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Objectives: Positron emission tomography (PET) is affected by various kinds of
patient movement during a scan. Frame-by-frame image registration is one of the
most practiced motion correction techniques. In recent years, deep learning has
shown a remarkable ability to quickly and accurately register images once trained.
This paper studies the feasibility of using a deep learning framework to correct 3D
positron emission tomography image volumes for headmotion in routine positron
emission tomography imaging to improve quantification inmotion impacted data.

Materials and Methods: A neural network was trained with 3D positron emission
tomography image volumes in an unsupervised manner to predict transformation
parameters required to perform image registration. A multi-step convolutional
neural network (CNN) was combined with a spatial transform layer. Pairs of target
and source images were used as input to the network. To prepare the training
dataset, a previously published TOF-PEPT algorithm was applied to automatically
detect static frames where the patient remained in a relatively steady position and
transitional frames where they underwent abrupt motion. A single image volume
was reconstructed for each static frame. The image reconstructed from the first
static frame served as the target image with images from subsequent static frames
being used as source images. The trained neural network predicted
transformation parameters that could be used to perform frame-by-frame
image-based motion correction but also enabled raw listmode positron
emission tomography data correction where individual line-of-responses were
repositioned. Line profiles and ROIs were drawn across the reconstructed image
volumes to compare performance and quantitative results between standard
registration tools and the deep learning technique. Corrected volumes were
further compared to motion free images quantitatively using Dice indices.

Results: In total, one hundred 3D positron emission tomography image volumes
were used to train the network. Cross-validation was carried out using a 4:1 ratio
for the training and test data. A conventional algorithm for affine registration from
the Advanced Normalization Tools (ANTs) software package served as a baseline.
To evaluate the correction performance, the mean Dice index and standardized
uptake value (SUV) were used. Application of the algorithm to clinical data showed
good performance with respect to registration accuracy as well as processing
time. The neural network yielded a mean Dice index of ~0.87 which was similar to
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the advanced Normalization Tools algorithm and did so ~3x faster using a multi-
core CPU and ~20x faster with a GPU. Standardized uptake value analysis showed
that quantitative results were 30%–60% higher in the motion-corrected images,
and the neural network performed better than or close to the advanced
Normalization Tools.

Conclusion: The aim of this work was to study the quantitative impact of using a
data-driven deep learning motion correction technique for positron emission
tomography data and assess its performance. The results showed the technique
is capable of producing high quality registrations that compensate for patient
motion that occurs during a scan and improve quantitative accuracy.

KEYWORDS

positron emission tomography (PET), head motion correction, positron emission particle
tracking (PEPT), time-of-flight (TOF), deep learning, image registration, convolutional
neural network, spatial transform layer

1 Introduction

Positron emission tomography (PET) is a non-invasive nuclear
medicine imaging procedure that uses radioactive tracers to visualize
biochemical changes such as metabolism. Quantitative and
qualitative assessment of PET data is affected by various kinds of
patient movement such as respiratory and cardiac motion which are
non-rigid and periodic by nature, head and whole-body motion
which are rigid/affine and irregular by nature, etc. Patient movement
leads to degraded image quality, e.g., in the form of blurring, which
impacts diagnostic image analysis including but not limited to
quantification of standardized uptake values (SUV) and
measurement of lesion intensity, size, and location.

Use of external devices constitutes one of the most widely
practiced approaches for motion correction. However, the use of
such devices is limited by several constraints such as device cost and
setup, necessary training, regular maintenance, and, most
importantly, retroactive data correction. Attention has therefore
shifted toward data-driven motion correction which typically either
performs frame-by-frame image registration [1] or event-based
correction [1–5]. In frame-based image registration, the listmode
data is divided into a sequence of motion-free frames. Images are
reconstructed for each frame of data, aligned with a reference frame,
and then summed together to create the final image volume. In
event-based correction, individual lines of response (LOR) in each
frame are repositioned, thereby allowing a single image to be
reconstructed from all the raw data. In most cases, registration is
carried out by optimizing different similarity criteria in the image
domain, e.g., mutual information [6–8], cross-correlation [6, 7, 9],
the sum of absolute differences [9, 10], or standard deviation of the
ratio of two image volumes [9, 10].

