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Variational mode decomposition (VMD) has been widely applied in sensors.
However, the mode number and balance parameter seriously limit VMD
application. To solve this problem, this study proposes a novel method, which
combines an improved energy fluctuation index (IEFI) and modified VMD (MVMD).
In the proposed method, IEFI provided better performance to resist interference
from random impulses by considering the periodicity of fault feature components.
Consequently, it is applied to determine the initial center frequency for MVMD, which
fixed the problem of themode number. Moreover, a novel balance parameter search
strategy, which can adaptively determine the optimal balance parameter, is
combined with MVMD whose stop condition is replaced by kurtosis to extract the
fault feature. Simulation results indicated that the proposed method does well in
detecting the feature of a periodic impulse signal from the signal polluted by some
interference impulses. Moreover, the bearing fault diagnosis results demonstrate that
the proposed method can accurately detect bearing fault features. Furthermore, the
method was validated with bearing fault data. The results showed that the method
can accurately extract the fault characteristics of the impulse signal and achieve fault
diagnosis.
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1 Introduction

Industrial equipment and systems have been increasingly moving toward larger, more
complex, and integrated features, which lead to increased uncertainty in the system operation.
To ensure the safe operation of equipment, extracting fault characteristics from signals collected
by the sensors is necessary to achieve the purpose of fault diagnosis [1]. Sensors collect a large
amount of image [2, 3] and data information [4–8], based on which many functions can be
implemented.

Recent studies show the effectiveness of vibration signals in fault diagnosis [9]. Meanwhile,
the fault response of the bearing and gearbox serves as an impact component in the vibration
signal [10]. Unfortunately, the impulse response from the early fault is often submerged by
noise from other running components and environments because the impulse response is too
weak. Thus, an effective impulse signal detection method is necessary to evaluate the operating
status of the rotation machine. Envelope analysis can effectively detect impulse signals but is
ineffective in low signal-to-noise ratio (SNR) data. WT works well in heavy noisy signals but is
seriously limited by basic functions [11]. EMD and EEMD can adaptively decompose complex
signals into server modals but lack the rigorous mathematical theory. Fortunately, variational
mode decomposition (VMD) can decompose low SNR signals into server modes under the
number of suitable modes and the balance parameter [12]. Meanwhile, Wang et al. [13]
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investigated the filter property of VMD by simulation signals and
found that VMD can be implemented to detect impulse signals.
Additionally, Wang et al. [14] applied VMD to detect impulse
components in the signal from a rotor system. The results indicate
that VMD works better than EMD and EEMC. Li et al. [15] analyzed
the signal from a wind turbine by combining VMD and blind-source
separation to detect the bearing crack fault. Li et al. [16] introduced
VMD to calculate the central frequency and combined it with data-
driven time–frequency analysis to diagnose the gear fault. Diagnosing
faults by VMD provides advantages to identify different health
conditions [17].

Based on the aforementioned description, VMD has been widely
applied in the fault detection field. However, the mode number and
balance parameter are determined based on the experience in the
aforementioned articles. To solve this problem, many researchers
paid attention to determining the mode number and balance
parameter, and some results can be summarized as follows: first,
research combined VMD with some intelligent search algorithms,
such as grasshopper optimization algorithm, salp swarm algorithm,
and particle swarm optimization [18–21]. By using intelligent search
algorithms, themode number and balance parameter can be determined
adaptively and effectively. However, accepting the computational
efficiency is difficult. Second, research studies put forward some
other methods whose mode number is based on the fast Fourier
transformation (FFT) spectrum of the decomposition result, such as
independence-oriented VMD, adaptive VMD, and detrended
fluctuation analysis VMD (DFA-VMD) [22–24]. These methods can
adaptively select systemparameters.However, some parametersmust be
determined artificially, and the over-decomposition phenomenon
frequently occurs in these methods. Meanwhile, some researchers
used iteration methods to search system parameters for VMD. Such
methods include coarse-to-fine VMD and tentative VMD, which are
often designed in two stages, to determine the target sub-mode and
refine the sub-mode to enhance the impulse component. Finally, the
initial center frequency-guided VMD (ICF-VMD) method is proposed
in Refs. 25–Refs. 28. Compared with other adaptive VMD methods,
ICF-VMD works well to extract bearing fault features and has better
computational efficiency [29]. ICF-VMD is also designed in two stages:
to determine the center frequency by the energy fluctuation variance
and to refine the balance parameter to enhance the fault feature.
However, the energy fluctuation variance is sensitive to the random
impulse, and the balance parameter search process is limited in a narrow
range. Two drawbacks may explain the failure of extracting the bearing
fault feature.

