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Magnetic order at room temperature induced by atomic lattice defects, like
vacancies, interstitials, or their pairs, has been observed in a large number of
different non-magnetic hosts, such as pure graphite, oxides, and silicon-based
materials. High Curie temperatures and time-independent magnetic response at
room temperature indicate the extraordinary robustness of this new phenomenon in
solid-state magnetism. In this work, we review experimental and theoretical results
of pure TiO2 (anatase), whose magnetic order can be triggered by low-energy ion
irradiation. In particular, we discuss the systematic observation of an ultrathin
magnetic layer with perpendicular magnetic anisotropy at the surface of this oxide.
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1 Introduction to defect-induced magnetism

Till not so far away in time, solid-state physicists andmaterials scientists were convinced that to get
magnetic order in a solid, one needs a certain amount of magnetic ions, like Fe and Ni, in the atomic
lattice. Their amount and environment have a direct influence on the magnetic ordering temperature,
i.e., the Curie temperature. This concept has been successfully applied in basic and applied research to
get magnetic order in solids, since Heisenberg introduced the idea of exchange interaction between the
electron orbits of neighbormagnetic ions [1]. Actually, the changes in the electron orbits produced by a
defect, such as a vacancy in its environment, can be substantially large. Therefore, these changes can
lead to a non-negligible probability to have a significant localmagneticmoment [2–9]. To getmagnetic
order in a solid through atomic lattice defects or through doping of non-magnetic ions, we need to
reach a minimum defect density of the order of (or larger than) ~ 5 at%. The reason is that at this or
higher density, the exchange coupling mechanism between the localized magnetic moments at the
defects gets robust enough to trigger the alignment between them. Defect engineering is also of
significance in two-dimensional samples, as in transition-metal dichalcogenide materials, see, for e.g.,
the review in [10]. Moreover, magnetic order through Se-vacancies has been recently demonstrated in
the VSe2 monolayer [11]. Ion irradiation can be used in this case to systematically produce a certain
kind of vacancy by appropriately choosing the ion and its energy.

2 Emerging ferromagnetic phase through ion
irradiation

Ion irradiation is a sophisticated method to systematically produce atomic lattice defects at
certain positions and a given density. Themain difference between the irradiation of a solid with
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different kinds of ions (including protons and electrons) is given by
their penetration depth, density, and type of atomic lattice defects
produced upon selected energies. Several studies on the subject were
published in the past, see, for e.g., [12–18] with Curie temperatures up
to 880 K [16, 19].

The possibility to trigger local magnetic moments up to magnetic
order by particle irradiation on a given solid, despite its structure, is
significant. Starting from proton irradiation of graphite [20–23] and
ZnO [4] to Ar+ irradiation of TiO2 [24, 25], the number of published
works on using irradiation to trigger magnetic order increases steadily.

In this section, we would like to discuss general results following
the theoretical works described in Refs [25, 26]. In particular, we
discuss here the emergence of the two-dimensional magnetic order at
the surface of TiO2 in its anatase structure, obtained assuming Ar+

irradiation at low energies ≲ 200 eV. In general, after ion irradiation
with the corresponding fluence and energy to trigger magnetic order,
the defect density remains below the threshold where amorphicity
grows all over the sample. The magnetic order is in general observed
directly after ion irradiation without any further (thermal) treatment.

Which are the main magnetic defects one produces in TiO2 by Ar
+

irradiation? From the molecular dynamic simulations of collision
cascades in TiO2 anatase given in [25–27], the primary magnetic
defects are found to be the so-called di-Frenkel pairs (dFPs), consisting
of two Ti atoms displaced into interstitial sites leaving behind two
vacancies. Also, oxygen vacancies Ov are created. With the help of
density functional theory (DFT) calculations, the magnetic moment of
a dFP has been calculated to be 2 μB [26] and 1 μB [28] for the Ov. The
defect formation probabilities for these defects, calculated in [27], are
large (~ 40% and ~ 50%, respectively). A diagram of these
probabilities for other defects in TiO2 anatase is shown in
Figure 8 in [25]. With the knowledge of these probabilities and
using the program SRIM [29], a magnetic phase diagram can be
proposed.

