ2n
I −∑M

i�1

λiviv
H
i

λi + σ2n
⎡⎣ ⎤⎦as

� aHs as
σ2n

− 1

σ2n
∑M
i�1

λi
λi + σ2n

aHθ vθv
H
θ aθ ⊗ aHfvfiv

H
fiaf

≈
aHs as
σ2n

1 − 1

aHs as
∑M
i�1

aHθ vθv
H
θ aθ ⊗ aHfvfiv

H
fiaf⎛⎝ ⎞⎠

(7)

The above expression shows that the angle between steer vectors of
interest signal and interference affects the theoretical optimal SINR.
When the incident direction of interference and interest signal are not
in the same main lobe, the differences of frequency domain
characteristics of interference can be ignored. Therefore, under
pulse interference and continuous interference, the ratio of
theoretical optimal output SINR of the SMI filter is close to 1, and
the loss of theoretical optimal SINR caused by pulse interference
is 0 dB.

3.2 Convergence rate of SMI filter under pulse
interference

With the analysis of last section, it is obvious that if the covariance
matrix of the interference is accurately estimated, performances of
SMI filter under pulse interference and continuous interference are the
same. Next, the convergence characteristics of SMI filter under pulse
interference are derived. Assuming that one or more pulse cycles are in

training samples, and total interest signal power of the SMI filter
output is

Ps � 1
Kts

∑K
k�1

vHs R̂
−1
ptls tl + kts( )( ) vHs R̂

−1
ptls tl + kts( )( )H

(8)

where, K is the length of the training samples, ts is the sampling
interval, vs = as is the steer vector of the interest signal, and R̂ptl signal
covariance matrix used in the lth data cell, which is generally
calculated from the samples of the (l − 1)th data cell and tl
represents the starting time of the lth data cell. The interference
and noise signal output power of the SMI filter is

Pi+n � ∑Kβ
k�1

vHs R̂
−1
ptlj tl + kts( )( ) vHs R̂

−1
ptlj tl + kts( )( )H

+∑K
k�1

vHs R̂
−1
ptln tl + kts( )( ) vHs R̂

−1
ptln tl + kts( )( )H

(9)

Assuming that the pulse duty is β, the average output SINR of all
the L data cells is

SINRa � E Ps( )
E Pi+n( )

� E
∑L
l�1
∑K
K�1

vHs R̂
−1
ptls tl + kts( )( ) vHs R̂

−1
ptls tl + kts( )( )H

∑L
l�1

∑βK
K�1

vHs R̂
−1
ptlj tl + kts( )( ) vHs R̂

−1
ptlj tl + kts( )( )H

+

∑K
K�1

vHs R̂
−1
ptln tl + kts( )( ) vHs R̂

−1
ptln tl + kts( )( )H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

^E
vHs R̂

−1
p( )Rs vHs R̂

−1
p( )H

vHs R̂
−1
p( ) βRc + σ2nI( ) vHs R̂

−1
p( )H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

The covariance matrix in a sampling period is approximate as

R̂p ≈ βR̂c + σ2I � β R̂c + σ2

β
I( ) (11)

where R̂c is the covariance matrix of interference estimated from βK
pulse samples. Without affecting the conclusion, we take the noise
power as the signal power unit, set σ2 as 1, and set ε � 1

β, record that
R̂ � R̂c + εI, R2 = Rc + I, R1 = Rp ^βRc + I, Then the loss of SINR
caused by the error of estimated covariance is

ρ � SINRa

SINRp
o

� vHs R̂
−1
vs

∣∣∣∣∣ ∣∣∣∣∣2
vHs R̂

−1( )R1 vHs R̂
−1( )H

vHs R
−1
1 vs( ) (12)

Next, the theoretical distribution of ρ under different training
samples number and pulse interference parameters is analyzed. Let
yk � R−1/2

2 jk, R̂2 � 1
εR

−1/2
2 R̂R−1/2

2 , then

R̂2 � 1
K

∑βK
i�1

yiy
H
i + R−1

2 (13)

and Eq. 12 can be written as

ρ �
vHs R

−1
2

2 R̂
−1
2 R

−1
2

2 vs
∣∣∣∣∣∣ ∣∣∣∣∣∣2

vHs R
−1
2

2 R̂
−1
2 R

−1
2

2 R1R
−1
2

2 R̂
−1
2 R

−1
2

2 vsvHs R
−1
1 vs

(14)

Decomposing R1 and R2 into
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R1 � Uc βΣc + Irc( )UH
c + UnU

H
n (15)

R2 � Uc Σc + Irc( )UH
c + UnU

H
n (16)

Assuming that the pulse interference power is much greater than
the noise power and β is not too small, which means that βΣc ≫ Irc.
Then we have the following approximate expression

R
−1
2

2 R−1
1 R

−1
2

2 ≈ βUcU
H
c + UnU

H
n ,

R
−1
2

2 ≈ UnU
H
n ,R

−1
2 ≈ UnU

H
n

(17)

Let C � (1
K∑Kβ

i�1
yiy

H
i + UnUH

n )−1, then

ρ � vHs UnUH
n CUnUH

n vs
∣∣∣∣ ∣∣∣∣2

vHs UnUH
n C βUcUH

c + UnUH
n( )CUnUH

n vsv
H
s R

−1
1 vs

(18)

