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The present work attracts attention to obtaining a new result of the periodic solution
of a damped nonlinear Duffing oscillator and a damped Klein–Gordon equation. It is
known that the frequency response equation in the Duffing equation can be derived
from the homotopy analysis method only in the absence of the damping force. We
suggest a suitable new scheme successfully to produce a periodic solution without
losing the damping coefficient. The novel strategy is centered on establishing an
alternate equation apart from any difficulty in handling the influence of the linear
damped term. This alternative equation was obtained with the rank upgrading
technique. The periodic solution of the problem is presented using the non-
perturbative method and validated by the modified homotopy perturbation
technique. This technique is successful in obtaining new results toward a periodic
solution, frequency equation, and the corresponding stability conditions. This
methodology yields a more effective outcome of the damped nonlinear
oscillators. With the help of this procedure, one can analyze many problems in
the domain of physical engineering that involve oscillators and a linear damping
influence. Moreover, thismethod can help all interested plasma authors formodeling
different nonlinear acoustic oscillations in plasma.
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1 Introduction

In the range of differential equations, various physical manifestations, such as acoustic
waves in plasma physics, and many engineering problems are modeled. A lot of scientists have
made magnificent efforts to evaluate the solution of these differential equations. Different
techniques have been utilized to evaluate the corresponding solutions. Modeling different
biological, physical, and biochemical engineering problem occurrences, in general, yields
nonlinear partial differential equations (PDEs). Moreover, plasma physics is one of the
most fertile fields for many researchers interested in studying nonlinear phenomena. To
perform modeling, the nonlinear phenomena that propagate in different plasma systems and
many ordinary and partial differential equations must be solved. For this purpose, different
mathematical approaches have been introduced for modeling several physical problems.
Recently, a damped nonlinear oscillator model has been widely considered in practical
engineering, general physics, and in plasma physics. For mathematical scientists, an article
on nonlinear PDEs, which are addressed in most engineering and science domains, is extremely
important. Many authors have offered a survey of the literature with numerous references using
various analytical techniques for dealing with the damped nonlinear oscillation problems.
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Nonlinear systems remain a challenge, and its interest has
fundamentally concentrated on specific changes in system
instability and bifurcations.

Duffing oscillators are permanently connected with engineering
and physical situations, especially plasma physics. The damping force
is an impact on an oscillatory system that has the action of restricting,
reducing, or averting its oscillation. Damping is created by operations
of losing the energy stored in an oscillation. Examples include
resistance in electronic oscillators, viscous pull in mechanical
systems and plasma physics, osmosis, and expansion of light in
visual oscillators. Damping, which did not build from vanishing
energy, may be significant in other vibrating systems like those that
subsist in some biological systems. A system’s damping may be
categorized as one of the following:

• Overdamped: The system reaches equilibrium as an exponential
decay.

• Critically damped: The system reaches equilibrium as soon as
possible without vibrating.

• Underdamped: The system vibrates with amplitude slowly
lessening to zero (at low frequency compared to the
nondamped case).

• Undamped: The system resonantly oscillates at its native
frequency.

See [1] for additional instances for the aforementioned categories.
Over the current decades, a lot of physical phenomena have been

described utilizing nonlinear ordinary differential equations (ODEs).
One of the simplest of these oscillators called a Duffing equation has
received significant interest in light of its classical applications in
engineering, biology, plasma physics, and sciences. The history of
nonlinear proceedings in engineering sciences has been observed since
[2] employed the hardening spring model to investigate the vibration
of the electromagnetic vibrating beam in 1918. Therefore, the Duffing
equation has been extensively utilized in structural dynamics and in
mathematics to determine the existence of oscillatory motions of
second-order nonlinear PDEs. The oscillation/non-oscillation
theorems of Meissner’s equation were investigated by [3]. [4]
utilized the multiple-scale perturbation approach to develop and
calculate an analytic periodic solution of oscillating movements in
damping Duffing oscillators. [5] used perturbation techniques for
nonlinear structural vibrations using Duffing oscillators.
Consequently, perturbation analysis is still used to obtain an
analytic solution for oscillating movements. The HPM was first
introduced by the famous mathematician [6]. Recently, it has been
employed in numerous investigations in engineering and physics. In
contrast, this technique failed in analyzing damping nonlinear
oscillators [7]. There are many modifications made by many
researchers to improve HPM to be a more functioning method. [8]
employed the parameter-expanding technique as a modification to
HPM in solving strongly nonlinear oscillators. [9] and [10] developed
HPM by connecting it with Laplace transform for solving nonlinear
oscillators. [11] obtained a periodic solution for the Fangzhu oscillator
by HPM.

