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Casson–Williamson (CW) nanofluid flows and mass transfer characteristics are
explored in this study. Furthermore, the velocity slip condition and viscous
dissipation affect or are taken to examine the changes in mass and heat transfer
caused by a stretching surface integrated into permeablemedia with heat conversion
beneath the effect of a magnetic field and consistent thermal radiation. All the
physicochemical characteristics of the non-linear fluids are regarded massive.
Whether or not the concentration of nanofluids remains stable is investigated.
When particles of a nanofluid are in motion, chemical reactions can occur, and
this motion can be used to study the concentration of the nanofluid. One must first
examine a set of non-linear partial differential equationswith boundary conditions as a
base equation to obtain the necessary BVP mathematical model. The approximate
solution for differential equationswas found using the finite differencemethod, which
also considered the necessary boundary conditions. The numerical analysis results are
then represented visually to demonstrate how different governing parameters affect
velocity, temperature, and concentration. Although the heat transmission exhibits a
reverse manner, the non-Newtonian nanofluid moves more quickly in the non-
appearance of a magnetic domain than it does in one. Additionally, as the porosity
parameter increased, the heat transmission rate decreased, whereas the skin friction
coefficient increased. The novel parts of this study come from the simulation findings
of a non-Newtonian CW nanofluid model in porous media subjected to a magnetic
field, heat radiation, and slip velocity phenomena.
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1 Introduction

One of the most challenging areas of the latest research is nanotechnology.
Nanotechnology has been a major contributor to the advancement of computing and
electronics, allowing for the creation of faster, smaller, and more legacy systems that can
process and hold ever-increasing amounts of data. Its significance and uses highlight the
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most recent developments and advancements in the field of
nanoscience and nanotechnology, as well as their numerous
applications in fields such as energy, cosmetics, biology,
biotechnology, drug delivery, tissue engineering, environmental
protection, information technology, food and agriculture, and
future prospects. Thiruvangadam et al. [1] investigated the food
industry’s potential uses for nanotechnology in the future. Roco et al.
[2] studied the future of nanotechnology research for social
purposes.

A relatively recent area of science and technology is nano-
medicine. Nikalje studied the classification of nanomaterials
based on their size and provided a brief explanation of the many
forms of pharmaceutical nano-systems [3]. Mahpatra and Gupta
conducted research on heat transmission in stagnation point flow in
the direction of a stretching sheet [4]. A heat transfer study for
Casson fluid flow over a stretching sheet with Newtonian heating
and viscous dissipation was invented by Ahmad et al. [5]. Khan and
Pop examined the flow of a nanofluid past a stretched sheet in the
boundary layer [6]. Analytical modeling of entropy generation for
Casson nanofluid flow caused by a stretching surface was studied by
Abolbashari et al. [7].

There are numerous uses for magnetohydrodynamics
(MHD) in physics, chemistry, and engineering. From
biological systems to astronomical phenomena such as the
formation of magnetic fields and solar flares, MHD addresses
essential physical processes across several length scales. MHD
also outlines bring down the heat applications, such as electric
arc welding and joining operations, as well as other
technologically significant applications, such as the magnetic
confinement of fusion plasma and the interaction of fusion
plasmas with projected liquid metal blankets [8].

Nadeem et al. investigated Casson nanofluid flow past a
linearly stretching sheet in a three-dimensional MHD
boundary layer with convective boundary conditions and a
model for Casson nanofluid flow across a non-linearly
stretched sheet considering magnetic field effects by Mustafa
et al. [9, 10]. In a computer investigation of the thermal
transmission of electromagnetic fluid across a stretched
surface, Hussain et al. [11] studied the form factor
performance of solid particles. Specifically, they investigated

how well solid particles acted as shape factors. Hayat et al.
[12] examined the features of nanofluid convection flow
across a stretched sheet in combination with a convectively
heated chemical process and a heat source/sink. Afify studied
Casson nanofluid flow over a stretching sheet under slip
boundary conditions when there is viscous dissipation and
chemical reaction [13]. Nanofluid flow over a non-linearly
stretching sheet through a porous medium with chemical
reaction and thermal radiation was investigated by Khan
et al. [14]. Ibrahim et al. [15] studied the effects of a
chemical reaction and a heat source on a Casson nanofluid’s
dissipative MHD mixed convection flow across a non-linear
permeable stretching sheet. The effects of viscosity dissipation
and chemical reaction on nanofluid flow through a permeable
surface were examined by Dero et al. [16]. Goud et al. [17]
investigated the impact of thermal radiation and joule heating
hydrodynamic Casson nanofluid flow through a non-linear
inclined porous stretching sheet when the chemical reaction
was considered.

Williamson nanofluid flow yielded by an inclined Lorentz force
across a non-linear stretching sheet was explored by Khan et al. [18].
Researchers led by Reddy et al. [19] investigated the MHD flow and
heat transfer capabilities of Williamson nanofluid over a stretching
sheet with varying thicknesses and varying levels of heat capacity.
The parabolic velocity of MHD Casson–Williamson (CW) fluids
with cross-diffusion was investigated by Kumaran and Sandeep [20].
For MHD Williamson fluid, Parmar [21] investigated the behavior
in an unstable convective boundary layer with a permeable stretched
surface, non-linear radiation, and a heater. Radiative MHD thin film
flow ofWilliamson fluid across an erratic permeable stretching sheet
was examined by Shah et al. [22]. Lund et al. [23] conducted research
on the evaluation of a dual solution for theMHD flow ofWilliamson
fluid while accounting for slipping. Statistical investigation of
stagnation-point heat flow in Williamson fluid with viscous
dissipation and exponential heat source effects was studied by
Mahanthesh et al. [24]. Hall current and nth-order
thermochemical flow of 3D radiative Williamson fluid across an
inclined stretched sheet were the subjects of an investigation
conducted by Shamshuddin et al. [25]. Ullah investigated the
MHD radiative flow of a stretching sheet of Williamson
nanofluid in a porous medium with convective boundary
conditions [26]. Saravana et al. [27] learned that the fluid flowing
across a thin stretched surface in MHD Williamson and Casson
exhibits thermal radiation and diffusion effects. Sivanandam
researched Cattaneo-Christov dual flux entropy optimization of
MHD CW fluid flow over a convectively heated stretchable sheet
[28]. Using a porous stretching surface, Humane et al. [29] explored
the effects of the chemical reaction and thermal radiation on the
magnetohydrodynamic flow of CW nanofluid. Yousuf et al. [30]
considered the impacts of chemical reactions on the flow of a CW
nanofluid over a slippery stretched sheet in a porous medium. MHD
Williamson nanofluid flow across a permeable stretched sheet with
thermal radiation and chemical reaction was investigated by Patil
et al. [31]. The characteristics of chemical reaction, suction/
injection, and MHD radiative flow of Williamson nanofluid with
the Cattaneo–Christov model over a stretching sheet over permeable
media studied by Reddy et al. [32]. Falodun et al. [33] investigated
the effects of magneto-thermal and chemical processes on the flow of