Several traditional methods exist that facilitate image registration
[11–14]. These methods aim to numerically solve the optimization
problem in an iterative manner over pairs of images. The computation
can be very intensive, depending on the complexity of the task. More
recently, deep learning has received significant attention as it allows a
neural network to learn the underlying patterns of the registration task
thereby replacing the costly optimization computation with an
inexpensive forward pass of the trained network.

To date, many different deep learning approaches have been
proposed, e.g., Convolutional Neural Network (CNN) [15–20],

Generative Adversarial Network (GAN) [21–23], and reinforcement
learning [24–26]. The neural network can be trained in a supervised or
unsupervised way. Supervised learning relies on ground truth
transformation parameters [20, 24–28]. In such cases, the network is
either trained with simulated images with known ground truth
information, or the ground truth information is extracted by
applying other methods for the training dataset. In routine clinical
applications, it is very difficult to acquire accurate ground truth
information which makes supervised learning of a neural network a
challenging task. Thus, for medical image applications, unsupervised
and self-supervised learning is desired [29].

In 2015, Jaderberg et al. [30] introduced their Spatial Transform
Network (STN), which allowed unsupervised image registration.
STN consisted of three modules, namely, a neural network, a grid
generator, and a sampler. Firstly, the neural network was used to
learn features from input images and estimate a mapping between
them, the grid generator was then used to compute the sampling grid
based on the derived transformation parameters, and the sampler
finally generated a warped/moved image by carrying out the
sampling operation using interpolation. The loss between the
warped and target image thus could be used to train the neural
network in an end-to-end unsupervised manner. Later, other papers
explored similar approaches with different neural networks, such as
the use of a Fully Convolutional Network (FCN) by Li et al. [19], de
Vos et al. [15] and the use of a U-net-like architecture by
Balakrishnan et al. [17] Research on the application of the deep
learning approach has continued to enhance the registration
performance using a number of different approaches including
but not limited to multi-step recurrent network [31], cascaded
network [16, 32], multi-scale estimation [18, 33, 34],
diffeomorphic registration [35, 36], reducing negative Jacobian
determinant [37], and encouraging invertibility [31, 32].

Most of the above-mentioned papers focused on CT and/or MRI
image registration. Neural network-based PET image registration,
on the other hand, has only been addressed in a limited scope
[38–40]. This paper studies deep learning based motion correction
for PET with the aim of achieving computational efficiency
compared to the conventional iterative approach ensuring the
consistency of performance. The multi-step recurrent network by
Shen et al. [31] formed the basis for the work as it has demonstrated
superior performance, particularly for affine registration. We
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introduced a few modifications as described below. The paper will
mainly focus on rigid head motion correction of brain PET data
using the more general affine model. The following sections provide
a detailed overview of the approach.

2 Materials and methods

2.1 Overview of the image registration
approach

The task of image registration can be considered as warping a
source image Isrc to a target image Itgt defined in the spatial domain
Ω ∈ Rh×w×d. The objective is to find a mapping function
f: Isrc → Itgt. Letting Iwrpd and Φ denote the warped image
and the transformation parameters, respectively, the warping
operation can be expressed as:

Iwrpd � f Isrc,Φ( ) (1)

The neural network parameters θ are then optimized in
a way that minimizes the dissimilarities between the
warped image and fixed images. The network learns by
optimizing the image dissimilarity metric denoted by S as
follows. That is:

θ* � argminθ S Iwrpd, Itgt( ) (2)

Ultimately, the network is trained to predict the transformation
parameters which for a 3D affine registration include transform
matrix A ∈ R3x3 and translation vector t ∈ R3×1.

2.2 Network architecture

We adopted a multi-step recurrent approach that includes a
CNN [31] and a spatial transform layer [30] to train the network
in an unsupervised manner. Pairs of source and target images

were fed as input to the network and the network made
predictions of transformation parameters, which were then
passed along with the source image to the spatial transform
layer. The grid generator of the spatial transform layer created a
sampling grid to warp the moving source image according to the
transformation parameters predicted by the network. The
sampler then performed linear interpolation to sample and
provide the warped image.

