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The critical slowing down (CSD) phenomenon of the switching time in response to
perturbation β (0 < β < 1) of the control parameters at the critical points of the steady
state bistable curves, associated with two biological models (the spruce budworm
outbreak model and the Thomas reaction model for enzyme membrane) is
investigated within fractional derivative forms of order α (0 < α < 1) that allows for
memory mechanism. We use two definitions of fractional derivative, namely,
Caputo’s and Caputo-Fabrizio’s fractional derivatives. Both definitions of
fractional derivative yield the same qualitative results. The interplay of the two
parameters α (as memory index) and β shows that the time delay τD can be
reduced or increased, compared with the ordinary derivative case (α = 1). Further,
τD fits: (i) as function of β the scaling inverse square root formula 1/

��
β

√
at fixed

fractional derivative index (α < 1) and, (ii) as a function of α (0 < α < 1) an exponentially
increasing form at fixed perturbation parameter β.

KEYWORDS

critical slowing down, Caputo’s and Caputo-Fabrizio’s fractional derivatives, switching
timedelay, bistable behaviour, mathematical models in biology

1 Introduction

Bistable systems in many branches of sciences (physics, biology, . . . ) and engineering are
characterized by the co-existence of two stable states, where the system switches from one stable
state to other state by means of changing one or some of the system control parameters [1–4].
The associated transient phenomena of lengthening the switching time between these two stable
states, called critical slowing down (CSD), happens upon perturbing one of the parameters at
the critical (switching-on or -off) points of the charactertistic bistable curve [5–8]. It has been
suggested that, CSD may serve as a universal indicator of how a complex physical system (such
as brain, ecosystems, climate and financial markets) approaches a threshold [9–12], and as well
serving as an indicator of transitions in two-species biological models, which exhibit Hopf
bifurcation or hysteresis transition [13]. For our specific current concern, the CSD phenomenon
has recently been investigated by us in [14] for some biological bistable models, namely.

(a) The spruce budworm outbreak model [3, 4, 15];
(b) The Thomas-reaction (enzyme membrane) model [4, 16].

Specifically, our investigation in [14] was concerned with the nature of transition between
the two stable states, and the verification of the inverse square root scaling law, for the switching
time delay (τD) at the critical switching-on and -off points, independent of the type of non-
linearity in the model rate equations. The model rate equation in model a) is of first order
ordinary differential equation (ODE), while in model b) the model rate equations are coupled
first order ODEs.On the other hand, fractional calculus, a field of mathematics that deals with
the analysis of derivatives and integrals of fractional (or even complex) order, has its
applications in diverse areas of science and engineering. The associated fractional
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differential equations (FDEs) are widely and successfully used in
mathematical modelling in a variety of fields. We refer the reader
to the extensive list of major works and applications in the area of
fractional calculus cited in ([17–20] and refs. therein). In ordinary
calculus, the first order derivative of a function f(t), namely f′(t) � df

dt

is the instantaneous rate of change of f(t) over the infinitesimal time
period, t → 0, that is, local time effect. In fractional calculus, the
physical meaning is non-local, as the time domain is manifested as a
memory (or time delay) effect and the current state of the system
depends on its earlier history. Moreover, in fitting with test data of
various models of memory phenomena, the order of the fractional
derivative serves as an index of memory [21, 22]. FDEs of arbitrary real
order are not in general easy to solve analytically [23]. However, the
numerical method based on Laplace transform technique is a basic one
and applicable for a wide class of initial value problems for FDEs,
[23–26]. Recent fundamental computational methods are found in
[27, 28]; and refs, therein.

Experimentally speaking, fractional derivative models (FDMs) are
in excellent agreement with experimental data in many branches of
science and engineering. Two specific examples we quote.

1. A recent experimental study of viscoelastic properties of some soft
biological tissues under harmonic mechanical loading shows that
the FD Voigt model performed better, compared with integer order
derivative models [29].

2. FDM (Maxwell’s model) describing the viscoelastic Creep damage
of some fruits is more efficient and well fitted with experimental
data [30].

Further, CSD or more generally instability mechanism and chaos,
have been investigated at large in fractional order dynamical systems
in fields, like, fluid flow [31–35], neurology and biological phenomena
([36–38]; refs. therein) to account successfully for memory (time-
delay) and special non-local effects. For example.

1. The Landau model that describes the fluid flow from laminar to
turbulent has been examined within a fractional rate equation
model [35] in order to account for memory effect. This transition to
turbulence due to CSD shows that the turbulent fluctuations
depend on memory of inverse power law decay in agreement
with experiment [39]-slower than in the case of no memory
(ordinary derivative case) of turbulent fluctuations decaying
exponentially,

2. Capacitive memory due to fractional order cardiomyocyte
dynamical model [37] alters the electrical signaling in cardiac
cells in a manner that promote or suppress electrical instability
(known as alternans).