FIGURE 1
Flow pattern of the problem.
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the CW nanofluid boundary layer under the Soret–Dufour
mechanism. In addition, information could be discovered on the
significance of the heat transfer process that occurs through
nanofluids in industrial applications [34–40].

The innovative aspects of this research result from a simulation
of a non-Newtonian CW nanofluid model subjected to a magnetic
field, thermal radiation, slip velocity phenomenon, and porous
media. In this study, the literature review is presented in the
Introduction section and the mathematical structure is presented
in the mathematical model section. In the Numerical procedure
section, we discuss the details of the solution methodology. The
Results and discussion section provides a detailed breakdown and
explanation of the variables that govern fluid flow. Finally, the
expected results are presented in the Conclusion section.

2 Flow configurations and modeling

To simulate a non-linear fluid flow, we employed the CWmodel
equations first presented by Patil et al. [31]. Shear stress association
τij and the fundamental governing equations of the Williamson
product, which is focused on the Cauchy Stress tensor, are presented
as follows:

τ ij � μ
zu

zy
− Γ�

2
√ zu

zy
( )2( ), (1)

when the fluid viscosity is μ and the time constraint is Γ � 0. It is easy to
see that this is a non-linear model, and the Newtonian form may be
deduced because it is a special situationwhen Γ � 0. Since there is no time
constant in the Newtonianmodel, the first component of the shear stress
gives us a good description of the system. The yield stress is the shear
stress above which flow begins for a given fluid with infinite viscosity at a
zero shear rate; the following statement illustrates how the Newtonian
model becomes closer to the Casson model in this particular scenario:

τij � μ 1 + 1
β

( ) zu

zy
( ), (2)

where β is a Casson parameter. Last but not least, it is important
to determine whether the properties of the liquid are a combination
of Williamson and Casson characteristics. Therefore, the CW
framework can be used to describe these fluids:

τ ij � μ 1 + 1
β

( ) zu

zy
− Γ�

2
√ zu

zy
( )2( ). (3)

It is expected that the magnetic field strength B0 is homogeneous
along the y-axis. Furthermore, the magnetic Reynolds number of the
flow is believed to be extremely small, making the induced magnetic
field inconsequential. We use this model because it accurately
describes a large class (perhaps the majority) of non-Newtonian
nanofluids throughout a broad shear rate range. The initial flow
conditions are imposed by the effects of the magnetic field, heat
radiation, and chemical reactions. Here, u and v denote two different
components of the nanofluid velocity, T represents the nanofluid
temperature, and C is its concentration. The nanofluid density ρ and
its heat conductivity κ will be treated as uniform. Figure 1 shows the
flow’s physical representation in Cartesian coordinates.

An expression of the governing differential equations for the
suggested CW model for stable laminar flow in two dimensions is
expressed as follows [41]:

zu

zx
+ zu

zy
� 0, (4)

FIGURE 2
Schematic diagram of FDM discretization.

TABLE 1 Comparisons of Mahmoud’s result with those of the current work for
−f@(0).

M Mahmoud [45] Present

0.0 1.00140 1.00138

1.0 1.41424 1.41420

3.0 2.00000 1.99580

5.0 2.44950 2.44545
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u
zu

zx
+ v

zu

zy
� v 1 + 1

β
( ) z2u

zy2
+ �

2
√

vΓ zu
zx

z2u

zy2
− σβ20u

ρ
− v

k
u

+ gβ T − T∞( ), (5)

u
zT

zx
+ v

zT

zy
� k

ρcp
1 + 16σ*T3

∞
3kk*

( ) z2T

zy2
+ τ{ DB

zC

zy

zT

zy
− DT

T∞

zT

zy
( )2( }

− μ

ρcp
1 + 1

β
( ) z2u

zy2
+ Γ�

2
√ zu

zy
( )3

+ Q0

ρcp
T − T∞( ), (6)

FIGURE 3
Variation of M on (A) f′(η), (B) θ(η), and (C) ϕ(η).
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u
zC

zx
+ v

zC

zy
� DB

z2C

zy2
+ DT

T∞

zT

zy
( )2

−Kr C − C∞( ), (7)

considering the particular structural boundary constraints to match
the preceding model:

u � ax + λ1 1 + 1
β

( ) zu

zy
− Γ�

2
√ zu

zy
( )2( ), (8)

T � Tw, C � Cw at y � 0,

u → 0, T → T∞, C → C∞ as y → ∞ . (9)