Next, several of the latest developments of this technique are
briefly mentioned; for instance, the combination of the multiple-scale
method and HPM [12–15], the parameterized HPM [16], and
nonlinearities distribution HPM was applied to solve Troesch’s
problem [17]. Numerical and approximate techniques can be

utilized for the treatment of nonlinear oscillators. Numerous
estimates were used in trying to solve linear and nonlinear
oscillators, for example, the reproducing kernel method [18].
Moreover, an iterative procedure is employed to evaluate a
numerical solution of the optimal control issues of the Duffing
oscillators [19]. Also, [20] applied the finite difference technique to
investigate an oscillatory model. Furthermore, by substituting a
suitable linear auxiliary operator for the linear operator in [21]
analysis of nonlinear equations with restoring force, among other
changes, they created a new version of HPM. By using the modified
homotopy perturbation procedure, [22] also introduced an analytic
solution for a nonconservative parametric quintic-cubic Duffing
oscillator. A damped Mathieu equation was solved using a
modulation for HPM by [23]. The Newell–Whitehead–Segel
(NWS) equation’s periodic solution was also estimated by [24]
using the HPM. [25] introduced a simple frequency formulation to
study a tangent oscillator. An analytic solution of Burgers’ equation
with time-fraction has been introduced by [26]. A variational principle
for a nonlinear equation that appears in several micro-electro-
mechanical systems was developed by [27]. Furthermore, a jerk
Duffing oscillator was solved using the lowering rank approach by
him and [28]. Luo and Jin have used the lower-order technique in
numerical approaches [29]. Recently, [30] applied the non-
perturbative technique to solve a damping
Helmholtz–Rayleigh–Duffing oscillator.

It is common knowledge that some nonlinear differential
equations do not have exact solutions. Then, the analysis of
approximate solutions for some kinds of these systems plays a
significant role in investigating nonlinear physical phenomena [31].
The damping Duffing oscillator refers to these kinds of equations, and
it is represented by the following equation:

€y + 2μ _y + ω2
0y + Qy3 � 0; y � y t( ) (1)

It is thought to observe that a Duffing oscillator is a simple model
which displays various kinds of vibrations, such as chaos and limit
cycles. The term _y(t) in Eq. 1 represents a damping oscillation, and μ

refers to viscous damping. The part (ω2
0y + Qy3) refers to a nonlinear

restoring force acting as a hard spring (with ω2
0 rules, the size of

stiffness, and Q dominants, the size of nonlinearity). This equation
illustrates a wonderful area of well-known nonlinear dynamical
system behavior. It was used by a lot of scientists to illustrate such
behaviors. Numerous problems in both engineering and physics drive
to nonlinear Duffing oscillators (Eq. 1) from oscillations of a simple
pendulum, including nonlinear electrical circuits. It has been approved
in various applications in image processing [4, 5]. The approximate
periodic response for the un-damped equation, obtained by various
analytical methods, has been discussed in almost all textbooks on
nonlinear vibration. Eq. 1, with a non-zero damping term, has received
attention in many domains of physical engineering problems. The
investigation of new techniques which drive the solution of the
damped Duffing equation was of vital significance since these
solutions can be used for a cubic Schrodinger/damping
Klein–Gorden equation that has numerous uses in nonlinear
optics, plasma physics, and fluid mechanics.