To solve the aforementioned problems and improve the
computational efficiency, this study proposes a novel method
which combines an improved energy fluctuation index (IEFI) and
modified VMD (MVMD). IEFI, a method based on the original energy
fluctuation index and the subscript’s variance of the energy whose
value is greater than the mean, is used to determine the center
frequency for MVMD. Consequently, the mode number can be
fixed as one, and the balance parameter is the only parameter that
needs to be determined. In this research study, a novel balance
parameter search strategy from MVMD was used to extract the
bearing fault feature. The initial balance parameter is determined
based on the center frequency from the IEFI, which enhances the
adaptability of the search strategy. The MVMD, whose stop condition
is replaced by kurtosis, has good computational efficiency. In
summary, IEFI ensures that the proposed method works well to

process the signal, which includes some random impulses. The
novel search strategy and MVMD ensure the computational
efficiency of the proposed method. The effectiveness of the
proposed method is examined by the simulation and experiment
signals. The advantages of the proposed method are highlighted by
comparing it with some existing methods.

The rest of the paper is organized as follows. Section 2 describes
the proposed method. Section 3 organizes the results of the numerical
experiment, case study, and comparison. Section 4 presents a concise
summary.

2 The proposed method

This section introduces the basic theory about the IEFI and the
MVMD to help in understanding the proposed method.

2.1 Modified VMD

VMD decomposes signals into a series of sub-modes through
some Wiener filter banks. Its model is described as follows:

min

uk{ }, ωk{ } ∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )[ ]e−jωk

t
������� �������22⎧⎨⎩ ⎫⎬⎭

s.t.∑K
k�1

uk t( ) � f

, (1)

where uk and ωk denote the sub-mode and its center frequency,
respectively. By introducing Lagrangian multipliers and penalty
technology, Eq. 1 can be written as follows:

L uk{ }, ωk{ }, λ( ) � α∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )[ ]e−jωk

t
������� �������22+

f t( ) −∑K
k�1

uk t( )
��������� ���������2

2

+ 〈λ t( ), f t( ) −∑K
k�1

uk t( )〉
, (2)

where α is the balance parameter, and λ(t) means the Lagrangian
multiplier parameter. Equation 2 can be solved through an alternate
direction method of multiplier (ADMM) technology, and its process is
described in.

Algorithm 1: ADMM for VMD
Initialize: uk,ωk , λ, n ← 1

Update uk: û
n+1
k ω( ) ← f̂ ω( ) − ∑i≠kû

n+1
k ω( ) + λ̂

n
ω( )
2

1 + 2α ω − ωn
k( )2 , (3)

Updateωk: ω
n+1
k ←

∫∞
0
ω un+1

k ω( )∣∣∣∣ ∣∣∣∣2dω∫∞
0
un+1
k ω( )∣∣∣∣ ∣∣∣∣2dω , (4)

Update λ: λn+1 ω( ) ← λn ω( ) + τ f ω( ) −∑
k

un+1
k ω( )⎛⎝ ⎞⎠. (5)

Convergence condition: ∑k‖ûn+1k − ûnk‖22/‖un+1k ‖22 < ε

According to, τ denotes the learning rate, which can be fixed as
zero when VMD is applied to denoise the sub-components instead of
recovering them. Understanding the mode number and the balance
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parameter is easy and important in VMD. According to Ref. 12, the
mode number can be fixed as one with the help of the right center
frequency. On the other hand, according to Ref. 30, this method is
applied to detect bearing fault features. Thus, the mode number is set
as one. This study applies envelope analysis to process the signal
filtered by VMD. Consequently, VMD is assumed to be the filter in this
study, and the learning rate τ should be 0 based on 11. Given that the
purpose of VMD in this study is not to recover sub-components, its
convergence condition can be modified to obtain a higher
computational efficiency. Kurtosis is widely applied as index for
diagnosing bearing fault, and it will be applied to construct a new
convergence condition for VMD in this study. The new convergence
condition is defined as follows:

kur un( )/kur un+1( )> η, (6)
in which, kur(·) denotes the kurtosis operator and η is set as 0.99, which
can ensure that the kurtoses of the two adjacent generations have the same
level. VMD, which is based on this convergence condition, is named
MVMD in this study. By modifying the convergence condition as Eq. 6,
MVMD not only has a good performance in extracting bearing fault
features but also has higher computational efficiency, which is friendly
with engineering applications.

