
Quantitative and qualitative
analyses of the mKdV equation
and modeling nonlinear waves in
plasma

Kanza Arif1, Tayyaba Ehsan1, W. Masood1,2, S. Asghar1,
Haifa A. Alyousef3, Elsayed Tag-Eldin4 and S. A. El-Tantawy5,6*
1COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan, 2National Centre for
Physics, Islamabad, Pakistan, 3Department of Physics, College of Science, Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia, 4Faculty of Engineering and Technology, Future University
in Egypt, New Cairo, Egypt, 5Department of Physics, Faculty of Science, Port Said University, Port Said,
Egypt, 6Research Center for Physics (RCP), Department of Physics, Faculty of Science and Arts, Al-Baha
University, Al Bahah, Saudi Arabia

In this paper, nonlinear electrostatic structures on the ion time scale in plasma
consisting of two populations of electrons (cold and hot), positrons, and warm
adiabatic ions are investigated. The multiple scale method is used to derive the
modified Korteweg–de Vries equation (mKdVE). The Jacobi elliptic function
expansion method (JEFEM) is employed to find some exact analytical solutions
such as periodic, solitonic, and shock solutions. It is shown that the variation in the
plasma parameters of interest, for our model, allows the existence of solitary and
periodic structures and no shocks. It is also shown that themost important plasma
parameters for the plasmamodel under consideration are positron concentration,
α, and the percentage of cold and hot electrons, represented by the parameters μ
and ], respectively. Additionally, the qualitative behavior of the mKdVE is studied
using dynamical system theory. The topological structure of the solution is
discussed in the phase plane. In this work, the phase plane analysis, which is
restricted to the discrete values of the parameter, is extended to the continuous
range of the parameter using a bifurcation diagram. Bifurcation diagrams are
drawn to forecast the behavior of the solution for specifically chosen essential
plasma parameters. The analytical solution and the qualitative behavior of the
solution presented in this paper are shown to be compatible with each other. The
results presented here are general and can be gainfully employed to study a variety
of nonlinear waves in space, laboratory plasmas, and astrophysical plasmas.
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1 Introduction

The propagation of nonlinear structures in electron–positron (EP) plasmas is quite
different from that in ordinary electron–ion (EI) plasmas because of the same mass of both
the species. In a number of interesting physical situations, EP plasmas have been observed
and investigated. The examples include pulsar environments, supernovae, active galactic
nuclei, and cluster explosions [1–4]. Many astrophysical plasmas are an admixture of mainly
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electrons and positrons having a small fraction of ions, whereas the
converse is true for the laboratory plasmas where the positron
concentration is very low.

Many approaches have been proposed to create laboratory EP
plasmas over the past few decades [5–7]. In initial experiments,
relativistic positrons from radioactive neon gas were trapped directly
into a magnetic mirror (MM) [5, 6]. Tsytovich and Wharton [7]
suggested trapping positrons in an MM from a LINAC source. Later
on, Boehmer [8] employed cyclotron heating to trap moderated
positrons from a radioactive source and to heat the trapped
positrons to relativistic energies. The most successful
experimental approach, to obtaining positron plasmas, however,
has turned out to be the scattering from a buffer gas into a Penning
trap. In this case, the positron density is large enough to study the
collective modes in plasmas [9]. It is important to note that pair
annihilation can take place in EP plasmas. It is, therefore, a
prerequisite that, for the study of collective modes in such
plasma, the annihilation time scale ought to be much longer than
the time scale for plasma effects, which is typically the inverse of the
plasma frequency [9]. It is quite common in astrophysical and
laboratory plasmas to have ions in addition to electrons and
positrons, and, therefore, it is important to understand the linear
and nonlinear behavior in electron–positron–ion (EPI) plasmas.
Many studies have been carried out in the past few decades to
investigate the linear and nonlinear wave propagation in EPI
plasmas that highlight the importance of the inclusion of
positrons in the system [10–18].

The observations of geophysical and laboratory plasmas have
indicated the presence of two populations of electrons, namely, cold
and hot electrons. Examples include hot cathode discharge plasmas,
solar wind at about 1 AU, turbulent plasma for thermonuclear
interest, and strongly interacting beam plasma systems [19]. In
collisionless plasmas of space, Earth’s bow shock [20], and in the up/
downstream of interplanetary shocks [21], two-temperature plasmas
have been observed. Moreover, this type of plasmas has been
observed in heliospheric termination shock [22], planetary
magnetospheres [23], and space plasmas [24]. Additionally,
different missions such as Polar [25], Geotail [26], FAST [27],
and S3 − 3 [28] observed and discovered the two populations of
electrons in the auroral zone and magnetosphere. The investigation
of the linear ion acoustic wave (IAW) in plasma of two population
electrons has a significant impact on its characteristics [29]. Many
authors studied the ion acoustic solitons in plasma of two population
electrons and reported many interesting facts about them [30–32].

No well-established methods have been developed, so far, that
can solve all nonlinear differential equations arising in mathematics,
physics, engineering, and biological sciences. Concerted efforts have
thus been made to develop various analytical techniques to study
nonlinear phenomena. Some of these methods include the
homogeneous balance method [33–35], hyperbolic tangent
expansion method [36–38], trial function method [39, 40],
nonlinear transformation method [41, 42], and sine–cosine
method [43]. Although, soliton and shock solutions have been
obtained, periodic solutions could not be found by these
methods. Porubov et al. [44, 45] obtained some exact periodic
solutions for some nonlinear wave equations using the
Weierstrass elliptic function which involved complicated
deductions. Fu et al. [46] proposed the Jacobi elliptic function

expansion method (JEFEM) and applied it to some nonlinear
wave problems. In addition to shock and solitary wave solutions,
various periodic solutions, based on the Jacobi elliptic sine function,
were also found [46]. To discuss all three possible waveforms (for
traveling wave solution), we use JEFEM to present all possible
analytic solutions of the mKdVE. These include both bounded
and unbounded periodic solutions. In recent years, theory of the
dynamical system has generated a lot of interest in the study of
nonlinear equations arising in plasma physics and fluid mechanics
[47–56].