FIGURE 4
Variation of λ on (A) f′(η), (B) θ(η), and (C) ϕ(η).
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In addition, the first portion of Eq. 8 is a symbol for the
phenomenon known as slip velocity. Slip can have significant
repercussions on the physical state of a few microscopic fluxes,
comparable to literature that occur in a microelectromechanical
system. In addition, leakage at the microdevice walls, which are the
conduits across which liquid is transported, may have a considerable

influence on the amount of temperature and mass transferred by the
system. In addition, this might play a part in the consequences of
spurts, hysteresis, and shear skin. In addition, boundary-dragging
fluids have a variety abounding of applications in technology,
including the polishing of arbitrary valves and inner hollows. The
following form of similarity variables was chosen to transform the

FIGURE 5
Variation of β on (A) f′(η), (B) θ(η), and (C) ϕ(η).
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set of governing equations to ODEs. This also made all quantities
dimensionless:

η �
��
a

y

√
y, u � af′ η( ), v � − ��

av
√

f η( ),
θ η( ) � T − Tθ

Tw − Tθ
, ϕ η( ) � C − C∞

Cw − C∞
. (10)

Through the use of the similarity transformation in Eq. 10, we
can obtain the reducing ODEs from Eqs 4–9:

1 + 1
β

( )f‴ +Wcf″f‴ + f2 −Mf − Kpf + Δθ � 0, (11)
1
Pr

1 + R( )θ″ +Nbθ′ϕ′ +Nt θ′( )2 + fθ′

+EC 1 + 1
β

( )f2 + Wc

2
f3[ ] + Qθ � 0, (12)

ϕ″ + Scfϕ′ − ScGϕ + Nt

Nb
θ″ � 0, (13)

together with the applicable boundary conditions listed as follows:

f 0( ) � 0, f′ 0( ) � 1 + λ 1 + 1
β

( )f″ + Wc

2
f″2[ ],

θ 0( ) � 1, ϕ 0( ) � 1, (14)
f η( ) → 0, θ η( ) → 0, ϕ η( ) → 0 as n → ∞ . (15)

The following measurements are considered the problem
governing constraints: the Weissenberg parameter, the slip
velocity constraint, the porosity constraint, the magnetic
constraint, the Prandtl number, the radiation, mixed convection,
Eckert number, thermophoresis, Schmidt number, Brownian
movement, energy formation, and chemical interaction. Their
respective values are recorded as follows:

Wc � Γx
���
2a3

√
v

, λ �
��
a

m

√
, M � σB2

0

aρ
, Pr � μcp

k
,

Ec � ax( )2
cp Tw − T∞( ),

R � 16σ*T3
∞

3k*k
, Δ � gβ∞ Tw − T∞( )

a2x
, Kp � v

ka
,

Nt � τDt Tw − T∞( )
T∞v

,

Nb � τDB CW − C∞( )
]

, Sc � υ

DB
,G � Kr

a
.

As can be seen, the local parameters based on the length scale x
are We,Δ, and Ec. The fact that these parameters depend on x and
that their qualities fluctuate locally during the flow movement means
that the equations provided are only applicable to locally similar
solutions. Using Eq. 10, it is possible to account for shear stress,
energy, and mass transmission at the stretching sheet in this study
(10). These results are frequently expressed using the local Sherwood
number shx, the local Nusselt number Nux, and the non-
dimensional skin friction coefficient Cf. Eq. 10, in this task, produces

Cf

���
Rex

√ � − 1 + 1
β

( )f″ 0( ) + We

2
f′′2 0( )[ ],

Nux���
Rex

√ � − 1 + R( )θ′ 0( ),
Shx���
Rex

√ � −ϕ′ 0( ),

where Rex � uwx
v .

3 Numerical approach

The objective of this segment is to detail the foundational
procedures that led to the development of the Keller-Box approach,
a finite differencing numerical method, as depicted in Figure 2. Because
similarity transformations are used to turn the governing equation of
the model into a set of coupled ordinary differential structuring
equations, important boundary conditions associated with the
velocity and energy are provided in the equations in a dimensionless
form. Finding solutions to the resulting system of differential equations
using analytical methods is an exceedingly time-consuming and
difficult process due to the complexity of the resulting system.

Therefore, numerical methods are often considered the best
approach to finding problem-specific simulations. We opted for the
computational approach due to the many advantages offered by
numerical approaches, such as the elimination of unnecessary
computational and time-related costs. When considering the
available numerical approaches, the Keller-Box approach [42–44]
is the best fit for our modeled differential system:

f′ � u, (16)
u′ � w, (17)
θ′ � p, (18)
ϕ′ � q, (19)

1 + 1
β

( )w′ +Wcww′ + fw − u2 − M + K( )u + Δθ � 0, (20)

1
Pr

1 + R( )p′ +Nbpq +Ntp2 + Ec 1 + 1
β

( )w2 + Wc

2
w3[ ] + Qθ � 0,

(21)
q′ + Scfq − ScGϕ + Nt

Nb
p′ � 0, (22)

fj − fj−1
h

� uj − uj−1
2

,

ρfj − ρfj−1 − h

2
ρuj + ρuj−1( ) � fj−1 − fj + h

2
uj − uj−1( ) � r1,

ρuj − ρuj−1 − h

2
ρwj + ρwj−1( ) � uj−1 − uj + h

2
wj + wj−1( ) � r5,

ρθj − ρθj−1 − h

2
ρpj + ρpj−1( ) � θj−1 − θj + h

2
pj + pj−1( ) � r6,

ρϕj − ρϕj−1 −
h

2
ρqj + ρqj−1( ) � ϕj−1 − ϕj +

h

2
qj + qj−1( ) � r7,

ψ1ρfj + ψ2ρfj−1 + ψ3ρuj + ψ4ρuj−1 + ψ5ρwj + ψ6ρwj−1 + ψ7ρθj

+ ψ8ρj−1� r2,

χ1ρfj + χ2ρfj−1 + χ3ρwj + χ4ρwj−1 + χ5ρθj + χ6ρθj + χ7ρpj + χ8ρpj

+ χ9ρqj + χ10ρqj−1� r3,

η1ρfj + η2ρfj−1 + η3ρpj + η4ρpj−1 + η5ρϕj + η6ρϕj + η7ρqj + η8ρqj−1

� r4,
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ψ1 � ψ2 �
h

4
wj + wj−1( )