3. The use of a fractional order mathematical model to study the
signaling process in nerve cells (like, neuron) due to incorporated
strong memory effects [36] has been interpreted as a neuronal
disorder (Parkinson disease).

The concern of the present paper is to adopt the corresponding
FDEs in both models a) [3, 4, 15] and b) [4, 16], referred to above, in
order to incorporate for memory effects and examine effects of the
fractional derivative order parameter (α), (0 < α < 1) on the time delay
(τD) associated with the CSD phenomena examined in the no-memory
case [14]. We use and compare two definitions of fractional derivatives,
namely, Caputo’s [40] and Caputo-Fabrizio’s [21, 22] definitions. Both

definitions have the advantage of dealing with initial conditions of the
variables and their integer derivatives suitable in most physical
processes, like models a) [3, 4, 15] and b) [4, 16] referred to above.
As a main result, it is found that Caputo’s and Caputo-Fabrizio’s
definitions of fractional derivatives yield the same qualitative results
of reduced time delay τD at fixed perturbation of the concerned control
parameter, with smaller values of the fractional derivative order α. The
small quantitative difference in τD is due to the different convoluted
kernels (that model the memory or delay effect) in [21, 22, 40].This
paper is presented as follows. In section 2), we present the model
differential equations in both ordinary and Caputo’s fractional
derivative forms, for both models. In section 3), we present the
computational results for the transient switching. Section 4) presents
a summary of the results. In Supplementary Appendix A, a brief
background of the model ODEs (eqa (1) and. 2) below) representing
the two biological models referred to above is given, while
Supplementary Appendix B presents a guideline for Euler’s
numerical method to solve fractional FDE.

2 The model equations

Here, we first present the model DEs of the two biological models
(the Spruce-budworm and Thomas reaction models) in their ordinary
derivative forms. (A brief background of these model ODEs are given
in Supplementary Appendix A). Second, we present the corresponding
fractional derivative forms, according to the two formulations of
Caputo’s [40] and Caputo-Fabrizio’s definitions [21].

2.1 Ordinary derivative case

2.1.1 The spruce budworm Model
This model ([3, 4, 15]) provides a good example for understanding

the dynamics of the interaction between trees and insects. The model
rate equation for the insect (budworms) population has the form:

d

dτ
N τ( ) � N τ( ) 1 − N τ( )

K
( ) − FN2 τ( )/ N2 τ( ) + B2( )

≡ fo N τ( )( ),
(1)

where N(τ) is the budworm’s population, τ = rt is normalised time, r is
the linear birth rate and K is the constant carrying capacity which is
related to the foliage (food) available on the trees in the absence of
birds. The constant F = poA/r is the predation population with rate po
and A is the (positive) predator attack rate and B is the threshold
measure of the budworm population. The predation will approach an
upper level value, limN→∞FN2/(N2 + B2) � F as N increases.

2.1.2 The Thomas reaction model
The mechanism of this model is based on a basic reaction in an

enzyme membrane, between the substrate oxygen and uric acid. The
model equations of the system in a dimensionless form are [4, 16]:

du τ( )
dτ

� a − u τ( ) − ℓ
u τ( )v τ( )

1 + u τ( ) + ku2 τ( )
≡ f1 u τ( ), v τ( )( )

(2a)

dv τ( )
dτ

� γ b − v τ( )( ) − ℓ
u τ( )v τ( )

1 + u τ( ) + ku2 τ( )
≡ f2 u τ( ), v τ( )( ).

(2b)
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Here, u and v represent the uric acid and the oxygen being supplied at
constant rates a and γb, respectively, where, a, ℓ, k, γ and b are all
positive real constants. The factor u(τ)v(τ)/ (1 + u(τ) + ku2(τ))
exhibits substrate inhibition: it increases (decreases) when u is
small (large), with measure of inhibition’s severity equal to k.

In [14], the model Equations 1, 2 were analysed in detail
(theoretically and computationally) regarding regions of

bistability, the CSD phenomenon at the critical (switch-up and
-down) points of the bistable curves and the verification of the
inverse square root scaling law of the switching time delay [7, 41].

2.2 Fractional derivative cases

In this case, Equations 1, 2 take the following forms;

dα

dτα
N τ( ) � fo N τ( )( ), (3)

and,

dα

dτα
u τ( ) � f1 u τ( ), v τ( )( ), (4a)

dα

dτα
v τ( ) � f2 u τ( ), v τ( )( ), (4b)

respectively, where dα

dτα denotes the fractional derivative of order α
(0 < α < 1). There is no unique definition of fractional calculus
(FC), derivatives and integrals. Definitions of FC are too many and
still -up to date - increasing. Here, we use and compare two
definitions of fractional derivatives of a continuous function f(τ)
on (0, τ), namely, Caputo’s [40] and Caputo-Fabrizio’s [21]
derivatives.