2.2 Improved energy fluctuation index

Based on 11, Refs. 28, the number of modes can be set as one with
the help of a correct center frequency. According to Ref. 28, the center
frequency is determined based on the variance of energy fluctuations
whose mathematical formula can be written as:

A fj( ) � ������������������������∑N
i�1

TF ti, fj( ),−TF ti, fj( )( )2

,

√√
(7)

where TF(t, j) is the time–frequency analysis result. In this research, it
is calculated by the short-time Fourier transform (STFT), which is
shown as follows:

TF t, f( ) � ∫+∞

−∞
x τ( )w t − τ( )e−2jπfτdτ. (8)

However, the variance of energy fluctuation is weak to resist the
interferences from the random impulses and neglects the period
property of the real fault response. To fill these gaps, an IEFI is
proposed to determine the center frequency. The new index is
defined as:

IEF fj( ) � A fj( ) × exp −var SS fj( ) − SF fj( )( ){ }. (9)

SS(fj) corresponds to the subscripts of the elements from the
second to the last, whereas SF(fj) corresponds to the subscripts of
the elements from the first to the last but one. For the periodic
impulses, all of the elements in [SS(fj) − SF(fj)] should be
constant. Thus, their variance should be equal to zero.
Therefore, the exponent term shown in Eq. 9 will be close to
one for periodic impulses. However, for aperiodic impulses and
noise, the distribution of the elements in [SS(fj) − SF(fj)] is
irregular. Thus, their variance is far from zero, which will
weaken the exponent term shown in Eq. 9. Based on the
aforementioned description, implementing IEFI to identify
periodic impulses is more accurate than implementing raw
energy fluctuations.

FIGURE 1
Flowchart of IEFI–MVMD
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2.3 The proposed method

The center frequency can be obtained from the IEFI, and the number
of modes is set as one based on it. To run VMD successfully, the balance
parameter should be determined first. Generally, the intelligent search
algorithm and iterative search process are applied to solve this problem.
However, accepting the computational efficiency of intelligent search
algorithm is difficult. Thus, this study proposes a novel iterative search
strategy to determine the balance parameter. The novel method is named
IEFI–MVMD,which combines the improved energyfluctuation index and
the modified VMD. The main steps of IEFI–MVMD are given as follows:

Step 1: The signal is processed by STFT with a window length of
512 and an overlap of 256.

Step 2: The IEFI is applied to evaluate the periodic impulse for each
frequency. Additionally, the center frequency is the one with the
largest IEFI.

Step 3: The balance parameter is initialized on the basis of

α � φ/min 0.5 − ωk,ωk( )2, (10)

where φ is defined as five based on Eq. 3. From Eq. 3, one can easily
understand that φ � 5 ensures the frequency response factor of the
frequency boundary is not over 1/10.

Step 4: The raw signal is processed by using the MVMD method
whose modes’ number is fixed as one, and the kurtosis of the
decomposition result is marked as K1.

Step 5: The balance parameter is replaced by δ × α, and δ is fixed as
1.5 in this study. The kurtosis of the new result is calculated and
marked as K2. If K1 is less than K2, then, Steps 4 and 5 are repeated
until K1 is larger than K2.

Step 6: The final result (corresponding to K1) is processed through
envelope demodulation technology to obtain the squared envelope
spectrum, which can clearly show the fault feature frequency.

To understand the IEFI–MVMD clearly, Figure 1 displays the
corresponding flowchart.

FIGURE 2
Simulation signal: (A) harmonic component y1, (B) periodic impulse component y2, (C) interface impulse component y3, and (D) composite signal y.

FIGURE 3
SES of the simulation signal.
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FIGURE 4
Results by the IEFI–MVMD of the simulation signal: (A) STFT, (B) IEFI, (C) TDW, and (D) SES.

FIGURE 5
Signals fromMFPT: (A) and (B) correspond to the TDW and SES of the healthy bearing, (C) and (D) correspond to the TDW and SES of the inner race fault
bearing, and (E) and (F) correspond to the TDW and SES of the outer race fault bearing.
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3 Case study

To examine the effectiveness of the proposed method, this section
introduces a simulation signal and two bearing fault signals.
Meanwhile, the superiority of the proposed method is highlighted
by comparing it with some existing methods.