ψ3 � ψ4 � −h
4

fj + fj−1( ) − m + k

2
( )h

ψ5 � 1 + 1
β

( ) + wc

2
wj − wj−1( ) + wc

2
wj + wj−1( ) + h

4
fj + fj−1( )

ψ6 � − 1 + 1
β

( ) + wc

2
wj − wj−1( ) + wc

2
wj + wj−1( ) + h

4
fj + fj−1( )

ψ7 � ψ8 �
Δh
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(23)

χ1 � χ2 �
h

4
pj + pj−1( )

χ3 � χ4 � Ec 1 + 1
β

( ) Z

2
wj + wj−1( ) + Ec

1 + 1
β

( )
2

h wj + wj−1( )2
χ5 � χ6 �

Qh

2

χ7 �
1
pr

1 + R( ) + Nbh

4
qj + qj−1( ) + h

2
fj + fj−1( )

χ8 � − 1
pr

1 + R( ) + Nbh

4
qj + qj−1( ) + h

2
fj + fj−1( )

χ9 � χ10 �
Nbh

4
pj + pj−1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (24)

η1 � η2 � Sch qj + qj−1( )
η5 � η6 �

SchG

g

η3 �
Nt

gNb
, η4 � −Nt

Nb

η7 � 1 + Sch

4
fj + fj−1( )

η8 � −1 + Sch

4
fj + fj−1( )

χ9 � χ10 �
Nbh

4
p + pj−1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (25)

r2 � 1 + 1
β

( ) wj−1 − wj( ) − Wc

2
wj + wj−1( ) wj − wj−1( )

− h

4
fj + fj−1( ) wj + wj−1( )

+h
4

uj + uj−1( )2 + M + k

2
( )h uj + uj−1( ) + Δh

2
θj + θj−1( ),

r3 � 1
Pr

1 + R( )pj−1 − 1
Pr

1 + R( )pj − Nbh

4
pj + pj−1( ) qj + qj−1( )

− Nth

4
pj + pj−1( ) − h

4
fj + fj−1( ) pj + pj−1( )

+ Ec 1 + 1
β

( ) h

4
wj + wj−1( )[ ] + Ec 1 + 1

β
( ) h

8
wj + wj−1( )3,

χ4 � qj−1 − qj − Sch

4
fj + fj−1( ) qj + qj−1( ) − Sc

Gh

2
ϕj + ϕj−1( )

− Nb

Nt
pj + pj−1( ).

In most cases, the block-tridiagonal structure of the linearized
difference equation will be composed of variables or constants.
However, in this particular instance, it will be composed of block

matrices. The following is a definition of each member of the matrix
that pertains to our scenario:

A1[ ] C2[ ] · · · ·
B2[ ] A2[ ] C2[ ] · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · Bj−1[ ] Aj−1[ ] Cj−1[ ]
· · · · B[ j] Aj[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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δ1[ ]
δ2[ ]
·
·
·

δj−1[ ]
δj[ ]
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�

r1[ ]
r2[ ]
·
·
·

rj−1[ ]
rj[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

that is,

A[ ] δ[ ] � r[ ],
where

A1 �

1 0 0 0 0 0 0

0 1 r4 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 −1 −h
2

0 0 0 0

0 0 0 −1 −h
2

0 0

0 0 0 0 0 −1 −h
2
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,

Cj �

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 −h
2

0 0 0 0

0 0 0 1 −h
2

0 0

0 0 0 0 0 A −h
2
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,

B2 �

−1 −h
2

0 0 0 0 0

ψ2 ψ4 ψ6 ψ8 0 0 0

χ2 0 χ4 χ6 χ8 0 χ1

η2 0 0 0 η4 η6 η8

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

Aj �

1 −h
2

0 0 0 0 0

ψ1 ψ3 ψ5 ψ7 0 0 0

χ1 0 χ3 χ5 χ7 0 χ9

η1 0 0 0 η3 η5 η7

0 −1 −h
2

0 0 0 0

0 0 0 0 0 −1 −h
2
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FIGURE 6
Variation of Nb on (A) θ(η) and (B) ϕ(η).

FIGURE 7
Variation of G on (A) θ(η) and (B) ϕ(η).

FIGURE 8
Variation of Ec on (A) θ(η) and (B) ϕ(η).
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AJ �

1 −h
2

0 0 0 0 0

ψ1 ψ3 ψ5 ψ7 0 0 0

χ1 0 χ3 χ5 χ7 0 χ9

η1 0 0 0 η3 η5 η7

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0
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.

These computations are performed again and over again
until a certain convergence criterion is reached, at which point
the process is terminated when |δv(i)0 |≤ ε1, where ε1 is a small
prescribed value.

4 Results and discussion

In this study, we introduced a model for the flow of non-
Newtonian CW nanofluids, which is regulated by the
momentum (f′), temperature (θ), and concentration (ϕ)
equations and affected by energy radiation, magnetic field,
slip velocity, viscous dissipation, energy creation, and
chemical reaction. In order to resolve the highly non-linear
ODE in Eqs 11–13 and boundary conditions in Eqs 14 and 15, we
adopt the Keller-Box approach. The rest of parameters for the

simulations are defined as M � β � Nb � Wc � 0.5, Kp � 1.0, G
� λ � Δ � 0.2, Ec � Q � 0.1, R � 0.2, and Pr � 2.0, respectively
(Table 1) (Figure 3).