2.2.1 Caputo’s fractional derivative [40]
Caputo’s fractional derivative of f(τ) is defined as the

convolution of the kernel power function τ−α, 0 < α < 1 with
the first order (ordinary derivative) f′τ) on the closed interval
[0, τ],

FIGURE 2
The transient population N(τ) versus the normalised time τ = γt (as
log scale), for control parameter with positive perturbation, K = Kc + β;
Kc =3.6631 at the switching-on point, Aon, of Figure 1 and fixed β =0.1,
and for α =1 (ordinary derivative) and 0.25 (Caputo’s and Caputo-
Fabrizio’s fractional derivatives).

FIGURE 1
The steady state bistable curve of N against K, at fixed values of the
parameters F =0.85, B =0.5. The switching-on and -off points:
Aon =(3.6631,0.61299) and Aoff =(3.0199,1.2793).

FIGURE 3
Time-delay, τD, versus the fractional derivative parameter α at fixed
β =0.1. Circles represent the numerical results and the solid lines C1, C2

represent the exponential fitting, 4.9e2.2α in the case of Caputo’s
derivative, and 3.8e2.3α in the case of Caputo-Fabrizio’s derivative,
respectively.
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dα

dτα
f τ( )( )

Cap

� 1
Γ 1 − α( )∫

τ

0

1

τ − t′( )α
d

dt′f t′( )dt′, (5)

with Γ(x) is the gamma function.

2.2.2 Caputo-Fabrizio’s derivative [21, 22]
This fractional derivative of f(τ) is defined as the convolution of

the kernel exponential function e−ατ/(1−α), 0 < α < 1, with f′(τ) on the
closed interval [0, τ],

dα

dτα
f τ( )( )

Cap−Fab( )
� 1

1 − α( )∫
τ

0
e −α/ 1−α( )( ) τ−t′( ) d

dt′f t′( )dt′, (6)

3 Transient switching and time delay

The switching time at the critical (switch-on and -off) points of
the characteristic steady state bistable curves (N vs K) according to
the FDE 3), or (u and v vs a) according to the FDEs 4) with both

Caputo’s and Caputo-Fabrizio’s fractional derivatives, Eqs. 5 and 6,
respectively, are investigated by solving these FDEs numerically
using the fractional Euler’s method developed in [28, 48] (see
Supplementary Appendix B for guidelines). This is done by
replacing the control (input) parameter K in Equations 1–3) by
Kc ± β, or a in Equations 2, 4 by ac ± β, where β (0 < β < 1) is a small
real perturbation of the relevant control parameter, and Kc, ac are
the initial (switch-on or switch-off) points of the bistable curves.
Results are compared with the ordinary derivatives case
(α = 1) [14].

3.1 The spruce budworm model

The switching-on and off -points, Aon and Aoff, respectively, of
the steady state bistable curve (N vs. K) according to the ODE, Eq.
1, or the FDE; Eq. 3, i. e., dNdτ � dαN

dτα � 0, are shown in Figure 1, for
fixed values of the parameters F and B (c.f [14]). For fixed positive
perturbation parameter β = 0.1, the time delay τD to switch up to
the upper branch of the bistable curve, Figure 2, is reduced in both
cases of the fractional derivatives with smaller values of α, (0 < α <
1), compared with the ordinary derivative case (α = 1). This is
confirmed in Figure 3 where for fixed 0 < β < 1, τD vs. α best fits
exponentially increasing function for α ∈ (0, 1) in both cases of
fractional derivatives. Note in Figure 2, τD is slightly reduced in the
case of Caputo-Fabrizio’s fractional derivative, compared with
Caputo’s fractional derivative case. Further, for fixed fractional
parameter α = 0.25, for example, the lesser the perturbation
parameter β, the larger is τD (i.e. slowing down)- Figures 4– like
the case of α = 1 [14]. For fixed negative value of perturbation-
Figures 5– at the switching-off point Aoff (in Figure 1), we have the
same qualitative behaviour as in Figure 2, but with smooth delayed
switching to the lower branch.

In both cases of positive and negative perturbations β) at the
switching-on and -off points, Aon and Aoff, respectively, the time delay

FIGURE 4
As Figure 2, but at fixed value of α=0.25, and different β =0.01,0.3 in
the case of: (A) Caputo’s, and (B) Caputo-Fabrizio’s, fractional
derivatives.

FIGURE 5
Data as in Figure 2, but with negative perturbation, Kc − β at Aoff,
where Kc =3.0199.
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formula τD ~|β|−1/2 (inverse square root scaling law) essentially holds
in the both cases of Caputo’s and Caputo-Fabrizio’s fractional
derivatives (0 < α < 1), Figure 6, similar to the ordinary derivative
case (α = 1) [14], but with different proportionality factor.

