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This study investigates the effects of temporal changes at the individual and social
levels and their impact on cooperation in social networks. A theoretical framework
is proposed to explain the probability of cooperation as a function of
endogenously driven periodic temporal variation and neural synchrony
modeled as a diffusion process. Agents are simulated playing a prisoner’s
dilemma game, with and without evolution, in a two-player setting and on
networks. Most importantly, we find that temporal variation and synchrony
influence cooperation patterns in a non-trivial way and can enhance or
suppress cooperation, depending on exact parameter values. Furthermore,
some of our results point to promising future research on human subjects.
Specifically, we find that cooperators can dramatically increase their payoff—as
opposed to defectors—if neural synchrony is present. Furthermore, the more
heterogeneous the synchrony between two agents, the less they cooperate. In a
network setting, neural synchrony inhibits cooperation, and variation in circadian
patterns counteracts this effect.
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1 Introduction

The ability to cooperate on a large scale has been highlighted as the strongest competitive
advantage we—the human species—have in the animal kingdom. In today’s closely
networked society, daily (cooperative) encounters with other individuals are a normal
part of life.

Although often omitted in analyses and models, environmental and cognitive variations
affect each individual’s decision process, thus shaping cooperation at large. One example of
such an environmental variable is the rising and setting of the sun. It profoundly impacts
various physiological processes, some of which a person experiences consciously, such as
sleep, drive, and appetite. For some other behaviors, such as the tendency to cooperate, a
causal link to circadian or neuromodulatory variation is less evident. To make matters more
complicated, the act of social interaction itself also directly impacts the brain’s decision-
making abilities, as individuals that engage in a social encounter experience a higher
correlation in brain activity—the so-called neural synchrony or inter-brain synchrony.
Knowledge of a link between these time-varying cognitive patterns and cooperation at large
would be extremely powerful, enabling us to time interactions to maximize a specific
outcome, such as cooperation.
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It is well-known that neuronal communication is mediated by a
range of neurotransmitters and neuromodulators that shape
behavior during decision-making processes [1]. Studies have
shown that various neurotransmitters, such as dopamine and
serotonin, show rhythmic variations in concentration in many
neuronal nuclei and centers of the brain [2,3]. Moreover, light, a
major environmental cue, plays a central role in setting circadian
cycles, which in turn impact body temperature, melatonin, cortisol,
and cortical activity (as seen through EEG recordings [4–7] and
biological clock neurons [8]). Additionally, the circadian system has
been linked to various aspects of physiology and cognitive processes,
such as learning, memory, attention, mood, and reaction time [9].
These cognitive variations resulting from circadian cycles can
ultimately affect social phenomena globally.

On the other hand, social interactions also influence the
dynamics of the brain. Recent developments in neuroimaging
have enabled measurements of the activity of two or more brains
simultaneously, a process known as “hyperscanning” [10,11]. This
has allowed for the exploration of inter-brain synchrony, which has
been linked to joint attention, interpersonal communication,
coordination, and decision-making (for review, see [11]). Studies
have revealed that higher inter-brain synchrony is associated with
successful cooperation [12–17]. Intra-person variation, such as
circadian variation in the expression of specific genes in the
prefrontal cortex [18], is also believed to play a role in these
interactions. Altogether, social dynamics are intricately linked
with the dynamical system of the brain.

Classical social network analysis, a branch in sociology [19],
typically assumes that the only essential elements that define
societies are interactions—links—between individuals and their
interacting units—people or animals—where the latter is modeled
as internally monolithic entities. Researchers have only now begun
appreciating the importance of the potentially heterogeneous
internal structure of an individual in the fabric of society. These
ideas are being explored in new fields of the network [20] and social
[21] neuroscience and have already yielded knowledge fruits. So far,
building upon the social brain hypothesis [22], these fields have
mainly focused on associations between neural dynamics and
structural properties of social networks, such as density [23],
centrality, and homophily [24], or linking the neuroendocrine
system with the structure of a social network [25]. However, the
effects that neurocognitive dynamics may have on global socio-
dynamic processes that take place in a network have been researched
far less. Some of the examples in this direction are research on
potential interventions, such as giving oxytocin to central
individuals in a social network to increase their trust and
enforcement of cooperation norms through peer punishment,
thereby enabling cooperation [26], or linking temporal
connectivity in a social network with a circadian rhythm [27].
However, the most common focus in the field is on the effects
that temporal changes in interactions, such as bursty patterns [28],
have on cooperation [29] rather than the temporal variability that is
intrinsic to an individual, such as variation at a cognitive level.