The data presented in Table 1 have been validated against prior
research. The conclusions that can be drawn from these findings are
very congruent with Mahmoud’s conclusions [45]. Whenever the
physicochemical parameters were altered, the obeying diagrams
were constructed to demonstrate the findings of f′, θ, and ϕ.
Figure 3 depicts the consequences M has on f′, θ, and ϕ. When
M is enhanced in this diagram, θ and nanoparticle ϕ rise; however,
the velocity distributions tend to get larger, which contradicts what
you would expect to see. Due to the presence ofM, the motion of the
nanofluid will be affected by a force that acts as propagation. It will
be a physical event. This force can slow down the nanofluid that
makes it so useful. This causes the nanofluid to soak up some of the
heat emitted by the same force that created it.

Figure 4 shows the significant properties of the slip velocity
factor λ and its influence on f′, θ, and ϕ of the non-Newtonian
nanofluid. When the slip velocity parameter is given a larger value, it
is possible to anticipate a significant reduction in the nanofluid
velocity, which will reduce the width of the boundary coat.
Consequently, occurrences of phenomena related to slip velocity
being present result in a significant improvement to θ and ϕ.

Figure 5 depicts the effects of β on the profiles of f′, θ, and ϕ. As
a direct consequence, the nanofluid flow slows down as it moves
away from the sheet, making the boundary layer finer in proportion
to the growing value of β. Conversely, when β is large, ϕ and θ are
greater than they are when the Casson value is small.

Figure 6 illustrates the discrepancy between θ and ϕ through the
use of numerous quantities of the Brownian motion constraint Nb.
Importantly, the appearance of Nb ≠ 0 for nanoparticles
significantly drops the rate of propagation in ϕ, although θ
exhibits the reverse pattern. This is a factor that needs to be
considered. From a purely physical perspective, an increase in the
Brownian motion component may cause substantial movement of
nanofluid molecules. As a result, the quantity of heat generated in
the boundary layer region increases, as does the kinetic energy.

The impact of G on θ of the nanofluid and ϕ of its
nanoparticles is shown in Figure 7. When ϕ is lower, the value
of G increases. Additionally, there is a minor expansion in θ and
the thickness of the thermal boundary layer. As might be
observed in the diagram that follows, a sizeable G implies a
high chemical transformation rate between nanofluid molecules.
This, in turn, causes a considerable latency in the accumulation of
nanofluid concentration. The effect of the Eckert number Ec on
the values of θ and ϕ is illustrated in Figure 8. As anticipated, a
considerable expansion of the thermal layer occurs as Ec moves
forward. Due to viscous dissipation mechanisms, certain
amounts of nanofluid kinetic energy are transformed into
heat, which supports an enhancement in θ of the fluid at all
locations within the appropriate boundary layer. In addition, ϕ
displays the same minor tendency when the Eckert number Ec
rises (Table 2).

Statistical representations are utilized to display the results of
the numerical simulations. Table 2 illustrates how the various
physical properties of nanofluids affect not only the rates of
temperature and mass transport, but also the Cf coefficient.
Notably, Cf goes up when the magnetic and porous

TABLE 2 Variation of numerous constraints on Cf , Nux, and Shx.

M β Kp λ Δ Ec G Nb Cf Nux Shx

0.0 0.5 1.0 0.2 0.2 0.1 0.2 0.5 1.4723 0.3311 0.5537

0.5 ___ ___ ___ ___ ___ ___ ___ 1.5789 0.2868 0.5461

1.0 ___ ___ ___ ___ ___ ___ ___ 1.6941 0.2381 0.5389

0.5 ___ 0.0 ___ ___ ___ ___ ___ 1.2761 0.4039 0.5691

___ ___ 0.5 ___ ___ ___ ___ ___ 1.4430 0.3431 0.5540

___ ___ 1.5 ___ ___ ___ ___ ___ 1.6929 0.2364 0.5360

___ ___ 0.5 ___ ___ ___ ___ ___ 1.4430 0.3435 0.5539

___ 1.5 ___ ___ ___ ___ ___ ___ 1.1441 0.3140 0.5481

___ 2.5 ___ ___ ___ ___ ___ ___ 1.0571 0.2989 0.5412

___ 0.5 ___ ___ ___ ___ ___ ___ 1.5373 0.3045 0.5459

___ ___ ___ ___ ___ ___ ___ 0.2 1.4430 0.3431 0.5539

___ ___ ___ ___ 0.5 ___ ___ 0.5 1.3135 0.3868 0.5642

___ ___ ___ 0.1 0.2 ___ ___ 0.7 1.7569 0.3780 0.5753

___ ___ ___ 0.2 ___ 0.0 ___ 0.5 1.4430 0.3431 0.5540

___ ___ ___ 0.3 ___ 0.2 ___ ___ 1.2269 0.3112 0.5401

___ ___ ___ 0.2 ___ 0.3 ___ ___ 1.4491 0.4759 0.4883

___ ___ ___ ___ ___ 0.1 0.0 ___ 1.4430 0.3431 0.5539

___ ___ ___ ___ ___ ___ 0.2 ___ 1.4391 0.2671 0.5649

___ ___ ___ ___ ___ ___ 0.4 ___ 1.4369 0.4162 0.5430
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parameters increase. Meanwhile, Nux and Shx increase in the
other way. This is something that should be kept in mind.
Furthermore, β and the slip velocity component produce a
decline in Cf, a decrease in Nux, and a decrease in Shx. When
the mixed convection parameter increases, Nux speeds up and
simultaneously the rate of mass transmission increases. Similarly,
the rising values of Ec, Nb, and G result in a drop in Nux.
Conversely, Shx tends to exhibit the reverse trend.