Other related works have been included in this study, yielding a
good understanding of the present analysis. A fractionally damped
beam has been analyzed by [32]. The influence of dispersion force and
squeezed film damping was incorporated in the dynamic instability of
the nanowire-fabricated sensor subjected to centrifugal and constant
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acceleration [33, 34]. Even though Eq. 1 appears straightforward at a
first glance, it contains several complex elements. The classical
perturbation approach has a lot of drawbacks. Moreover, the
following damping nonlinear Klein–Gorden equation has the same
shortcoming when using the classical HPM:

ytt + Pyxx + 2μyt + 2ηyx + σy � Qy3; y � y x, t( ) (2)
The real constant coefficients P, η, μ, σ, and Q can be defined as a
second-order spatial derivative coefficient, spatial damped coefficient,
temporal damped coefficient, natural frequency, and cubic stiffness
parameter, respectively. The classical nonlinear Klein–Gordon
equation, which appears in several scientific domains such as
nonlinear optics, solid physics, fluid mechanics, quantum
mechanics, and plasma physics, is derived from Eq. 2 when the
values of the coefficients μ and η vanish. In addition to its
applications in plasma physics, it can be used for modeling many
nonlinear structures in plasma. It transforms into the one-dimensional
time-nonlinear damped Klein–Gordon equation when μ> 0 and η � 0
[35–38]. The aforementioned damping Klein–Gordon equation can be
transformed into a damping Duffing oscillator by using the technique
of the traveling wave approaches. Traveling waves engender multiple
physical systems spontaneously, typically qualified by PDEs. Then, by
including the following traveling wave’s next variable ζ(x, t), one can
create an alternative oscillatory form of Eq. 2.

ζ x, t( ) � 2ηx + 2Pμt. (3)
Such transformation was applied to the nonlinear Klein–Gordon

Eq. 2 without damping by [39]. According to the stated novel
independent variable, one obtains

yt � 2Pμy′ ζ( ), yx � 2ηy′ ζ( ), ytt � 4P2μ2y″ ζ( ), and
yxx � 4η2y″ ζ( ), (4)

where the prime denotes the total derivative concerning the variable ζ .
By utilizing Eq. 4 with Eq. 2, it will be transformed into the following
damping Duffing equation:

Py″ ζ( ) + y′ ζ( ) + ω2
0y ζ( ) � Ry3 ζ( ), (5)

where ω2
0 and R are given through the subsequent notations:

ω2
0 �

σ

4 Pμ2 + η2( ), andR � Q

4 Pμ2 + η2( ). (6)

The solution of Eq. 5 gives the traveling wave solution of the
original nonlinear Klein–Gordon equation as given in Eq. 2. Suppose
that Eq. 5 has been subjected to these initial conditions y(0) �
A andy′(0) � 0.

A fresh perturbation strategy is required to address the drawbacks.
Unexpectedly, the flaw in Eq. 1 has been fixed by using the fractional
derivative in conjunction with HPM [40, 41].

In the present research, a new suitable idea is presented
successfully to produce a periodic solution for oscillators
containing the damping coefficient without losing this damping
force. The main idea is based on the rank upgrading technique by
upgrading the linear operator to a higher order and using the original
equation to replace what is equivalent to the linear damped term [42,
43]. The outcome is an alternative fourth-order differential equation
devoid of any damping difficulties. The comparison between this
alternative equation and the original equation showed that the
obtained equation is corrected and can be used to perform the

periodic solution. The periodic solution of the problem is
presented using the non-perturbative method and validated by the
modified homotopy perturbation technique.

2 Methodology

To overcome the difficulty in solving the damping nonlinear
oscillator, one can employ the rank upgrading mechanism to
annihilate the damping term “y′”. This method is used for
upgrading the order of the derivatives of Eq. 5 to become

Py‴ + y″ + ω2
0y′ � 3Ry2y′, (7)

Py 4( ) � −y‴ + 3Ry2 − ω2
0( )y″ + 6Ryy′2. (8)

By removing y′ from Eq. 7 with the help of Eq. 5 and replacing y‴
in Eq. 8 yields

P2y 4( ) − 1 + 2P 3Ry2 − ω2
0( )( )y″ − 6PRyy′2 + 3Ry2 − ω2

0( )
× Ry2 − ω2

0( )y � 0. (9)
This is a fourth-order equation with cubic-quintic nonlinearity

which represents an alternative form of the original damping Eq. 5.
This new form will be subject to the initial conditions listed as
follows:

y 0( ) � A, y′ 0( ) � 0, y″ 0( ) � A

P
RA2 − ω2

0( ), andy‴ 0( )

� −A

P2
RA2 − ω2

0( ). (10)

It can be ensured that Eq. 9 represents an alternative form of the
original Eq. 5 through the comparison of the numerical solutions.