With reference to Figure 1, prediction and correction took
place in a recurrent manner by repeatedly feeding the warped
image back to the same CNN as a new source image which was
then registered with the target image. The process is repeated
for k number of steps. For the results reported here, we used
k � 3 and an analysis is presented in Section 3.2 as a support of
this choice. The composition of the parameters obtained at
each step was used as the final transformation parameters.
Letting A1, A2, and A3 denote the affine transform matrices and
t1, t2, and t3 the translation vectors, the final solution can be
expressed as:

A′ � A3A2A1 (3)
t′ � A3A2t1 + A3t2 + t3

Figure 2 shows the CNN architecture, which was inspired by
work by Zhao et al. [32] and consisted of a series of convolutional
and pooling layers. Except for the final layer, the convolution
operations were performed using kernel size 3, stride 1, and a
ReLU [41] activation function. At the final layer, two convolution
operations were performed to predict the transform matrix and
translation vector using kernel size 3 and linear activation functions.
In selected layers after convolution, average pooling with kernel size
2 was performed. Section 3.2 speaks to the choice of the network
architecture.

2.3 Loss functions

Image dissimilarity loss was modeled by the negative normalized
cross-correlation [42] given by:

Limg � −
∑i∈Ω Iiwrpd − Iwrpd( ) Iitgt − Itgt( )��������������������������������∑i∈Ω Iiwrpd − Iwrpd( )2

��������������∑
i∈Ω

Iitgt − Itgt( )2
√√√ (4)

where Iwrpd and Itgt denote the mean of the warped image and the
target image, respectively.

To prevent the transform parameters from overshooting, the
following regularizing loss function was used [1]:

Lreg � A − I| || |2F + t| || |22 (5)
where subscript F denotes the Frobenius norm and I is the identity
matrix.

These loss functions were combined to form a total loss:

Ltotal � λimg Limg + λreg Lreg (6)
where λimg and λreg denote image dissimilarity loss and
regularization weighting factors set to 1 and 0.01, respectively,

FIGURE 1
Multi-step affine registration network: Initially, source and target
images are concatenated and passed as input to a convolutional
neural network. The network predicts transformation parameters that
are passed along with the source images to a spatial transform
layer. The layer generates warped images, which at the next step are
passed as the source images to the same network, and the process
repeats for k number of steps.
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with the values determined empirically. Future work will explore this
aspect in-depth.

2.4 Data preparation and training details

To prepare the dataset, the PET listmode data was sorted into
motion-free static frames using the previously published TOF-PEPT
algorithm [43–46]. An image was reconstructed for each frame using
the OSEM algorithm available on the 64-slice Biograph mCT Flow
PET/CT scanner. We used our institution’s standard clinical
protocol that calls for 3 iterations, 24 subsets and 5 × 5 Gaussian
post-smoothing. The Siemens e7 processing tools (Siemens
Healthineers, Knoxville) were used for all data processing and
reconstruction. The image volume reconstructed from the first
static frame was used as the reference/target image while image
volumes reconstructed from subsequent static frames were used as
source images.

Five patient studies were conducted in compliance with an
Institutional Review Board approved protocol (IRB #3941) using
full 64-bit listmode data acquisition. During a 3-min scan,
patients rested their heads in random positions and
orientations at random time points. Each study thus exhibited
a different range of movements and therefore yielded different
numbers of static frames.

In order to expand the limited amount of data available to
form an adequately large dataset for training the neural network,
image volumes were further synthesized from the five patient
studies. In total, one hundred 3D PET image volumes were
simulated by applying random transformations to the LOR
data. Each transformed raw listmode dataset was then
histogrammed and sent to the reconstruction algorithm as
previously mentioned to create image volumes. To reduce the
computational cost associated with the neural network training,
images were resized from 400 × 400 × 109 to 128 × 128 × 96 by
cropping background with zero-valued voxels and rescaling the
result. Cross-validation was used with a 4:1 ratio for the training
and test data. Training spanned 100 epochs with 20 steps per
epoch and using a batch size of 4. The learning rate was fixed at
1e-4. The network was trained using a computer equipped with a
32-core Intel Xeon E5-2670 CPU and a Tesla V100S GPU.