3.1 Simulation

The simulation signal includes the harmonic component (y1), the
periodic impulse (y2), the aperiodic impulse (y3), and the Gaussian
noise (n(t)). The simulation signal can be written as follows:

y t( ) � y1 t( ) + y2 t( ) + y3 t( ) + n t( ), (11)
y1 t( ) � A × sin 2π × 200t( ), (12)

y2 t( ) � 2 × e0.1×2π×2000t sin 2π × 2000t ×
�������
1 − 0.12

√( ), (13)
y3 t( ) � 3 × e0.1×2π×1200t sin 2π × 1200t ×

�������
1 − 0.12

√( ). (14)
In the simulation signal, the frequency of the impulse signal is set

at fi � 40Hz. The sampling frequency is 20 kHz, and the length of the
simulation signal is 10 k points. The density of Gaussian noise is 0.4.
The simulation signal is illustrated in Figure 2. From Figure 2D, the
periodic impulses can be seen as seriously polluted by the noise. Even
in its squared envelope spectrum (SES) shown in Figure 3, observing
the features of the periodic impulses is difficult.

Then, the proposed method is applied to analyze this signal. To
begin with, the signal is analyzed by the IEFI, and Figure 4 shows the
results. As shown in Figure 4A, three interference impulses occur in
the simulation signal, which is consistent with the results shown in
Figure 2C. Figure 4B shows the result above IEFI. Additionally, the
frequency corresponding to the largest IEFI is 1,992 Hz, which is close
to the design frequency in Eq. 13. Then, the balance parameter is
determined by Eq. 9. Figure 4C is the time domain waveform (TDW)
of the results. Compared to the raw TDW shown in Figure 2D, some
periodic impulses are clearly shown in this figure. Importantly, the
fundamental feature frequency and its harmonics are clearly displayed
in its SES, as shown in Figure 4D. Consequently, our method succeeds
in detecting the feature of the periodic impulses from the signal
polluted by some interference impulses.

3.2 Case I

This section describes the implementation of the proposedmethod to
analyze some signals from the bearing fault experiment. The signals used
in this section come from the Society for Machinery Failure Prevention
Technology (MFPT). According to description in MFPT, the tested
bearing’s faults include healthy conditions, outer race fault conditions,
and inner race fault conditions. Figure 5 illustrates the TDW and the
corresponding SES of these signals used in this section. From Figure 4, the
amplitudes of the fault feature frequencies of the healthy bearing can be

FIGURE 6
Results of IEFI for signals fromMFPT: (A) and (B) correspond to the STFT and IEFI of the healthy bearing, (C) and (D) correspond to the STFT and IEFI of the
inner race fault bearing, and (E) and (F) correspond to the STFT and IEFI of the outer race fault bearing.
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FIGURE 7
Final results of the IEFI–MVMD for signals from MFPT: (A) and (B) correspond to the TDW and SES of the healthy bearing, (C) and (D) correspond to the
TDW and SES of the inner race fault bearing, and (E) and (F) correspond to the TDW and SES of the outer race fault bearing.

FIGURE 8
Results from FK for the MFPT signals: (A) and (B) correspond to the kurtogram and the corresponding SES of the inner race fault bearing; (C) and (D)
correspond to the kurtogram and the corresponding SES of the outer race fault bearing.
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described as extremely low. Figures 5C,D show the signal of the inner race
fault bearing. Moreover, some periodic impulses can be easily found in
Figure 5C. Moreover, some information about the inner race fault can be
easily found in its SES as shown in Figure 5D, but some interferences
occur in it. Figures 5E, F show the information about the signal of the
outer race fault. Unfortunately, it is difficult to find the periodic impulses.
Nonetheless, the 1xBPFO and 2x can be clearly observed in it.

Finally, this study calculates the ratio of the amplitudes between
the interference frequency (IF) and fundamental feature frequency to

show the superiority of the proposed method conveniently. A large
value of the ratio means a good result for extracting fault features. We
applied this ratio in the results of the inner race fault signal.