Figure 1A shows the expected magnetic phases as a function of
the used fluence and sample depth. The magnetic phase diagram

resumes the results obtained in [25] for TiO2 anatase using Ar+

ions. The absolute values included in the magnetic phase diagram
of Figure 1 roughly correspond to the case we discuss here (Ar+ ions
at an energy of ~ 200 eV). The straight line in Figure 1A represents
the evolution of the surface position of the TiO2 sample (which
represents a decrease in the total sample thickness) when the ion
fluence increases. The main reason for this behavior is surface
sputtering, which is non-negligible at low ion energies. Roughly
speaking, using SRIM [29], the estimated sputtering is ~ 1 nm/
(1016 ion/cm2) [25]. Due to the sputtering, the amorphous surface
layer produced by the irradiation is continuously removed.
Following [25], from a fluence value of ~ 4 × 1015 cm−2, the
defect creation and sputtering processes reach equilibrium,
where the volume (and defect density) of the emerging FM
phase (red region in Figure 1A) remains constant over the
whole fluence range above this value. In this regime, the
thickness of the FM phase reaches a value of dFM ≃ 0.46 nm,
which is about 1/2 of the anatase lattice constant c = 0.951 nm
along the (001) crystal direction. It means that with an irradiation
energy of ~ 200 eV, we expect to have an emerging FM phase at the
first ~ two layers of the TiO2 lattice at its surface.

Deeper in the sample, beyond the ~ 0.5 nm thick FM layer, the
density of magnetic defects decreases below the required minimum
(~ 5%) to get FM. Instead, a paramagnetic (PM) phase appears
(green region in Figure 1A). The dotted line in the diagram
represents the transition region between PM and the non-
magnetic bulk, which can be interpreted as the mean
penetration depth of the Ar+ ions at 200 eV.

Increasing the defect density leads to a transition from isolated
local magnetic moments to a long-ranged ordered phase. How many
dFP defects are created in the TiO2 anatase atomic lattice within the
FM phase? This depends on the length scale of the exchange coupling,
which determines whether two localized magnetic moments (the dFP
in the case of TiO2) are close enough to each other to ferromagnetically
interact. Ref. [25] answered this question within the framework of the

FIGURE 1
(A) Semiquantitativemagnetic phase diagram (fluence vs sample depth) for a TiO2 anatase sample irradiated with Ar+ ions of 200 eV energy following the
results of [25]. The straight line denotes the position of the sample surface, which shifts due to the sputtering. The red region is the ferromagnetic (FM) region,
and the green is a paramagnetic (PM) region. The dotted line represents roughly the transition region between a PM and a non-magnetic region, where the
mean number of defects created by the irradiation is negligible. The dotted line can be considered the penetration depth of the irradiated ions. (B) Blue
dashed line represents normalized ferromagnetic magnetization vs Ar+ fluence or the estimated dFP density in the TiO2 anatase phase. Red line represents
relative FM domain size vs fluence or dFP concentration. The curves represent semiquantitatively the main theoretical results from [25] for the case of
irradiation of Ar+ ions with 200 eV energy in the TiO2 anatase phase.
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percolation theory, and the main results are shown in Figure 1B. It
semiquantitatively shows the theoretical results [25] on the evolution
of the FM magnetization and the relative domain size as a function of
dFP concentration or fluence for the irradiation of Ar+ ions at 200 eV.
Single pairs of defects interacting ferromagnetically build the smallest
ferromagnetic domain. The size of the domains increases with the
increase in the defect density as shown by the red line in Figure 1B. For
a density of dFP ≳ 10 at%, the domain size tends to saturate at the
sample size (relative domain size 1). At this defect concentration, the
FM magnetization (blue dashed line in Figure 1B) tends to reach its
saturation.

The magnetic percolation transition as a function of the fluence
of Ar+ ions (or defect density) was experimentally verified by
measuring the remanent magnetic moment at the zero field of
TiO2 thin films as a function of the fluence. It follows the expected
critical behavior for a percolation transition of a magnetic bilayer
system (see Figure 13 in [25]). In the next section, we review the
experimental evidence for the appearance of this 2D magnetic
system with the interesting property of having the magnetization
easy axis normal to the main sample surface.

3 Evidence for a two-dimensional
ferromagnetic phase with the out-of-
plane easy axis

3.1 Reasons for the magnetic anisotropy

As indicated previously, following theoretical and experimental
results, at a low ion energy of 200 eV, the magnetically ordered
phase appears at the first two layers of the TiO2 anatase surface. If
we irradiate TiO2 with Ar+ ions of higher energy (e.g., 500 eV), the
magnetic anisotropy changes and the magnetization easy-axis
points become parallel to the sample surface [25, 26]. This
evidence clearly indicates that the negative magnetic anisotropy
energy (MAE) found at low irradiation energies is directly related
to the two-dimensionality of the ferromagnetic phase produced at
the surface of the TiO2 sample. The localized magnetic moments of
the dFP defect at the (001) anatase surface of the measured samples
exist at the two interstitial Ti places. One of the interstitials Tii,2 is
located at the first surface layer whereas the other interstitial Tii,1
on the second layer. According to DFT electronic structure
calculations using the full-potential linearized augmented plane
wave (FLAPW) method, the magnetic defect Tii,1 shows a spin
structure similar to that in the bulk, whereas the Tii,2 defect shows a
completely different spin polarization with a negative MAE due to
the reduced coordination of the surface [25]. Increasing the
magnetically ordered volume inside the sample by increasing the
irradiation energy results in smaller relative contribution of this
magnetic surface to the total magnetization, and the magnetic
anisotropy turns to positive.