3 Introducing the periodic solution

The periodic solution can be introduced from Eq. 9 analytically
which can be illustrated as follows, with the non-perturbative
approach and with the homotopy perturbation method:

It is noted that Eq. 9 can be rearranged in the following form:

y 4( ) − g y, y′, y″( ) + f y( ) � 0, (11)
where the two odd functions g(y, y′, y″) and f(y) are selected to
have y″ and y as a common factor, respectively. Here,

g y, y′, y″( ) � 1

P2 1 + 2P 3Ry2 − ω2
0( ) + 6PR

yy′2

y″( )y″,
f y( ) � 1

P2 3Ry2 − ω2
0( ) Ry2 − ω2

0( )y.
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (12)

Consequently, Eq. 11 in the non-perturbative approach can be
sought in the form

y 4( ) − β2y″ +ϖ 4y � 0. (13)
The efficient frequency formula given by El-Dib [44–46] can be

used to evaluate both β2 and ϖ4 as follows:
Introducing the trial solution to Eq. 13 in the form

ŷ ζ( ) � A cosωζ , (14)
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where A and ω represent the amplitude and the unknown frequency
of the oscillation, respectively. Accordingly, both ϖ4(A) and β2(A)
read

ϖ4 A( ) �
∫T
0

ŷ ζ( )f ŷ( )dζ
∫T
0

ŷ2 ζ( )dζ
� 1
8P2

15A4R2 − 24A2Rω2
0 + 8ω4

0( );T � π

2ω
,

(15)

β2 A( ) �
∫T
0

ŷ″ ζ( )g ŷ, ŷ′, ŷ″( )dζ
∫T
0

ŷ″2 ζ( )dζ
� 1
P2

1 + 3A2PR − 2Pω2
0( ). (16)

Employing Eq. 14 with the linear fourth-order Eq. 13 yields the
frequency equation in the form

ω4 + β2 A( )ω2 +ϖ4 A( ) � 0. (17)
At this stage, the solution of Eq. 13 has the form

y ζ( ) � A cosωζ , (18)
with

ω � 1�
2

√
��������������
−β2 +

��������
β4 − 4ϖ4

√√
. (19)

4 Validation with the homotopy
perturbation approach

By utilizing the technique of the auxiliary equivalent [21, 40, 47,
48] by introducing (P2ω4y) into Eq. 9 and then building the
corresponding homotopy equation, one obtains

y 4( ) − ω4y � ρ

P2
−P2ω4y + y″ − 3Ry2 − ω2

0( ) Ry3 − ω2
0y − Py″( )[

+P 3Ry2 − ω2
0( )y″ + 6PRyy′2]; ρ ∈ 0, 1[ ]. (20)

The new frequency parameter ω is unknown to determine the
latter.

By operating both sides of Eq. 20 with the inverse (D2
ζ − ω2), one

can reduce the artificial higher power and obtain

D2
ζ + ω2( )y � ρ

P2 D2
ζ − ω2( ) −P2ω4y + y″ − 3Ry2 − ω2

0( )[
× Ry3 − ω2

0y − Py″( ) + P 3Ry2 − ω2
0( )y″ + 6PRyy′2].

(21)
This equation is an alternative to Eq. 5; it is free of difficulty due to

the linear damping effects. At this stage, the application of HPM is easy
without any shortcomings. Typically, introducing the homotopy
expansion [6], one finds

y ζ; ρ( ) � y0 ζ( ) + ρy1 ζ( ) + ρ2y2 ζ( ) +..., (22)
where the unknowns y0(ζ) andy1(ζ) are given by substituting from
Eq. 22 into Eq. 21; following the same procedure as given in HPM, the
abovementioned unknowns may be determined by the simpler
differential equations as follows:

y0
″ + ω2y0 � 0, (23)

which is the linear harmonic equation having the general solution in
the form

y0 ζ( ) � A cos ωζ( ), (24)
where A is the amplitude of the oscillation. Furthermore, we have

D2
ζ + ω2( )y1 � 1

P2 D2
ζ − ω2( ) [ − P2ω4y0 + y0

″ − 3Ry2
0 − ω2

0( )
× Ry3

0 − ω2
0y0 − Py0

″( ) + P 3Ry2
0 − ω2

0( )y0
″

+6PRy0y′20]. (25)