To fill this gap, this study investigates the impact that temporal
changes at the individual level may have on cooperation in a social
network. We specifically concentrate on two sources of temporality,
namely, the behavioral variations caused by circadian or other
periodic variations in the concentration of (neuro) hormones,

and neural synchrony, namely, a transition from a less- to more-
correlated inter-brain activity, as a direct consequence of social
interaction itself. In Section 2, we incorporate individuality in
evolutionary game theory models on graphs and allow individual
preferences and tendencies to be time-varying, e.g., within a 24-h
rhythm, and converging to a global mean, thereby mimicking neural
synchrony. We then study the model’s predictions within the
framework of a social dilemma game: the prisoner’s dilemma. At
first, we introduce the game as a non-evolutionary game and then
proceed with implementing evolution. Subsequently, we add
another layer of complexity and consider the game to be played
in a pair and then on a network. Our simulation results are discussed
in Section 3. We conclude and suggest steps for future research in
Section 4.

2 Methods: Theorizing cooperation as
temporal variation and synchrony

We established a link between circadian rhythms, inter-person
neural synchrony, and cooperation preferences in the introduction.
In this section, we develop a theoretical framework that aims to
quantitatively elucidate this link. Many neuromodulators posit
cyclic patterns; therefore, we model decision preferences as
periodic functions and dependent on neural synchrony.
Subsequently, we describe the game within which we consider
the cooperative action to take place. Lastly, we describe the
evolutionary mechanisms introduced, the types of networks, and
the metrics we will investigate after obtaining simulation results.

2.1 Periodic variability and synchrony in
decision preferences

To incorporate an individual’s periodic variability caused by
circadian rhythms and temporal changes due to neural synchrony
into our model, we proceed as follows. First, we allow the probability
associated with a random variable of cooperation to be time-varying
and composed of two individual parts:

pi t( ) � fi t,Θi( ) + gi t,Ωi( ), (1)
i.e., for each individual i, the probability to cooperate at round t is
composed of a time-varying part fi(t, Θi) that reflects the person’s
circadian rhythm or any other internal influences that affect a
person without interaction with a human-populated environment
and a time-varying part gi that corresponds to that individual’s inter-
person neural synchrony (interaction with a human-populated
environment). Here, Θ is a set of parameters for f and similarly
for g. For simplicity, we will consider fi = f, gi = g ∀i. It should be
noted that 〈f(t,Θi)〉t is a person’s prevalence toward cooperation
in absence of influences related to other human beings.

The periodic variability part is modeled as the sum of periodic
functions1. For instance, if there is one time-varying influence,

1 Other researchers have also described the rhythmic properties of the
circadian system as sinusoidal functions [42].
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f t,Θi( ) � δi + ai sin 2π
t + θi
Ti

( ), (2)

where ai is the amplitude of a sine wave, Ti is its period, and θi is the
phase and δi is a shift. Both t and Ti are expressed in equivalent units
of time. Such variability is akin to periodic changes in personal
preferences that one would expect due to changes in the activity of a
single neuromodulator. In the case of Q influences, f can be
defined as

f t,Θi( ) � ∑Q
w�1

f t,Θi,w( ). (3)

Next, we move on to a model of neural synchrony. Generally,
synchronization is a temporal phenomenon whereby a system
transitions from a less ordered state to a more ordered state. In
cooperation dynamics, an ordered state would be a state where all
individuals partake in the same decision to cooperate or to defect
[10]. Therefore, a natural candidate for modeling the neural
synchrony part is a simple diffusion model where individuals
converge toward the same probability to cooperate over time. A
diffusion model is defined as dg

dt � −KLp, where K = [K1, K2, . . ., Kn]
is a vector of coupling strengths for nodes and L is a graph Laplacian.
All in all, we have a system of coupled non-autonomous ordinary
differential equations:

dp
dt

� df
dt

− KLp. (4)

The equilibrium solution depends on K, f, while the dynamics over
time depend on the network structure and assortativity in δi. IfKi = k
∀ i, then limt→∞pi(t) � 〈pi(0)〉i � 〈δi〉i ∀ i. Note that the last
equality holds since the shift terms δi of Eq. 1 are the initial
values pi(0) with which Eq. 4 is integrated.