According to the derivation of Ref. [23], the distribution of ρ is as
follows

fρ ρ( ) � εrcρKβ−rc 1 − ρ( )rc−1
B rc, Kβ − rc + 1( ) ε + 1 − ε( )ρ[ ]Kβ+1 I ρ≥ 0( ) (19)

where B(rc, Kβ − rc + 1) � ((rc − 1)!(Kβ − rc)!)/((Kβ)!) is Beta
function, and I () is the indicator function, i.e.,

I x≥ 0( ) � 1, x≥ 0
0, x< 0

{
When Kβ ≥ rc, the expression of average SINR loss is

E ρ[ ] ≈ ε Kβ − rc( )
εKβ − ε − 1( )rc

× 1 + Kβrc

εKβ − ε − 1( )rc( )2 Kβ − rc − 1( )[ ]
� K − εrc
K − ε − 1( )rc 1 + Krc

K − ε − 1( )rc( )2 K − εrc − ε( )[ ]
(20)

FIGURE 3
Block diagram of array signals simulation in pulse interference environment.

FIGURE 4
Average SINR loss of Monte Carlo simulations (K = 360).

FIGURE 5
SINR loss of one-time simulation (K = 360).
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In the above derivation, the first assumption, i.e., βΣc ≫ Irc, is also
a necessary condition for the effectiveness of pulse interference. If
βΣc → Irc, which means the average power of interference is less than
that of the noise, the effective jamming cannot be achieved. Then the
approximation that Rp ≈ βRc + I is completely valid in spatial anti-
jamming processing. In space-time anti-jamming processing, if the
baseband of interference is wideband, according to 3) and Wiener-
Khinchin theorem, it can be inferred that the approximation is also
valid.

The above derivation shows that, the convergence rate is
consistent with that of LSMI filter under the amplitude
heterogeneous clutter environment when taking the length of
interference samples as the reference variable. Combined with the
implementation process of the SMI filter, the conclusion can be
explained as follow. If the sampling length is long enough, the
estimation of the covariance matrix of the noise signal can be
approximately accurate. At this time, it can be considered that the

unit matrix with amplitude σ2n is loaded on the estimated interference
covariance matrix, which is same as the LSMI. From the perspective of
power, the average power of the pulse interference is proportional to
the power of interference samples, which reflects the amplitude
heterogeneous of interference power.

4 Numerical analysis and simulation

In the numerical simulation, we set the DOF of the filter as D = 36,
and set training samples lengthK = 10D = 360 andK = 5D = 180 as two
cases. Figure 2 shows the change of the expected value of SINR loss
with β(Kβ ≥ rc) when the DOF rc of the interference subspace are
18 and 27 respectively. The results show that even if K is greater than
2D, it causes a large loss of SINR. Only a larger value of K can reduce
the loss of SINR.

Taking the 4-elements central circular array satellite navigation
receiver as the simulation object, SMI space-time filtering is used
[26]. The diagram of the simulation is shown in Figure 3. The
number of time-taps is 9, so the DOF of the filter is 36. The
interference signal is a limited bandwidth random noise, and its
bandwidth is 20 MHz. Two and three interferences are set
respectively, so the DOF of the interference subspace are
18 and 27. The SNR is −28 dB, the INR is 92 dB, the
navigation signal is BPSK modulation and the spread spectrum
code rate is 10.23 MHz. The central frequency of all signals is
1,268.42 MHz. The sampling rate is set as fc = 40.96MHz, so
sampling interval tc � 1

fc
.

In the first case, we set the training samples length of SMI filter as
360 and 40,960 respectively, and take the output SINR with
40,960 training samples as the reference optimal SINR. For all the
SMI filter tested, the training data cell is followed by the test cell. The
output SINR of every test has been averaged over 5 m. After 20 times
Monte Carlo simulations, the average SINR loss under pulse
interferences with pulse period equal to 360tc and pulse duty
changing from 1

360 to 1 is obtained, as shown in Figure 4. And
Figure 5 shows the loss of SINR of one time simulation.

According to Figure 4 and Figure 5, it can be seen that the curve
trend of one-time simulation results is basically consistent with that of
Monte Carlo simulation results, and the trend of SINR loss curve
obtained by simulation is consistent with that of theoretical curve
(Kβ ≥ rc). When Kβ < rc the loss of SINR is large. For another case, we
set the length of training samples to 720 and pulse interference period
to 360tc. Figure 6 shows the loss of SINR under different duty cycles
under this case. It shows that under the same conditions, the length of
training samples increases and the loss of SINR decreases.

Figure 7 shows the whole signals power output by the filter when
the pulse period of two interferences is 360tc and the pulse duty is 1

18

and training samples length is 360. It can be seen that although the
interferences power is reduced, but it is still higher than the noise
power.

5 Conclusion

This paper studies the performance of SMI filter under pulse
interference. It is proved that the output SINR of SMI filter under
impulse interference is consistent with that under continuous
interference when the covariance matrix of interference signal is

FIGURE 6
SINR loss of one-time simulation (K = 720).

FIGURE 7
Output power of the SMI filter.
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accurately estimated. At the same time, the convergence rate of SMI
filter under impulse interference is studied, and the expression of
convergence rate is given. Finally, the above conclusions are verified by
signal simulation. The conclusion shows that SMI filter needs longer
training sample length under pulse interference, which provides a useful
guideline for SMI filter design in pulse interference environment in satellite
navigation, communication and other fields.
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