5 Conclusion

A novel concept of the cumulative effects of slip velocity and
the viscous dissipation feature is used to describe the flow of a
non-Newtonian CW nanofluid caused by a stretching sheet. This
concept is used to represent the flow. In addition, the chemical
reactions between magnetic fields, thermal radiation,
nanoparticles, and heat creation are considered. Moreover, the
physical model is submerged in a material that is porous and
saturated. The numerical investigation is presented in a
graphically displayed form using the finite difference method,
and it is discussed in some detail. The results are presented in
detail as follows:

❖ Ec, G, and the Brownian parameter are all factors that
contribute to an increase in Shx, whereas Nux is impacted
in a reverse manner.

❖ When M and the permeable media parameter increase, it
increases the skin friction coefficient and decreases the flow
rate of the nanofluid.

❖ Increasing Ec, mixed convection parameter, chemical reaction
rate, or the Brownian parameter worsens the concentration
distribution, whereas increasing β or the slip velocity
parameter improves it.

❖ When the slip velocity is increased, there is a corresponding
drop in the mass flux rate, the rate of heat transmission, and
the wall shear stress.

❖ Temperature rises when there is an improvement in the porous
parameter, β, slip velocity, and M.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

AM computed the results; SI wrote the original draft; HS and
AMwrote the review draft. All authors contributed to the article and
approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: Current uses and
future applications in the food industry. 3 Biotech (2018) 8(1):74–13. doi:10.1007/
s13205-018-1104-7

2. Roco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for
societal needs in 2020: Summary of international study. J nanoparticle Res (2011)
13(3):897–919. doi:10.1007/s11051-011-0275-5

3. Nikalje AP. Nanotechnology and its applications in medicine. Med Chem (2015)
5(2):081–9. doi:10.4172/2161-0444.1000247

4. Mahapatra T, Gupta AS. Heat transfer in stagnation-point flow
towards a stretching sheet. Heat Mass Transfer (2002) 38(6):517–21. doi:10.1007/
s002310100215

5. Ahmad K, Wahid Z, Hanouf Z. Heat transfer analysis for Casson fluid flow over
stretching sheet with Newtonian heating and viscous dissipation. J Phys Conf Ser (2019)
1127:012028. IOP Publishing. doi:10.1088/1742-6596/1127/1/012028

6. Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat
mass transfer (2010) 53(11-12):2477–83. doi:10.1016/j.ijheatmasstransfer.2010.01.032

Abolbashari, M. H., Freidoonimehr, N., Nazari, F., and Rashidi, M. M. Analytical
modeling of entropy generation for Casson nano-fluid flow induced by a stretching
surface. Advanced Powder Technology (2015) 26(2):542–52. doi:10.1016/j.apt.2015.
01.003

Flint, T. F., Smith, M. C., and Shanthraj, P. Magneto-hydrodynamics of multi-phase
flows in heterogeneous systems with large property gradients. Scientific Reports (2021)
11(1):18998–15. doi:10.1038/s41598-021-97177-8

Nadeem, S., Haq, R. U., and Akbar, N. S. MHD three-dimensional boundary layer flow of
Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE
Transactions on Nanotechnology (2013) 13(1):109–15. doi:10.1109/tnano.2013.2293735

10. Mustafa M, Khan JA. Model for flow of Casson nanofluid past a non-linearly
stretching sheet considering magnetic field effects. AIP Adv (2015) 5(7):077148.
doi:10.1063/1.4927449

11. Hussain SM, Jamshed W, Kumar V, Kumar V, Nisar KS, Eid MR, et al.
Computational analysis of thermal energy distribution of electromagnetic Casson
nanofluid across stretched sheet: Shape factor effectiveness of solid-particles. Energ
Rep (2021) 7:7460–77. doi:10.1016/j.egyr.2021.10.083

12. Hayat T, Bilal Ashraf M, Shehzad SA, Alsaedi A. Mixed convection flow of Casson
nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/
sink. J Appl Fluid Mech (2015) 8(4):803–13. doi:10.18869/acadpub.jafm.67.223.22995

13. Afify AA. The influence of slip boundary condition on Casson nanofluid flow over
a stretching sheet in the presence of viscous dissipation and chemical reaction. Math
Probl Eng (2017) 2017:1–12. doi:10.1155/2017/3804751

14. Ullah I, Khan I, Shafie S. MHD natural convection flow of Casson nanofluid
over nonlinearly stretching sheet through porous medium with chemical reaction
and thermal radiation. Nanoscale Res Lett (2016) 11(1):527–15. doi:10.1186/
s11671-016-1745-6

15. Ibrahim SM, Lorenzini G, Kumar PV, Raju CSK. Influence of chemical reaction
and heat source on dissipative MHDmixed convection flow of a Casson nanofluid over
a nonlinear permeable stretching sheet. Int J Heat Mass Transfer (2017) 111:346–55.
doi:10.1016/j.ijheatmasstransfer.2017.03.097

16. Dero S, Mohd Rohni A, Saaban A. Effects of the viscous dissipation and chemical
reaction on Casson nanofluid flow over the permeable stretching/shrinking sheet. Heat
Transfer (2020) 49(4):1736–55. doi:10.1002/htj.21688

17. Goud BS, Reddy YD, Rao VS. Thermal radiation and Joule heating effects on a
magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction

Frontiers in Physics frontiersin.org11

Irshad et al. 10.3389/fphy.2023.1121954

https://doi.org/10.1007/s13205-018-1104-7
https://doi.org/10.1007/s13205-018-1104-7
https://doi.org/10.1007/s11051-011-0275-5
https://doi.org/10.4172/2161-0444.1000247
https://doi.org/10.1007/s002310100215
https://doi.org/10.1007/s002310100215
https://doi.org/10.1088/1742-6596/1127/1/012028
https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
https://doi.org/10.1016/j.apt.2015.01.003
https://doi.org/10.1016/j.apt.2015.01.003
https://doi.org/10.1038/s41598-021-97177-8
https://doi.org/10.1109/tnano.2013.2293735
https://doi.org/10.1063/1.4927449
https://doi.org/10.1016/j.egyr.2021.10.083
https://doi.org/10.18869/acadpub.jafm.67.223.22995
https://doi.org/10.1155/2017/3804751
https://doi.org/10.1186/s11671-016-1745-6
https://doi.org/10.1186/s11671-016-1745-6
https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.097
https://doi.org/10.1002/htj.21688
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1121954


through a non-linear inclined porous stretching sheet. J Naval Architecture Mar Eng
(2020) 17(2):143–64. doi:10.3329/jname.v17i2.49978