2.2 Non-evolutionary prisoner’s dilemma

The prisoner’s dilemma is a two-player game where each player
has to choose one of two possible strategies (to cooperate or to
defect). The payoff for each individual depends on the strategy taken
by her and another player. Specifically, when both agents cooperate,
they both receive a payoff R, whereas when a cooperator interacts
with a defector, she receives a payoff S, and the defector gets T.
Lastly, when both agents defect, they receive a payoff of value P. A
matrix often represents the payoff

C
D

R S
T P

( )
C D

. (5)

Different values of parameters R, S, T, and P bring about different
dilemmas with different equilibrium points. A prisoner’s dilemma is
defined with values such that T > R > P > S. The payoff relationship
R > P implies that mutual cooperation is superior to mutual
defection, while the payoff relationships T > R and P > S imply
that defection is the dominant strategy for both agents. The game
can be iterated, known as the iterated prisoner’s dilemma. We also
require that 2R > T + S to prevent alternating cooperation and
defection, giving a greater reward than cooperation. In this study, we
set the payoff matrix to values R = 3, S = 0, T = 5, p = 1.

In a pure strategy game, each agent chooses one fixed strategy. It
can be changed throughout the game (evolve), and the change in
strategies is typically based on a comparison of recent payoffs. In a
mixed strategy game, an agent’s strategy is a random variable with a
probability of cooperating p. Therefore, a pure strategy game is a
special (deterministic) case of a mixed (stochastic) strategy game
where p ∈ {0, 1} [30,31]. At each round, each player i plays an
independent game with each of its ki neighbors and accumulates a
total payoff πt

i � 1
ki
∑j∈Ni

πt
ij, where Ni is ki neighbors of i. In the later

introduced evolutionary game setting, these strategies are subject to
an evolutionary process, meaning that for every τ round, players
may update their probabilities of cooperating according to a
particular rule [30]. For example, p can depend on the outcomes
of earlier games. If p is a function of only the most recent n
encounters, the strategy is called a “memory-n” strategy.

2.3 Evolution, networks, and metrics

The evolution proceeds following the Fermi rule. Specifically,
each node imitates the strategy pl(t) adopted by one of its neighbors,
l, chosen at random2. The node i updates its strategy with
probability [32].

pi,update �
1

1 + e πti−πtl( )/KF[ ] if tmod τ � 0,

0 otherwise.

⎧⎪⎪⎨⎪⎪⎩ (6)

Here KF is the Fermi temperature, set to 0.1 if not otherwise stated.
To explore the proposed theoretical model, we choose several

different network topologies, namely, Erdős–Rényi (ER) [33],
Barabási–Albert (BA) [34], and Watts–Strogatz [35] (WS)
random graphs.

To analyze the impact of neural synchrony on cooperation, we
consider the following two metrics:

The fraction of mutually cooperative steps fC is the number of
games in which both players adopted a cooperative strategy as a
fraction of all games that were played during timesteps [tτ, tτ+1, tτ+2,
. . ., tτ+n−1] between times tτ and tτ+n−1:

fC t, τ,Ω( ) � 1
n|E| ∑

i,j( )∈E
∑n−1
k�0

1 C{ } aij tτ+k( ){ }( )1 C{ } aji tτ+k( ){ }( ), (7)

where aij(tk) is the decision of a node i (either to cooperate—C or to
defect—D) in the game with j at time tk, 1 C{ } is an indicator function
over a set {C}, and Ω represents any other parameters of the
simulations.