First of all, IEFI–MVMD is applied to process these signals.
Figure 6 shows the results about the IEFI, whereas Figure 6
presents the results of the proposed method. According to
Figure 5, the initial center frequencies for the healthy bearing, the
inner fault bearing, and outer fault bearing should be 6,103, 3,051, and
1,907 Hz, respectively. From Figure 7B, the amplitude for either BPFO

FIGURE 9
Results from ICF-VMD for the MFPT signals: (A) and (B) correspond to the TDW and the corresponding SES of the inner race fault bearing; (C) and (D)
correspond to the TDW and the corresponding SES of the outer race fault bearing.

FIGURE 10
Results from IEFI–VMD for the MFPT signals: (A) and (B) correspond to the TDW and the corresponding SES of the inner race fault bearing; (C) and (D)
correspond to the TDW and the corresponding SES of the outer race fault bearing.
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or BPFI is low, which means the bearing is healthy. The results of the
healthy bearing indicate that our method can accurately deal with
these kinds of signals. Figure 7D shows the SES of the results by
IEFI–MVMD for the inner race fault bearing signal. Carefully
comparing it with Figure 4D, the ratio shown in Figure 7D is 1.14,
which is larger than the ratio shown in Figure 4D. This finding means

that IEFI–MVMD enhances the inner race fault feature. Figure 7F
illustrates the SES of the results by IEFI–MVMD for the outer race
fault bearing signal. Comparing it to Figure 4C, the fault feature is
enhanced by IEFI–MVMD efficiency because the high-order
harmonics (3x, 4x, and 5x) can only be found in Figure 6F. Based
on the aforementioned description, our method can be said to reflect

FIGURE 11
Raw signals from CU-O: (A) TDW and (B) SES.

FIGURE 12
Results from IEFI–MVMD: (A) STFT, B) IEFI, (C) TDW, and (D) SES.

FIGURE 13
Results from FK for signal CU-O: (A) kurtogram and (B) SES.
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the real health status, including the health, inner race fault, and outer
race fault.

The signals of inner and outer race fault bearings are analyzed
by some other methods, including the fast kurtogram (FK), the
ICF-VMD, and a new method that combines the IEFI and the raw
VMD. For convenience, this method is named IEFI–VMD.

Figure 8 shows the results from FK. From Figure 8A, the
optimal demodulation frequency band (ODFB) by FK for MFPT-I
is in level 1 with the center frequency 6,103 Hz. In addition,
Figure 8B shows the SES of the signal based on this ODFB. From
Figure 9B, the fault features including 1 x BPFI, 2x, and 3x are
clearly shown. However, the ratio shown in its upward right
corner is lower than the result shown in Figure 7D, which
means that our method works better than FK to extract the
inner fault features. Moreover, Figure 8C shows that the ODFB
by FK for MFPT-O is located in level 6 with the center frequency
17,929 Hz. In addition, Figure 8D illustrates the SES of the signal
based on this ODFB. By comparing Figure 8D with Figure 5F, the
high-order harmonics (4x and 5x) can only be easily found in
Figure 8F. Thus, FK cannot catch up with the level of our method
in dealing with both the inner and outer race fault signals.

Figure 9 and Figure 10 show the results from ICF-VMD and
IEFI–VMD, respectively. Figure 9A shows the TDW of the results
by ICF-VMD for MFPT-I, and Figure 9B shows its SES. By
comparing Figures 8B, 6D, using the proposed method to
diagnose faults provides better performance than using ICF-
VMD because the amplitude of 1xBPFI is not the highest in SES
and other interferences exist in it. Figure 9B displays the TDW of
the results by ICF-VMD for MFPT-O, and Figure 9D shows the
corresponding SES. By comparing Figures 9D, 7F, determining that
the high-order fault features (3x and 5x) are weaker than the results
is not difficult, as shown in Figure 7D. Figure 10A shows the TDW
of the results by IEFI–VMD for MFPT-I, and Figure 10B shows its
corresponding SES. By comparing Figures 10B, 7D, determining
the differences between them is difficult. The ratio shown in the
upward right corner of Figure 10B tells us that our method has a
slight lead. Figure 10C shows TDW of the result by IEFI–VMD for
MFPT-O, and Figure 10D shows its SES. From Figure 10D, some
interference occurs near the fault feature 3x. Nonetheless, in
Figure 7F, it is shown clearly. This finding means that the
proposed method has a slight lead. More importantly, the
computation efficiencies of IEFI–MVMD and IEFI–VMD are

FIGURE 14
Results from signal CU-O: (A)ICF-VMD TDW, (B) ICF-VMD SES, (C) IEFI–VMD TDW, and (D) IEFI–VMD SES.