18. Khan M, Malik MY, Salahuddin T, Hussian A. Heat and mass transfer of
Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear
stretching sheet. Results Phys (2018) 8:862–8. doi:10.1016/j.rinp.2018.01.005

19. Reddy S, Naikoti K, Rashidi MM. MHD flow and heat transfer characteristics of
Williamson nanofluid over a stretching sheet with variable thickness and variable
thermal conductivity. Trans A. Razmadze Math Inst (2017) 171(2):195–211. doi:10.
1016/j.trmi.2017.02.004

20. Kumaran G, Sandeep N. Thermophoresis and Brownian moment effects on
parabolic flow of MHD Casson and Williamson fluids with cross diffusion. J Mol
Liquids (2017) 233:262–9. doi:10.1016/j.molliq.2017.03.031

21. Parmar A. Unsteady convective boundary layer flow for MHD Williamson fluid
over an inclined porous stretching sheet with non-linear radiation and heat source. Int
J Appl Comput Math (2017) 3(1):859–81. doi:10.1007/s40819-017-0387-4

22. Shah Z, Bonyah E, Islam S, Khan W, Ishaq M. Radiative MHD thin film flow of
Williamson fluid over an unsteady permeable stretching sheet. Heliyon (2018) 4(10):
e00825. doi:10.1016/j.heliyon.2018.e00825

23. Lund LA, Omar Z, Khan I. Analysis of dual solution for MHD flow of Williamson
fluid with slippage. Heliyon (2019) 5(3):e01345. doi:10.1016/j.heliyon.2019.e01345

24. Mahanthesh B, Mackolil J, Shehzad SA. Statistical analysis of stagnation-point
heat flow in Williamson fluid with viscous dissipation and exponential heat source
effects. Heat Transfer (2020) 49(8):4580–91. doi:10.1002/htj.21842

25. Shamshuddin MD, Mabood F, Salawu SO. Flow of three-dimensional radiative
Williamson fluid over an inclined stretching sheet with Hall current and nth-order
chemical reaction. Heat Transfer (2021) 50(6):5400–17. doi:10.1002/htj.22130

26. Ullah I. MHD radiative flow of Williamson nanofluid along stretching sheet in a
porous medium with convective boundary conditions. Proc Inst Mech Eng E: J Process
Mech Eng (2022) 236(3):1144–52. doi:10.1177/09544089211058093

27. Saravana R, Hemadri Reddy R, Narasimha Murthy KV, Makinde OD. Thermal
radiation and diffusion effects in MHDWilliamson and Casson fluid flows past a slendering
stretching surface. Heat Transfer (2022) 51(4):3187–200. doi:10.1002/htj.22443

28. Sivanandam S, Eswaramoorthi S. Entropy optimization of MHD Casson-
Williamson fluid flow over a convectively heated stretchy sheet with Cattaneo-
Christov dual flux. Scientia Iranica (2022) 0:0. doi:10.24200/sci.2022.58291.5654

29. Humane PP, Patil VS, Patil AB. Chemical reaction and thermal radiation effects
on magnetohydrodynamics flow of Casson–Williamson nanofluid over a porous
stretching surface. Proc Inst Mech Eng Part E: J Process Mech Eng (2021) 235(6):
2008–18. doi:10.1177/09544089211025376

30. YousefNS,MegahedAM,GhoneimNI, ElsafiM, Fares E. Chemical reaction impact on
MHD dissipative Casson-Williamson nanofluid flow over a slippery stretching sheet through
porous medium. Alexandria Eng J (2022) 61(12):10161–70. doi:10.1016/j.aej.2022.03.032

31. Patil VS, Humane PP, Patil AB. MHD Williamson nanofluid flow past a
permeable stretching sheet with thermal radiation and chemical reaction. Int
J Model Simulation (2022) 1–15. doi:10.1080/02286203.2022.2062166

32. Reddy MV, Lakshminarayana P. MHD radiative flow of Williamson nanofluid
with Cattaneo-Christov model over a stretching sheet through a porous medium in the
presence of chemical reaction and suction/injection. J Porous Media (2022) 25:1–15.
doi:10.1615/jpormedia.2022041423

33. Falodun BO, Ige EO. Linear and quadratic multiple regressions analysis on
magneto-thermal and chemical reactions on the Casson-Williamson nanofluids
boundary layer flow under Soret-Dufour mechanism. Arab J Basic Appl Sci (2022)
29(1):269–86. doi:10.1080/25765299.2022.2115688

34. Akram J, Akbar NS, Alansari M, Tripathi D. Electroosmotically modulated
peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel. Int
Commun Heat Mass Transfer (2022) 136:106208. doi:10.1016/j.icheatmasstransfer.
2022.106208

35. Akram J, Akbar NS, Tripathi D. A theoretical investigation on the heat transfer
ability of water-based hybrid (Ag–Au) nanofluids and Ag nanofluids flow driven by
electroosmotic pumping through a microchannel. Arabian J Sci Eng (2021) 46(3):
2911–27. doi:10.1007/s13369-020-05265-0

36. Khan U, Zaib A, Abu Bakar S, Ishak A. Stagnation-point flow of a hybrid
nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of
inertial and microstructure. Case Stud Therm Eng (2021) 26(5):101150. doi:10.1016/j.
csite.2021.101150

37. Khan U, Zaib A, Ishak A. Magnetic field effect on sisko fluid flow containing gold
nanoparticles through a porous curved surface in the presence of radiation and partial
slip. Mathematics (2021) 9(9):921. doi:10.3390/math9090921