We will also study the standard deviation in payoffs across a
network at a particular timestep of the simulation t. The second
moment of the distribution is of particular importance, computed as
the standard deviation in the payoffs obtained by agents in a graph,
σ i[πti ].

2 Updating in line with the Fermi rule has been found in behavioral data:
payoff-based learning—not fairness preferences—best explains the rate of
decline in cooperation across a large set of experimental data on social
dilemma games [43].
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3 Simulation results

Throughout this section, we simulate a mixed-strategy of prisoner’s
dilemma. In all cases, we considered integration timesteps of length
0.1 units of time, and unless otherwise stated, the simulation lengths are
40 units of time (400 timesteps) and the periods of sine waves are set to
5 units of time. First, we study the results of a non-evolutionary game and
then proceed with interpreting an evolutionary game, both in a 2-player
scenario. We then expand the two-player game to a networked game.

3.1 Two-player game

3.1.1 Non-evolutionary game
In the simulated mixed strategy game, the first player begins as a

“cooperator,” signified by an initial value of p(0) = 1. The second
player begins as a “defector” since its p(0) =03.

Specifically, the functional form we study is

dp1

dt
� −a1T

2π
cos 2π

t

T
( ) − K1 p1 t( ) − p2 t( )( )

dp2

dt
� −a2T

2π
cos 2π

t + θ

T
( ) − K2 p2 t( ) − p1 t( )( ), (8)

where we study the cases when θ = 0 (the agents are “in-phase”) or
θ = T/2 (the agents are “out-of-phase”). We will refer to K1 and K2

simply as K when K = K1 = K2.
Figure 1 illustrates the effects of variability in p(t) without an

evolutionary process. Here, the “cooperator’s” results are shown in
yellow, whereas the “defector’s” results are in green. Both agents are
defined as having the same amplitude, a1 = a2 = 0.2. The figure has two
columns: the left column denotes the absence of neural synchrony (K =

0), and the right one denotes the presence of neural synchrony (K =
0.03). Each column has two rows, differing in in-phase neural
oscillations (|θ1 − θ2| = 0, top row) and out-of-phase4 neural
oscillations (|θ1 − θ2| = T/2, bottom row)5. The most prominent

FIGURE 1
Iterated prisoner’s dilemma game played by two agents, whose probability of cooperating varies in time according to Eq. 4, with f defined in themain
text and K1 = K2. For each agent, we show the changes over time of a payoff (left), a probability to cooperate p (middle), and a strategy (right). Depending
on the phase difference, |θ1 − θ2|, the agents’ probabilities to cooperate are either simultaneously higher/lower than their baselines or are asynchronous.

FIGURE 2
The fraction of mutually cooperative steps out of all games in the
last 100 steps as a function of neural synchrony K, fC(K), in the two-
player iterated prisoner’s dilemma game. Out-of-phase agents are
indicated by blue triangles; in-phase ones, by red dots.

3 We study the extreme cases of p1(0) = 0 and p2(0) = 1 to maximize the
visibility of the effects being studied. The choice of these specific values for
p is made to demonstrate the most prominent results possible. As the
difference between p1(0) and p2(0) decreases, the differences observed
are expected to decrease.

4 The expression “out-of-phase” refers to the state when the phases of the
circadian rhythms of two individuals are shifted. As light is a key cue that
helps to reset and synchronize circadian rhythms, it is possible for two
individuals to become out-of-phase if they are not exposed to the same
light cues at the same time [44].

5 We study the extreme cases of θ=0 and θ= T/2 tomaximize the visibility of
the effects being studied. The choice of these specific values for θ was
made to demonstrate the most prominent results possible. As the
difference between θ1 and θ2 decreases, the differences observed in the
study are expected to decrease.
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difference that a switch fromK = 0 toK = 0.03 (left versus right column)
introduces is observed concerning p(t): neural synchrony induces
agents to gravitate toward the same probability of cooperating p(t).
This change in p(t) is followed by a change in the strategies adopted:
while the cooperator only rarely defects under K = 0, she defects far
more often under K = 0.03. This shift in strategies chosen, in turn,
affects the payoff: while under K = 0, the cooperator and defector gain
similar payoffs, and the cooperator is far better off under K = 0.03. In
other words, neural synchrony leads to the redistribution of the payoffs
in an unequal manner in which the cooperating entity is better off.