2.5 Validation and evaluation

Pairs of source and target image volumes were passed to the
trained neural network. The network outputted the transformation
parameters along with a warped image from the spatial transform
layer. An overall motion-corrected image was then produced by
registering the source image from each motion-free static frame for
the whole scan duration and summing them together. Additionally,
the transformation parameters predicted by the trained neural
network were applied to the raw listmode data. The LORs within
each static frame were all aligned to the reference frame using the
predicted transformation parameters. The transformed listmode
data was then histogrammed and reconstructed using the
Siemens e7 processing tools (Siemens Healthineers, Knoxville).

To evaluate the neural network’s image registration capabilities
quantitatively, the Dice index was used to measure the similarity
between warped and target images:

Dice A, B( ) � 2 A ∩ B| |
A| | + B| | (6)

A higher value of the index indicates better performance. The
processing time needed for a trained network to perform the
registration was used to evaluate the computational efficiency.
Lastly, in order to evaluate the motion correction from a clinical
perspective, the standardized uptake value (SUV) was studied. The
conventional iterative registration algorithm (typeofTransform =
“Affine”) from the Advanced Normalization Tools (ANTs) software
package [11] was used as a baseline against which the performance
of the neural network could be compared.

Quantitative analysis of the image data were performed using
comparison of line profiles across the brain from each of the image
volumes created using a commercial analysis software (Inveon Research
Workplace, Siemens Healthineers, Knoxville, TN). Data were loaded
into the software, geometric alignment verified, and linear regions of
interest were drawn across the brain with line profiles plotted along the
direction of the line width. This enabled comparison of SUVs along the
profile but to also gave a measure of signal-to-background variance
across regions of high and minimal uptake across the region. Peak-to-
valley ratios were calculated to provide an estimation of signal-to-noise
ratio to more quantitatively illustrate whether the corrected data
improved upon the uncorrected images.

FIGURE 2
Convolutional neural network: The network consists of a series of convolutional and pooling layers after selected convolution operations. Two
convolution operations are carried out at the final layer to output the transform matrix and the translational parameters.
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3 Results

3.1 Qualitative and quantitative evaluation of
the performance of neural network

Table 1 compares the neural network performance in individual
image registration in terms of mean Dice index and computational
time against the ANTs algorithm for the synthesized dataset. The
neural network performed close to the conventional iterative

algorithm but did so ~3x and ~20x faster, respectively, using the
multi-core CPU and the GPU.

The ability to generate motion-corrected images was also
studied. Figures 3, 4 show motion-free static frames for two
patient studies. The trained network was used to register “Frame
2” and “Frame 3” to reference frame “Frame 1.” The three frames
were then summed to create a motion-corrected image. For
comparison, motion-corrected images were created using the
ANTs algorithm as well. Figures 5, 6 show axial, coronal, and

TABLE 1 Comparison of performance in image registration.

Study Mean dice index Mean computational time (seconds)

ANTs Deep learning ANTs Deep learning

GPU CPU

Cross Validation 1 0.82 0.80 2.49 0.15 0.81

Cross Validation 2 0.85 0.84 1.96 0.16 0.96

Cross Validation 3 0.86 0.86 2.08 0.11 0.93

Cross Validation 4 0.91 0.88 2.61 0.10 0.80

Cross Validation 5 0.82 0.81 4.08 0.11 0.80

Mean 0.85 0.84 2.65 0.13 0.86

FIGURE 3
Patient Study 1: Illustration of the three motion-free static frames where the patient placed their head in three different positions. A slice of the 3D
PET image volume in the axial plane is shown in the figure.

FIGURE 4
Patient Study 2: Illustration of the three motion-free static frames where the patient placed their head in three different positions. A slice of the 3D
PET image volume in the axial plane is shown in the figure.
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FIGURE 5
Qualitative comparison of the neural network performance in motion correction bymeans of frame-by-frame image registration. Rows from top to
bottom show the sum of the three frames without any correction (A, D, G), correction using the deep learning approach (B, E, H), and the ANTs iterative
algorithm (C, F, I), respectively, in the axial, coronal, and sagittal view.