TABLE 1 Calculation time for each signal unit: (s).

Signal IEFI–MVMD IEFI–VMD ICF-VMD

MFPT-H 2.17 9.97 36.69

MFPT-O 7.07 40.86 53.57

MFPT-I 1.14 7.38 16.04

CU-O 2.77 6.30 19.88
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highly different, and we will show it toward the end of this paper to
highlight the superiority of our introduced method.

3.2 Case II

This section applies the introduced method to analyze another
fault bearing signal, which includes some interference impulses.
This kind of signal effectively highlights the advantage of our
method.

The signal comes from Curtin University. The type of the test
bearing is MB ER-16K, and a local defect exists in its outer race. For a
convenient description, this signal is marked as CU-O in this research
study. The shaft speed is 1,740 rpm, and the BPFO is 103.6 Hz from
Ref. 31. The sampling frequency is 51.2 kHz, and the length of the
signal applied in this study is 1 s.

Figure 11 shows the TDW and its SES. From Figure 11A, some
certain interference impulses (marked by red point) exist in the
measured signal. In Figure 11B, determining the fault feature
frequency and its harmonics is difficult due to the interference
from noise. Then, our method is applied to analyze this signal, and
Figure 12 shows the results. From Figure 12A, the center frequency
of the interference impulses is near 10 kHz. However, the result of
IEFI shown in Figure 12B tells us that the center frequency of the
periodic impulses should be 3,100 Hz, and the value of the
interference impulses is extremely low. This result means that
IEFI can effectively suppress the interference impulses.
Figure 12C shows the TDW of the result by our method for
CU-O. According to Figure 12C, some periodic impulses are
clearly shown and the interference impulses are suppressed
effectively. Figure 12D shows its SES. The fault features
including 1xBFO, 2x, 3x, and 4x are clearly shown in it.
Consequently, our method can be said to have succeeded in
detecting the bearing fault feature accurately and is strong
enough to resist the interference from the aperiodic impulses.

Signal CU-O is also processed by FK, ICF-VMD, and IEFI–VMD. In
addition, Figure 13 and Figure 14 show their results, respectively. From
Figure 13A, the ODFB FK can be seen at level 4.5 with the center
frequency of 9,066 Hz. Additionally, according to SES from Figure 13B,
only the fundamental fault feature frequency can be observed easily.
Evidently, a large gap exists between Figures 13B, 12D. Figure 14C shows
the TDW by ICD-VMD. According to Figure 14C, some interference
impulses remain included in thefiltered signal.Moreover, based on its SES
shown in Figure 14D, observing the fundamental fault feature frequency
and its harmonics is difficult due to the existence of noise and interference
impulses. Figure 14C shows the TDW by IEFI–VMD for signal CU-O,
and Figure 14D shows its SES. From Figure 14C, determining that the
interference impulses are suppressed effectively is easy. Subsequently,
according to SES from Figure 14D, the fundamental fault feature
frequency and its harmonics can be observed clearly. By comparing it
with the result shown in Figure 13D, we think they have the same level.
However, the computational efficiency of IEFI–VMD is much farther
from IEFI–MVMD.

To obtain the calculation time of IEFI–MVMD, IEFI–VMD,
and ICF-VMD accurately, each method is tested three times in
the same computer whose hardware is Intel(R) Core (TM) i7-
9700 CPU @ 3.00 GHz 3.00 GHz. The mean is applied to
evaluate the computational efficiency. Table 1 shows the
results. From this table, the calculation time of our method

is the lowest for each signal, which means our method has the
highest computational efficiency among the three methods.
Consequently, IEFI–MVMD can detect the bearing fault
feature with great computational efficiency.

4 Conclusion

This study proposes a novel method named IEFI–MVMD to
detect the fault feature of the bearing. IEFI–MVMD has a strong
power to resist interference from aperiodic impulses and has
high computational efficiency. Specifically, the guide-center
frequency is determined by the IEFI calculated based on the
subscript of the elements. If it is greater than the mean, the ability
to resist random impulses could be enhanced. The fault feature is
extracted by the MVMD whose convergence condition is built up
by decomposing kurtosis, which ensures that the proposed
method has high computational efficiency. The proposed
method succeeds in analyzing signals from inner and outer
race fault bearings and healthy bearings. The advancement of
the proposed method is highlighted by comparing it to other
existing methods.
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