In Figure 1, we investigate only two values of K, while we vary K
in a more fine-grained way in Figure 2. Specifically, we study the case
where K1 = K2; therefore, the average probability to cooperate
limt→∞〈pi(t)〉i � 〈pi(0)〉i � 〈δi〉i. Here, we consider the fraction
of the mutually cooperative decisions fC in the last 100 steps of the
simulation. All other parameters are the same as in Figure 1.

Interestingly, the blue and red curves are both concave,
indicating that small values of synchrony have a profound effect.
The curve flattens earlier when the interacting agents are out of
phase (|θ1 − θ2| = T/2, blue triangles); it is steeper (|θ1 − θ2| = 0, red
circles) when the oscillations are in phase. In other words, phase
alignment is not as important as achieving a small degree of
synchrony. This is because when K1 = K2 = a1 = a2 = 0, fC = 0,
meaning that mutual cooperation is only possible through temporal
variation (non-zero a1, a2). However, cooperation achieved in this
way is much smaller than when K1, K2 are non-zero.

In Figure 1, we study the case where the value of neural
synchrony is the same for both agents K1 = K2. In Figure 3, by
contrast, we investigate the case where K1 ≠ K2. Therefore, the
limt→∞〈pi(t)〉i,t ≠ 〈δi〉i. Figure 3 plots the ratio of synchrony levels

of the two agents, K2
K1
, against the fraction of mutually cooperative

games, fC, and the probability to cooperate, 〈p〉.
We see that when K1 > K2, limt→∞〈pi(t)〉i,t > 〈δi〉i, and the

inequality is inverted when K1 < K2. Furthermore, both variables, fC
(blue triangles) and 〈p〉 (red dots), decrease with increasing
inequality in synchrony K. In other words, the more incomplete
the synchrony toward each other, the less cooperation occurs.
Figure 3 additionally plots a third and fourth variation: lighter
shades refer to out-of-phase oscillations, and panels refer to
different amplitudes, a1, a2 of the periodic variability. The most
striking difference between panels a) and b) occurs with respect to
lightly shaded, red-dotted functions. For a = 0.2, out-of-phase results
are close to in-phase results. However, for a = 0.5, the distance
between the light and darker shaded functions is clearly visible. The
distance additionally increases with increasing heterogeneity in K.
These results suggest that oscillations with large amplitude aggravate
the negative impact of heterogeneous synchrony levels. In other
words, two agents not synchronizing equally is an increasing
problem if their temporal variations have large amplitudes.

3.1.2 Evolutionary game
In Figure 4, we introduce an evolution in this two-player game.

Specifically, we study the fraction of mutually cooperative games, fC,
in the evolutionary game at varied Fermi temperatures KF. Low
values of KF can be interpreted as the agents adopting the
advantageous, payoff-increasing strategy in most evolutionary
steps. Large values of KF describe an agent making mistakes
more often by adopting a disadvantageous strategy at
evolutionary steps. The heatmaps in Figure 4 relate the fraction
of mutually cooperative games, fC, to neural synchrony K on the
y-axis and τ, the integration timesteps after which the player updates
her strategy, on the x-axis. Here, we study a fraction of which the
nominator refers to the fraction of cooperative games in which
neural synchrony is present (K ≠ 0 and K1 = K2). Still, there are no
temporal variations (a1 = a2 = 0). In contrast, the denominator refers
to the fraction of cooperative games in the absence of neural

FIGURE 3
Iterated prisoner’s dilemma game played by two agents, whose
probability of cooperating varies in time according to Eq. 4 with f
defined in the main text and K1 ≠ K2, K1 = 0.05, and K2 is varied. As in
Figure 1, agent 1 tends to be a cooperator, and agent 2 tends to
be a defector. In (A), small-amplitude a variations in cooperation
preference take place, whereas in (B), the amplitude is increased. The
blue triangles showcase the time- and agent-average probabilities of
cooperating, p; the red circles show the fraction of mutually
cooperative steps, fC. Lighter-colored datapoints indicate results from
out-of-phase simulations; saturated points show results from in-
phase simulations. All values are calculated for the last 100 out of
400 steps in the simulation. The statistics were obtained from
100 independent simulations.