FIGURE 6
Qualitative comparison of the neural network performance in motion correction bymeans of frame-by-frame image registration. Rows from top to
bottom show the sum of the three frames without any correction (A, D, G), correction using the deep learning approach (B, E, H), and the ANTs iterative
algorithm (C, F, I), respectively, in the axial, coronal, and sagittal view.
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sagittal slices of the original uncorrected image and motion-
corrected images using the neural network and ANTs software.
The qualitative improvement in the motion-corrected images is
readily apparent with the neural network and ANTs showing
comparable performance. Table 2 compares the neural network
performance in producing overall motion-corrected image volumes
by means of mean Dice index and computational time. Both
qualitative and quantitative reviews show that the deep learning
and conventional iterative approaches performed similarly;
however, the former provided final results ~20 times faster with
the use of a GPU.

Quantitative assessments showed good SUV agreement across
the methods. As illustrated by Figures 7, 8, the peak-to-valley ratios
of SUVs were 30%–60% higher in themotion-corrected images, with
the neural network performing better or similar to ANTs. Good
peak-to-valley improvement helps confirm that the correction
method is appropriately aligning the data so that regions of
uptake are not motion-blurred into areas of lower uptake.

Lastly, a study was conducted to evaluate the correction of the
original raw listmode data by repositioning the LORs with the
transformation parameters estimated by the trained neural
network. Figure 9 provides a qualitative comparison of the
uncorrected and motion-corrected image volumes reconstructed
from the repositioned listmode data. Motion-corrected image
volume achieved sharper details compared to the uncorrected data.

3.2 Analysis of the choice of network
architecture

The choice of the network and the step size of the multi-step
architecture (defined in Section 2.2) were analyzed by means of two
studies. Figure 10 shows the training loss versus epoch with varying
step sizes: 1, 2, 3, and 4. We observed that the network learned faster
with increasing step size but saturated at step size 4. Thus, a step size
of 3 was chosen for network training.

TABLE 2 Comparison of performance in producing motion corrected images.

Study Mean dice index Mean computational time (seconds)

ANTs Deep learning ANTs Deep learning (GPU)

Cross Validation 1 0.85 0.83 5.74 0.30

Cross Validation 2 0.79 0.82 3.62 0.32

Cross Validation 3 0.93 0.92 3.74 0.22

Cross Validation 4 0.93 0.94 6.62 0.20

Cross Validation 5 0.90 0.91 7.23 0.33

Mean 0.88 0.88 5.39 0.27

FIGURE 7
Patient Study 1: A region in the brain area (left) where a line profile (right) was manually drawn. The peak-to-valley ratio for the motion-corrected
data with the deep learning (DL) approach is shown to be higher than the ANTs method.
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The network performance in image registration was studied by
means of Dice scores for four different architectures: 5 convolution
stages with 32, 64, 128, 256, and 512 features; 5 convolution stages
with 16, 32, 64, 128, and 256 features; 4 convolution stages with 32,
64, 128, and 256 features; and 4 convolution stages with 16, 32, 64,
and 128 features. Figure 11 shows the results. The configuration with
5 convolution stages led to better learning, possibly due to having
deeper layers with more abstraction. The network, on the other
hand, performed better when more features were used.

4 Discussion

This paper focused on studying and presenting the application
of deep learning for data-driven PET motion correction.

The deep learning approach for image registration has
demonstrated promising performance over the years. Here, a
modified version of a multi-step recurrent deep learning
approach was adopted to train a neural network for affine
registration. The network was trained on a synthesized dataset to
predict required transformation parameters in an unsupervised
manner using a spatial transform layer that provided warped
images to supervise the training.

To prepare the training data, multiple motion-free static
frames were identified from the whole scan duration using the
previously published motion detection algorithm TOF-PEPT.
Images reconstructed from these static frames were used as
input to train the network along with a target image
reconstructed from a reference frame. The final goal was to
perform motion correction by means of frame-by-frame
registration with the trained network. The registered image
frames were summed together to create the final motion-
corrected image. To evaluate against a baseline, the frame-by-
frame registration was implemented with the ANTs algorithm as

FIGURE 8
Patient Study 2: A region in the brain area (left) where a line profile (right) was manually drawn. The peak-to-valley ratio for the motion-corrected
data with the deep learning (DL) approach is close to the ANTs method.