The first clear hints for the unusual magnetic anisotropy of the
TiO2 thin films after irradiation were obtained by SQUID angle-
dependent magnetization measurements [24]. This interesting finding
was supported a few years later through similar SQUIDmeasurements
of new TiO2 thin films irradiated at different energies [25, 26]. We
would like to emphasize that the main results were obtained from
magnetic hysteresis loops, obtained applying external magnetic fields
parallel and perpendicular to the film surface of irradiated TiO2

samples using a SQUID magnetometer. The total magnetic
anisotropy energy was obtained from the difference between the
areas of the two first field (virgin)-dependent curves, for more
details, see Ref [25] and its supplementary information [30]. The
magnetization results show that the MAE for the 200 eV Ar+-
irradiated sample is negative with a value of MAE ~ − 0.03 mJ/cm2

nearly independent of the irradiated fluence up to ~ 3 × 1016 cm−2

[25], which is in agreement with the predicted behavior given by the
red area in Figure 1A. In the next section, we discuss the visualization
of magnetic domains via MFM, supporting the anomalous MAE of
irradiated TiO2. It is worth to note that perpendicular magnetic
anisotropy has been reported in Cr3Te4 monolayers, which was
triggered in this case not by atomic lattice defects in the material
itself but by an interfacial effect between the monolayer and
graphite [31].

3.2 Magnetic force microscopy

Thin films of anatase, prepared by pulsed laser deposition on the
LaAlO3 substrate, have been irradiated with low-energy ions and
measured using magnetic force microscopy (MFM) [26]. Previously
conducted SQUID measurements showed a low remanence; thus, we
expect randomly distributed magnetic domains at the anatase surface.
Figures 2A,B showMFMmeasurements at two different positions, and
the magnetic domains as well as their out-of-plane character can
clearly be recognized. An in-plane domain structure would only be
visible at the domain walls as the out-of-plane field vanishes within the
domains.

In order to examine the possibility for controlled magnetic
manipulation at the surface of the anatase thin film, the samples
were patterned using electron beam lithography. Therefore, a film was

FIGURE 2
Magnetic force microscopy measurements at two different
positions (A) and (B) of a fully irradiated and otherwise untreated anatase
thin film. The TiO2 thin film was irradiated with Ar+ ions with a fluence of
~ 1016cm−2 and energy of 200 eV. The magnetic domains have
been segmented with a barrier of 40% and a Gaussian smoothing factor
of 8 px.
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covered with a resist layer, and electron beam lithography was used to
prepare a mask. The resulting irradiated lines or stripes have a width of
≈ 750 nm. After irradiation with low-energy argon ions, the whole
mask was completely removed, and the sample wasmagnetized using a
permanent magnet with a magnetic field aligned perpendicular to the
sample surface and two magnetization directions: parallel and
antiparallel to the tip magnetization. No external field was applied
during the measurement [26]. The results are shown in Figures 3A,B
and present a clear MFM signal corresponding to the two out-of-plane
magnetic field directions; the area of the thin film, which was not
irradiated, does not show any MFM response. The corresponding
phase line scans normal to the main length of the FM stripes in Figures
3A,B are shown in Figure 3C.

4 Conclusion

In conclusion, it has been shown that ferromagnetism at room
temperature with perpendicular magnetic anisotropy can be
induced in anatase after irradiating the sample with low-energy
ions. The used method is remarkably simple and cheap compared
to other experimental methods to produce perpendicular magnetic
anisotropy, such as magnetic heterostructures[32]. The irradiation
strategy is similar to the doping approach used in the
semiconductor industry. However, the advantage of our method
relays in its efficiency and the possibility to easily combine with
other techniques, as electron beam lithography, allowing the
production of arbitrary magnetic patterns with 2D
perpendicular magnetic anisotropy.
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FIGURE 3
Magnetic forcemicroscopymeasurements of the sample (MS) and tip (MT) magnetization in antiparallel (A) and parallel (B) directions with respect to each
other; (C) corresponding line scans.
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