FIGURE 4
Neural synchrony can increase the abundance of mutually
cooperative games in an evolutionary two-player iterated prisoner’s
dilemma game. The heatmap shows themagnitude of fC(K)/fC(K=0) in
two dimensions. The numerator fC(K) refers to neural synchrony
of strength K; K1 = K2, and the denominator fC(K = 0) denotes the
absence of neural synchrony. The figure plots the last 50 out of
200 simulation steps, averaged over 2000 simulations.
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synchrony (K = 0). Consequently, fC(K)
fC(K�0)> 1, displayed in a green

hue, denotes a game where cooperation of synced agents is more
frequent than the cooperation of two non-synced agents. Brown hue,
by contrast, shows more frequent cooperation by non-synced agents
than synced agents fC(K)

fC(K�0)< 1.
We observe that the hue changes from blue to brown with

increasing Fermi temperature KF; higher Fermi temperature KF

reduces the fraction of mutually cooperative games played by
synced agents. In other words, if agents are more likely to make
mistakes, it is advantageous to not have neural synchrony. Simply
put, who cooperates depends on the likelihood of making
mistakes. The left heatmap shows darker shades of green at
the top right, implying that more intense neural synchrony K
increases cooperation fC the longer a specific strategy is kept

(increasing values of τ). Who cooperates, however, changes in the
right heatmap: darker shades of brown are found in the top left of
the figure, implying that more intense neural synchrony K
increases cooperation fC, the shorter a specific strategy is kept
(smaller values of τ). All in all, the effect of neural synchrony
depends on the likelihood of agents making irrational decisions
and the frequency of evolutionary steps.

3.2 Expanding the game on a network

We now expand the game to a network scenario. More precisely,
we investigate the Erdös–Rényi, Barabási–Albert, and
Watts–Strogatz graphs.

FIGURE 5
Standard deviation in the payoffs σ i[πti ] of agents decrease in the network over time of the simulation, if neural synchrony takes place. The three
figures show results for Erdös–Rényi (ER), Barabási–Albert (BA), and Watts–Strogatz (WS) graphs with N = 1000 nodes and an average degree 3. For the
WS graph, the rewiring probability is set to 0.05. The reported results are averages of over 100 independent simulations. Red circles show the standard
deviation in the average payoff of agents at the first step of the simulation (t = 0), whereas blue triangles show the value at the last step of the
simulation (t = 200).

FIGURE 6
Synchronization of periodic patterns of agents’ tendency to cooperate, Eq. 2, enhances cooperation in a network when cooperation has no
evolutionary process (A) and supresses cooperation if an evolutionary process exists (B). The figures show the magnitude of fC(a = 0.1, K)/fC(a = 0, K = 0).
The denominator refers to the fraction of mutually cooperative games observed in simulations without neural synchrony (K = 0) and without intrinsic
temporal variability in cooperative preferences (f(t) = δ, a = 0). The numerator shows the same observation in the simulations where f(t) is varied;
there is variance in the phase parameter θ and of strength K in the neural synchrony. The results are obtained from 100 simulations on an ER graph
ensemble, with N = 100 and an average node degree of 3.
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We begin with a case where neural synchrony is present, but
otherwise, there are no periodic variations. Namely, we study the
case where pi(0) ~ U(0, 1); therefore, 〈pi(0)〉i � 1

2, and ai = 0 ∀i.
Since there is no evolution, limt→∞〈pi(t)〉i � 〈pi(0)〉i � 1

2;
therefore, the first moment of the distribution of, e.g., executed
strategies or payoffs, is not affected by neural synchrony. However,
the variance in the distribution of payoffs across nodes depends on
both the network structure, specifically, degree distribution, and
whether neural synchrony takes place or not.