The zero-order solution Eq. 24 is introduced into Eq. 25, and the
cancellation of the secular terms requires

P2ω4 − 2Pω2
0 − 3PRA2 − 1( )ω2 + ω4

0 − 3Rω2
0A

2 + 15
8
R2A4 � 0. (26)

Consequently, the frequency–amplitude equation is given by

ω2 � 1
2P2

2Pω2
0 − 3PRA2 − 1( ) ± ������������������������

3
2
P2R2A4 − 4Pω2

0 + 6PRA2 + 1

√[ ].
(27)

It is noted that the frequency equation derived by the homotopy
perturbation method is equivalent to that obtained before by the non-
perturbative approach in Eq. 17.

FIGURE 1
Comparison of the numerical solution between Eq. 5 and Eq. 9.
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Without secular terms, the solution of Eq. 25 arises in the form

y1 ζ( ) � RA3

80P2ω4
ω2
0 − 3Pω2 − 15

16
RA2( ) cos 3ωζ( )

− R2A5

3328P2Ω4 cos 5ωζ( ). (28)

Accordingly, the final first-order approximate solution gives

y ζ( ) � A cos ωζ( ) + RA3

80P2ω4
ω2
0 − 3Pω2 − 15

16
RA2( ) cos 3ωζ( )

− R2A5

3328P2ω4
cos 5ωζ( ). (29)

FIGURE 2
Comparison between the analytical periodic solutions by the non-perturbative and homotopy perturbation approaches (18) and (29), respectively, with
Galerkin’s solution (Eq. 32).

FIGURE 3
Influence of the parameter P on the periodic solution Eq. 32.

FIGURE 5
Influence of the parameter ω0 on the periodic solution Eq. 32.

FIGURE 4
Influence of the parameter R on the periodic solution Eq. 32.

FIGURE 6
Stability distribution of the conditions for a system of R � 2
and P � 0.1.
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It should be noted that solution Eq. 29 is superior to known
asymptotic periodic solutions of Eq. 5. See, for illustration, the recent
study demonstrated by [49]. In his work, he applied the Laplace
Adomian decomposition method to a damping Duffing equation and
obtained an asymptotic solution in terms of a power series. However,
the abovementioned solution cannot be obtained using HPM without
applying the rank upgrading technique.

The stability criteria of the frequency–amplitude Eq. 26 become

P 2ω2
0 − 3RA2( )> 1, ω4

0 − 3Rω2
0A

2 + 15
8
R2A4 > 0,

and
3
2
P2R2A4 − 4Pω2

0 + 6PRA2 + 1> 0.
(30)

These criteria ensure the positivity of ω2.
By employing the value of ζ as a function of x and y from Eq. 3 into

the asymptotic solution of Eq. 29, consequently, this asymptotic solution

is converted in terms of the original Klein–Gordon Eq. 2; therefore, one
obtains

y x, t( ) � A cos 2ηωx + 2Pμωt( ) + RA3

80P2ω4 ω2
0 − 3Pω2 − 15

16
RA2( )

× cos 3ηωx + 6Pμωt( ) − R2A5

3328P2ω4 cos 10ηωx + 10Pμωt( ). (31)

For more convenience, a numerical calculation will be represented
to confirm the previous approximate analytic solution of the damping
Duffing oscillator 5).

5 Numerical illustrations

In this section, the comparison between the numerical solutions for
both the original Eq. 5 and alternative Eq. 9is explained. The Runge–Kutta
approach built in Mathematica software will be used in this comparison.
The numerical values of the parameters are selected in the form P �
5, R � 0.1,ω0 � 2 and A � 1. In Figure 1, the numerical solution for the
original equation is represented by the solid red line, while the alternative
equation is plotted with a blue dashed line. In this calculation, the error
between these solutions is 8.671 × 10−8. This means that the two curves
are identical. This graph shows that Eq. 9 is another face of Eq. 5. This
means that any solution of Eq. 9 represents a solution of Eq. 5. Therefore,
the periodic solution obtained by the non-perturbative technique or that
obtained by the modified HPM represents a periodic solution of the
original Eq. 5.