38. Khan U, Zaib A, Ishak A, Waini I, Pop I, Elattar S, et al. Stagnation point flow
of a water-based graphene-oxide over a stretching/shrinking sheet under an
induced magnetic field with homogeneous-heterogeneous chemical reaction.
J Magnetism Magn Mater (2023) 565(2022):170287. doi:10.1016/j.jmmm.2022.
170287

39. Maraj EN, Akbar NS, Iqbal Z, Azhar E. Framing the MHD mixed convective
performance of CNTs in rotating vertical channel inspired by thermal deposition:
Closed form solutions. J Mol Liquids (2017) 233:334–43. doi:10.1016/j.molliq.2017.
03.041

40. Sher Akbar N, Maraj EN, Noor NFM, Habib MB. Exact solutions of an unsteady
thermal conductive pressure driven peristaltic transport with temperature-dependent
nanofluid viscosity. Case Stud Therm Eng (2022) 35(5):102124. doi:10.1016/j.csite.2022.
102124

41. HumanePatilPatil PPVSAB. Chemical reaction and thermal radiation effects on
magnetohydrodynamics flow of Casson-Williamson nanofluid over a porous stretching
surface. J Process Mech Eng (2021) 235:2008–18.

42. BilalMajeedMahmoodKhanSeikh SAHRIAH, Sherif E-SM, Khan I, Sherif ESM.
Heat and mass transfer in hydromagnetic second-grade fluid past a porous inclined
cylinder under the effects of thermal dissipation, diffusion and radiative heat flux.
Energies (2020) 13:278. doi:10.3390/en13010278

43. MajeedBilalMahmood AHSR, Malik MY. Heat transfer analysis of viscous fluid
flow between two coaxially rotated disks embedded in permeable media by capitalizing
non-Fourier heat flux model. Physica A: Stat Mech its Appl (2020). doi:10.1016/j.physa.
2019.123182

44. BilalTassaddiqMajeedNisarAli SAAHKSF, Malik MY, Nisar KS, Malik MY.
Computational and physical examination about the aspects of fluid flow between
two coaxially rotated disks by capitalizing non-fourier heat flux theory: Finite difference
approach. Front Phys (2020) 7. doi:10.3389/fphy.2019.00209

45. Mahmoud MAA. Thermal radiation effects on MHD flow of a micropolar fluid
over a stretching surface with variable thermal conductivity. Phys A (2007) 375:401–10.
doi:10.1016/j.physa.2006.09.010

Frontiers in Physics frontiersin.org12

Irshad et al. 10.3389/fphy.2023.1121954

https://doi.org/10.3329/jname.v17i2.49978
https://doi.org/10.1016/j.rinp.2018.01.005
https://doi.org/10.1016/j.trmi.2017.02.004
https://doi.org/10.1016/j.trmi.2017.02.004
https://doi.org/10.1016/j.molliq.2017.03.031
https://doi.org/10.1007/s40819-017-0387-4
https://doi.org/10.1016/j.heliyon.2018.e00825
https://doi.org/10.1016/j.heliyon.2019.e01345
https://doi.org/10.1002/htj.21842
https://doi.org/10.1002/htj.22130
https://doi.org/10.1177/09544089211058093
https://doi.org/10.1002/htj.22443
https://doi.org/10.24200/sci.2022.58291.5654
https://doi.org/10.1177/09544089211025376
https://doi.org/10.1016/j.aej.2022.03.032
https://doi.org/10.1080/02286203.2022.2062166
https://doi.org/10.1615/jpormedia.2022041423
https://doi.org/10.1080/25765299.2022.2115688
https://doi.org/10.1016/j.icheatmasstransfer.2022.106208
https://doi.org/10.1016/j.icheatmasstransfer.2022.106208
https://doi.org/10.1007/s13369-020-05265-0
https://doi.org/10.1016/j.csite.2021.101150
https://doi.org/10.1016/j.csite.2021.101150
https://doi.org/10.3390/math9090921
https://doi.org/10.1016/j.jmmm.2022.170287
https://doi.org/10.1016/j.jmmm.2022.170287
https://doi.org/10.1016/j.molliq.2017.03.041
https://doi.org/10.1016/j.molliq.2017.03.041
https://doi.org/10.1016/j.csite.2022.102124
https://doi.org/10.1016/j.csite.2022.102124
https://doi.org/10.3390/en13010278
https://doi.org/10.1016/j.physa.2019.123182
https://doi.org/10.1016/j.physa.2019.123182
https://doi.org/10.3389/fphy.2019.00209
https://doi.org/10.1016/j.physa.2006.09.010
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1121954


Nomenclature

TW surface temperature (K)

B0 strength of the magnetic field (T)

T∞ ambient temperature (K)

(u, v) velocity components (m/s)

C nanoparticle concentration (molL−1)

Cf skin friction coefficient

We local Weissenberg numbers

Cw surface nanoparticle concentration (molL−1)

DB Brownian diffusion coefficient (m2s−1)

ρ density of the fluid (kgm−3)

DT thermophoresis diffusion coefficient (m2s−1)

Ec Eckert number

μ coefficient of viscosity (kgm−1s−1)

] kinematic viscosity (m2s−1)

g gravitational acceleration (ms−2)

ϕ dimensionless concentration

λ1 slip velocity factor (m)

λ slip velocity parameter

σ electrical conductivity (sm−1)

M magnetic parameter

σ* Stefan–Boltzmann constant (Wm−1K−4)

Nb Brownian motion parameter

η similarity variable

β Casson parameter

Nt thermophoresis parameter

Nux local Nusselt number

Γ Williamson parameter (s)

Q0 heat generation (absorption) coefficient

Qheat generation parameter R heat generation parameter
Rradiation parameter

Rex local Reynolds number
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