Figure 5 shows how the standard deviation in the payoffs of agents
σ i[πti ] is affected by the network structure and by the neural synchrony.
Colors and shapes refer to two distinct points in time t. In the initial
timestep, t = 0 (red dots), σ i[πt

i ] is constant: it does not vary with levels
of synchronyK. In the last timestep t= 200 (blue triangles), σ i[πt

i ] varies
only with the initial increase in K and stays constant afterward. The
trend is similar for all networks; what differs is the intercept: σ i[πt

i ] is
the highest in a BA ensemble, followed by an ER ensemble, and is the
lowest for the WS ensemble. Notably, the variance in node degrees
decreases in the same order. The presence of neural synchrony further
leads to smaller variations in payoffs at later stages of the game. It should
be noted that after a certain value ofK, there is no dependence of σ i[πt

i ]
on K, indicating that maximal synchrony is reached at the last
simulation step for all larger values of K, and the only source of
variability in payoffs is the network structure.

Next, we include the influence of temporal variations on the
cooperation patterns in the network scenario. While in the two-
agent case there are these two distinct cases (namely, in-phase and
out-of-phase); in a network where N > 2, we are concerned with the
variance in the distribution of the parameters of f, namely, θi, Ti. In
the current study, we assume that T = const and concentrate on
heterogeneity in phases. Specifically, we considered three cases
where the distribution of phases has varied amounts of variance.
First, a case where θi = 0 ∀i; second, sampled from a beta distribution
T · B(2, 2); and lastly, a uniform distribution θi ~ T · U(0, 1). These
three cases have, respectively, variance σ2i [θi] of 0, 1.2 and 2.1.

In Figure 6, we show the effect of heterogeneity in phases for
various amounts of neural synchrony K. In Figure 6A, we consider
no evolutionary process, whereas in Figure 6B, we study the case
where evolution takes place at every simulation step: τ = 1. Similarly,
as in Figure 4, we contrast the fraction of mutually cooperative
games in simulations with a given variance in phases and strength of
neural synchrony (fC(a = 0.1, K), emphasizing that the amplitude
parameter a is set to this value for all nodes) with the values of the
same measure, observed in simulations without temporal variability,
namely, fC(a = 0, K = 0). We restrict the study to the case of an ER
ensemble with N = 100 nodes and an average degree of 3, since the
network structure influences the time evolution of the dynamics but
not the time-averaged results.

Figure 6A shows that as variance in phases increases, mutual
cooperation is suppressed. Surprisingly, the cooperation is minimal
yet enhanced in cases when neural synchrony is present, and there is
no phase difference, i.e., θi = const ∀i with respect to the fraction of
mutually cooperative games observed in the baseline case.

However, as evolution is introduced, the effect of neural
synchrony and variance in phases changes. Since an increase in
K leads to the convergence of individual strategies to a global mean,
K acts as an attractor to a suboptimal strategy for maximizing
payoffs. With the presence of evolution, nodes can adopt the optimal

strategy pi = 1 ∀i, and neural synchrony acts as a negative force to
reach this goal. In the case where K is non-zero, variance in phases
brings value by increasing the diversity of strategies at each t and
allowing for the evolutionary process to override the effect of neural
synchrony.

4 Conclusion

In this study, we investigate how intra-individual temporal
variation impacts cooperation on a social level. To that end, we
proposed a theoretical framework to explain the probability of
cooperation as a function of intra-personal temporal variation due
to circadian variations and neural synchrony. We simulated agents
playing a prisoner’s dilemma game, without and with evolution, in a
two-player setting and on networks. Our simulations revealed a diverse
set of insights that enrich our understanding of how temporality and
individuality shape cooperation.

We find that when agents experience synchrony and gravitate
toward the same probability of cooperating, there is a change in the
strategies adopted, which in turn affects agents’ payoffs.
Interestingly, neural synchrony leads to redistribution of the
payoffs in an unequal manner in which the cooperating entity is
better off. This finding is highly interesting: in human subject
experiments, cooperating entities are on average worse off than
freeriders and defectors. Our results further allow us to comment on
the intensity of synchrony: we find that transitioning from no
synchrony to a tiny degree of synchrony profoundly and
positively affects cooperation in a two-player game. Furthermore,
we implemented a variation that behavioral experimentalists so far
have overlooked: understanding synchrony as either a directed or an
undirected phenomenon. The more heterogeneous the synchrony
between two agents, the less they cooperate; large amplitudes
aggravate this phenomenon. Our simulations with evolution
produce further interesting results: if a pair of agents is more
likely to make mistakes in choosing an advantageous strategy,
not experiencing synchrony positively impacts cooperation. In
other words, synchrony is not always desirable; instead, its
quality is context dependent.