It is worthwhile to observe that the periodic solution Eq. 18, that
obtained by the non-perturbative method, and the periodic solution
Eq. 29, performed by the modified homotopy perturbation approach,
are required for comparing the periodic solution that can be produced
from Eq. 5 directly. It is easy to employ the Galerkin’s method directly
to Eq. 5 to perform the following periodic solution:

y ζ( ) � A cosΩζ , (32)
where Ω is given by

FIGURE 7
Stability distribution of the same system, as given in Figure 6, except
that P � 0.2.

FIGURE 9
Stability distribution of the same system, as given in Figure 7,
of P � 0.2.

FIGURE 8
Stability distribution of the same system, as given in Figure 6, except
that P � 0.3.
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Ω � 1
2P

−1 +
���������������
1 − 3A2PR + 4Pω2

0

√( ). (33)

Figure 2 represents the periodic solution obtained by three different
methods. These are as follows: Galerkin’s solution (Eq. 32), which is
plotted by the solid red line; the non-perturbative solution (Eq. 18),which
is represented by the blue dashed line; and the HPM solution (Eq. 29),
which is represented by the dotted green curve. The calculations are made
for the system having P � 2.6, R � 1,ω0 � 1.5, and A � 1. The
investigation of this graph shows that there is an excellent agreement
between the three curves. The relative error between the Galerkin solution
(Eq. 32) and the non-perturbative solution (Eq. 18) is 0.0007843, while the
error between the Galerkin solution (Eq. 32) and the HPM solution (Eq.
29) is found to be 0.004467. This comparison also shows that the non-
perturbative solution (Eq. 18) is closer than the HPM solution (Eq. 29) to
Galerkin’s solution (Eq. 32).

The approximate solution, as given in Eq. 32, is sketched versus the
parameter ζ for the amplitude A � 1 and R � 0.1, P � 5ω0 � 2. This
calculation is displayed in Figures 3–5. These three graphs show a
periodic solution for the damping Duffing Eq. 5. Moreover, the
influence of the parameters P and R and the linear frequency ω0

on the periodic solution is shown in these graphs. The growth in these
coefficients reduces the time cycle of the wave solution.

The calculations are performed under the stability conditions that are
given in Eq. 30. The stable distribution is located in the plane (ω2

0 − A).
The numerical outcomes are illustrated in Figures 6–9, where the stable
region is colored in red. These stable regions have satisfied the three
inequalities in Eq. 30. In Figure 6, the natural frequency ω2

0 is plotted
versus the amplitudeA for theDuffing coefficientR � 2 atP � 0.1.When
the parameter P was increased to the value of P � 0.2 (i.e., the damping
coefficient is decreased), the stable region was decreased, as shown in
Figure 7. The continued raise in P results in reducing the stable region, as
shown in Figure 8, for P � 0.3. This shows the increase in the damping
coefficient plays a stabilizing influence. This agreement is with those
obtained in [11]. The examination of the increase in the Duffing
coefficient is the subject of Figure 9. It is observed that as R increased,
the width of the stable region decreased. This ensures that the nonlinear
coefficient plays a destabilizing influence.

6 Conclusion

Away from the regular investigation of the nonlinear oscillators,
the present article has been explained. This article deals with the
nonlinear Duffing equation and obtains a new result of the periodic
solution of a damped nonlinear Duffing oscillator and the damped
Klein–Gordon equation by using a new technique named the rank
upgrading technique. This technique first increases the order of the
partial differential equation by differentiating the original
differential equation. The alternative equation is obtained. The
comparison between this alternative equation and the original
equation shows that the obtained equation is corrected and can
be used to perform the periodic solution. Its solution has been
validated by applying the HPM to the alternative equation, in

which the oscillation frequency obtained by the non-perturbative
approach has been identical to that frequency obtained by the HPM.
This frequency has been used to discuss stability behavior. A
comparison of the periodic solutions’ curves was obtained using
three different methods. Non-perturbative, modified homotopy
perturbation, and Galerkin solutions showed an excellent
agreement. This comparison also shows that the non-perturbative
solution is closer to Galerkin’s solution than the HPM solution.
Furthermore, this scheme is a new technique. Therefore, the present
numerical method can be used for analyzing different acoustic waves
and oscillations in plasma and different physical systems.
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