FIGURE 9
Qualitative comparison of the neural network performance in
motion correction by remapping raw listmode data. Rows from top
to bottom show the sum of the three frames without any
correction (A,C,E) and correction using the deep learning
approach (B,D,F), respectively, in the axial, coronal, and sagittal
view.
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well. Mean Dice indices and manually drawn line profiles across
brain regions were used to compare the motion-corrected images
from the two methodologies against the uncorrected data. With
respect to the iterative algorithm, the neural network yielded
comparable and reliable performance both from qualitative and
quantitative perspectives with significant improvements in speed.

The neural network performed ~3x faster when using a multi-core
CPU and ~20x faster with a GPU.

Additionally, the correction of the raw listmode data itself was
studied by repositioning the LORs within each static frame
according to the transformation parameter predictions by the
neural network. A final motion-corrected image volume was

FIGURE 10
The plot of training loss versus epoch demonstrates the neural network performance with changing step sizes from 1 to 4. The network learned
faster with increasing step size but saturated at step size 4 for the dataset used.

FIGURE 11
The comparison of the neural network performance for four different network architectures by means of Dice score. Network 1: 5 levels of
convolution with 32, 64, 128, 256, and 512 features; Network 2: 5 levels of convolution with 16, 32, 64, 128, and 256 features; Network 3: 4 levels of
convolution with 32, 64, 128, and 256 features; and Network 4: 4 levels of convolution with 16, 32, 64, and 128 features. The network performed better
with 5 levels of convolution, and a higher number of features.

Frontiers in Physics frontiersin.org09

Tumpa et al. 10.3389/fphy.2023.1123315

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1123315


created by sending the remapped listmode data to the image
reconstruction tools. With this approach, a reasonable correction
could be achieved as presented in this paper. Further improvement
in mapping from the image domain to actual scanner geometry and
more precise transformation prediction will make it possible to
produce more clinically suitable motion-corrected data.

Our group works heavily with radiation oncology supporting
various advanced therapy workflows using PET/CT, where
multimodal registration can certainly result in mismatches [47].
Although this work focused on our single modality head registration
results that typically might only need rigid models, the full intent was to
have a generalizable process that can support multimodal PET/CT
registration. Ireland, et. Al. presented a study that specifically focused on
multimodal head and neck registration showing improvements when
using a non-rigid model [48]. Since geometric mismatches between the
modalities can occur due to voxel variations, etc. We decided to test the
robustness of the deep learning technique using an affine model. This
also enabled some level of testing for this specific set of cases as we
expectedmostly rigid transformation within the samemodality and our
registration scaling factors were in fact unity indicating confirmation of
a rigid transformation.

Lastly, the paper presented two studies that supported and
evaluated the choice of network architecture. The first study
analyzed the choice of step size, whereas the second study was
evaluated four different network architectures with respect to their
performance in image registration. The network choice with deeper
layers and a higher number of features was found to perform better.

This work aimed to study the feasibility of applying deep learning to
correction of affine/rigid motion during routine clinical brain PET
imaging. Notwithstanding using a limited amount of real data
augmented by synthesized data, results showed promising
performance with a reduced computational cost once the neural
network has been trained. Limitations of neural network methods
such as the one studied here include the general need for large
amounts of data and computational resources for training. Future
work will aim to further enhance the network performance, study
use of a larger amount of real data, and extend application to non-rigid
cases, such as respiratory motion correction.

5 Conclusion

This paper explored an unsupervised deep learning approach for
PET motion correction by means of 3D image registration. The
feasibility of the proposed deep learning approach in the application
of motion correction was studied by means of both frame-by-frame
image registration and remapping of raw listmode data. Both
approaches yielded reasonable corrections. The network
performance was compared both qualitatively and quantitatively
against a conventional iterative algorithm from the Advanced
Normalization Tools (ANTs) software package. The deep

learning approach performed on par with the iterative approach,
but ~3x faster when using a multi-core CPU and ~20x with a GPU.
This work is expected to aid to address the application of a deep
learning approach for routine PET motion correction.
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