Lastly, we extend our simulations to networks. We find that in
the later stages of the game, the agents’ payoffs become more
similar when they switch from no synchrony to synchrony. This
can lead to enhanced cooperation if the game is non-
evolutionary. However, in an evolutionary game, neural
synchrony acts as a suppressor of cooperation, while the
variance in phases of individual temporal variability
counteracts the inhibitory effect of synchrony.

5 Discussion

Our aim was to extend a model of cooperation by incorporating
individual- and group-level dynamics of tendencies to cooperate
that are not driven solely by the goal of maximizing a payoff. In this
way, we were able to compare the strength of endogenous influences
and conscious decisions, such as mimicking others’ strategies in
order to obtain a larger individual payoff, to that of endogenous
processes.
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We concentrated on a case where f(t) mimics circadian rhythms
[36], known to impact decision-making. Regarding neural synchrony,
we acknowledge that alternative mathematical models could have
sufficed; e.g., models of coupled oscillators such as the Kuramoto
model [37] have been used in several studies to study the emergence
of synchronization and cooperation in networked populations of
coupled oscillators [38]. We, by contrast, chose to use a diffusion
model as it is more appropriate for our specific research question: while
a coupled oscillator model would seem a natural fit, it assumes that
circadian rhythms and neuromodulation are impacted by social
interactions. In a context where such a coupling is desired, one
would replace g with Θ in the diffusion model and set g = 0 in Eq. 1.

Furthermore, it should be acknowledged that the proposed
model is simplistic and does not account for all aspects of brain
physiology. For example, it does not capture intrinsic fluctuations at
the cellular level or the need for sleep itself, which is a limitation that
future research should address. Furthermore, the exact functional
forms and parameter values of functions in our model should be
calibrated for particular circadian and neuromodulatory causes of
variability in decision-making. Social memory [39] may also be a
crucial element incorporated in the future.

The results we report are a source of inspiration for investigating the
phenomenon of cooperation in the real world. First, we report that
cooperators can dramatically increase their payoff—as opposed to
defectors—if neural synchrony is present. Experimental studies could
exogenously vary synchrony levels and incentivize different groups to
adopt a certain type of strategy. Furthermore, we experiment with
different levels of synchrony among agents. So far, in behavioral
studies, the variable of interest has been where in the brain(s) the
neural synchrony occurs. However, our findings suggest that
enormous value lies in investigating in more detail the quality of this
synchrony. Lastly, the behavioral literature on neural synchrony almost
exclusively investigates the interaction between two participants.
Repeating those experiments on networks might allow for an even
deeper understanding of cooperation as a temporal phenomenon. On
the other hand, experimental data from a networked study would also
guide a decision as to how important it is to incorporate cognitive
properties into computational social science models.

Additionally, the results on networks should be studied in
greater depth, e.g., by exploring how our results translate to real-
world networks, temporal networks [29], simplicial complexes [32],
or hypergraphs [40], and looking in greater depth at how network
structure impacts the trajectory of a dynamical process in a
cooperative game. Furthermore, we did not analyze the impact of
assortative mixing [41], e.g., cooperation probability. The last
variation left for future research to study is a redefinition of the
coupling of agents, where neural synchrony affects the parameters of
the functions that govern their internal periodicity patterns, as
explained earlier in this section.

In conclusion, this paper advances our understanding of
cooperation as a temporal phenomenon. We introduce a

mathematical framework that couples individual endogenous
influences with conscious decisions in order to explain the
probability of cooperation. More broadly, our work suggests
that cognitive processes are linked with the social
phenomenon: for cognitive science, social interactions may
not be just an end goal, but an active variable; on the other
hand, to understand group dynamics, neuroscientific
explanations may be crucial.
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