3.2 The Thomas reaction model

The steady state bistable curves for the Oxygen and uric acid
concentrations u, v, respectively, against the supplied rate a, according
to Eq. 2 or 4) are shown in Figure 7, for fixed values of other system
parameters [14]. For positive perturbation β in the ordinary derivative
case (α = 1) at the switching-on point, Aon in Figure 7, the transient
oxygen concentration u(τ), Figure 8, shows similar qualitative
behaviour of reducing τD in both cases of Caputo’s and Caputo-
Fabrizio’s fractional derivatives, but with smaller quantitive difference.
The same behaviour occurs with negative perturbation at the
switching-off point Aoff in Figure 7. Similar qualitative behaviour is

also exhibited for the transient uric acid concentration v(t) for α = 1
[14] and α < 1. The time delay τD in both cases of u(τ) and v(τ) against
the fractional parameter α and the perturbation parameter β shows
similar qualitative behaviour as in Figures 3, 6, respectively.

FIGURE 6
Time-delay, τD, versus the perturbation parameter β at the
switching-on point Aon in Figure 1. Circles represent the numerical
results and the dashed lines represent the corresponding fittings, λ/

��
β

√
.

(A) The case of ordinary derivative (α =1). (B) The case of Caputo’s
fractional derivative (α =0.25). (C) As (B) but with Caputo-Fabrizio’s
fractional derivative.

FIGURE 7
The steady state bistable curves, u and 0.12v, versus the control
parameter, a, for fixed parameters K =20, B =100, γ = l =1.

FIGURE 8
The transient Oxygen concentration, u(τ), versus the normalised
time, τ with positive perturbation, κ = ac + β, ac =9.3643, at the
switching-on point Aon of Figure 7 with fixed β =0.1 for α =1 (ordinary
derivative) and 0.25 (Caputo’s and Caputo-Fabrizio’s fractional
derivatives).
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4 Summary

Fractional order mathematical models generalise the concept of
ordinary differentiation to incorporate memory (time delay) and spatial
non-local effects, and hence provide extra fractional parameters to
interpret/predict the dynamical behaviour of the concerned model
and capture more of its details.In this paper, we have investigated
the switching time response at the critical switching-on and -off points
of the bistable curves related to two biological models, namely, the
spruce budworm outbreak model [3, 4, 15] and the Thomas reaction
model for enzyme membrane [4, 16] within fractional order models.
Two definitions of fractional derivatives of order α, (0< α < 1) have been
used, namely, Caputo’s [40] and Caputo-Fabrizio’s [21, 22] fractional
derivatives. Our study shows the following.

(i) The two definitions use convolution kernels of different
variability that model the memory effect, namely, as power
function [40] and as exponential function [21]. Both
definitions yield the same qualitative results, (ii)-(iv) below,
for the two biological models referred to above. The small
quantitative variance in the results is due to the different
mathematical forms for the memory or delay effect.

(ii) The switching time τD due to the perturbation in the control
(input) parameter, at the critical points of the bistable curves, is
reduced further in the fractional derivative case (0 < α < 1),
compared with the ordinary derivative case (α = 1) [14],

(iii) For fixed perturbation β, τD as a function of the fractional
derivative parameter, α, (0 < α < 1) fits an exponential form,
i.e., τD is reduced with strong memory index (α ≪ 1) and,

(iv) The switching time τD as a function of the perturbation
parameter β fits the scaled inverse square root law 1�

β
√ at fixed

fractional derivative index (α < 1) as in the ordinary derivative
case (α = 1) [14]. This is a further indication of the universality of
this inverse square root law in both cases of ordinary and
fractional derivative formulations. Experimental affirmation of
this law in optical bistable models within ordinary derivative
formation was reported in [42].

In general, fractional order models provide deeper insight into the
system dynamics with memory taken, into effect and further motivate
for experimental observation.Finally, we refer to some very recent
works [43, 44] on biological models of COVID-19. In [43], the authors
investigated various parameter estimation methods of COVID-19
incubation period using lognormal and Gamma distribution
assumptions. The expressions for the maximum likelihood
estimation, expectation maximisation algorithm and newly
proposed algorithm [43] are termed as double or single (Riemann)
integrals: these integral expressions can be converted to fractional
integrals (i.e usual Riemann integral with memory or non-local,
convolution kernel of fractional index, e.g. [23]), and so to have
extra fractional order parameter. The other biological model of
COVID-19 [44] is concerned with the stability and sensitivity

analysis, and optimal control strategies of a suggested epidemic
control of COVID-19. The adopted model of ODEs can be
converted to FDEs and so to investigate the memory effect in this
epidemic model. The formulation of the models in [43, 44] within
fractional calculus will certainly add details concerning memory/non-
local effects.
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