Saha and Chatterjee [57] used bifurcation of the phase portrait
to analyze the qualitative behavior of the dust ion acoustic traveling
wave solution of the modified Kadomtsev–Petviashvili equation
(mKPE). The authors showed the existence of periodic, solitary,
and kink wave solutions using the theory of the dynamical system by
investigating the nature of the critical points. Analytical traveling
wave solution of the mKPE is also obtained, and the two approaches
are shown to be consistent. This work [57] is a generalization of the
work presented by Samanta et al [52] who identified two solutions
instead of three, using bifurcation analysis. Tamang et al; [53] used
the planar dynamical system approach to present nonlinear
homoclinic and nonlinear periodic trajectories of the modified
mKdVE and generalized Gardner equation (GGE). A few articles,
in which Asit Saha [52, 53, 57] is one of the authors, bifurcation has
been used to identify the wave profiles and their properties
depending on the parameter values. It may be noted that the
bifurcation of the wave structure, as mentioned in these articles,
should not be confused with the bifurcation diagram. We know that
the qualitative behavior of the phase portraits such as periodic,
solitary, or kink depends on the characterizing parameters of the
problem. The phase portraits are drawn for some discrete values of
the parameters without any prior knowledge of their behaviors. The
qualitative change occurring in the phase diagrams is observed
visually depending on the closed, homoclinic, or heteroclinic orbits.

Let us first recall the procedure adopted in these studies. A
model nonlinear partial differential equation (PDE) is initially
transformed into a nonlinear ordinary differential equation
(ODE) using a traveling wave solution. The ODE is then
formulated in terms of the corresponding dynamical system, and
the phase plane diagram is drawn near the critical points using linear
stability analysis. The solution behavior is based on the nature of the
critical points, and the wave behavior is predicted from the phase
diagram. For example, the center in the phase space corresponds to
the closed orbit representing the periodic wave, the homoclinic orbit
representing the solitary wave, and heteroclinic orbits
corresponding to the kink (or shock) wave front. The closed-
domain traveling wave solution generally corresponds to these
waveforms. The stability of the wave solution is determined from
the critical point and the Jacobian matrix. The phase diagram and
the corresponding wave nature are determined for specifically
choosing the parameters.

The aforementioned analysis raises a few questions for further
thinking: a) Can we choose a set of premeditated parameters which
gives rise to the wave structure of our choice? b) Can we divide the
whole range of a parameter into sub-intervals with different
topological behaviors (if so)? Can we know the behavior of the
solution for some choice of the parameters without actually
experimenting it through the phase plane diagram? Can we guess
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the behavior for a continuous spectrum of the parameter of interest
instead of its discrete values? The answer to these questions lies in
stability and bifurcation theory, which, to our understanding, has
not been given due importance. The issues raised previously are
addressed in this work besides finding the exact analytical solution.
After taking up the analytical solution and the solution behavior of
mKdVE, we show that the two approaches lead to same conclusions
and corroborate each other. We are lucky to find the exact solution
here; however, in more complex problems involving higher-order
non-linearities, where analytical solution is not possible, the
qualitative solution gives us all the physics we need to know.

In the present paper, no heteroclinic orbit appears, and,
therefore, no shock solution exists for all possible parameters of
the mKdVE. The existence of periodic (bounded and unbounded)
and solitary wave solutions is found both mathematically and
qualitatively. The bifurcation points are identified at which the
topological behavior of the wave form changes, that is, the switch
of the dynamical behavior from periodic to solitary waves or the
other way round. A complete range of the important parameters like
α, β, δ, γ, μ, and ] have been specified from the bifurcation diagram
predicting the behavior in advance without any fear of wrong
conclusion or incomplete conclusion (leaving some values of the
parameters unattended). In passing, we note that the homoclinic
behavior mentioned in [57] is actually from 0.8 < q < 1.0, instead of,
q > − 1. The important conclusions and observations highlighting
important physical features are discussed in the concluding section.
The analysis presented here will be useful to explore the physical
behaviors in the problems with greater complexities in some future
works where the analytical solution is not a possibility.

The paper is organized as follows: in Section 2 and Section 3,
we present a set of model equations and derive the mKdVE using
the reductive perturbation technique (RPT) [58–60]. In Section 4,
we present the analytical solutions of the mKdVE using the
JEFEM. All possible analytic solutions including bounded
periodic solutions, solitary solutions, and unbounded periodic
solutions are found. Section 5 explores the qualitative behavior of
the mKdVE using the planar theory of the dynamical system. In
Section 5, we present the results and discussion of both the
quantitative and qualitative analyses using the plasma
parameters that are consistent with the satellite observations
of space plasmas. The main findings of the paper are
recapitulated in Section 7.

2 Basic set of equations

We consider multicomponent plasma comprising hot and cold
electrons, warm adiabatic ions, and isothermal positrons. In order to
study the nonlinear behavior of the IAWs, we employ the following
set of normalized fluid equations [32]:

ztni + zx niui( ) � 0, (1)
ztui + uizxui � −zxϕ − 5

3
δn−1/3i zxni, (2)

z2xϕ � −ρ � ne − 1 − α( )ni − np, (3)
where ne = nh + nc.

The cold and hot populations of electrons and positrons are
assumed to be inertialess on the ion time scale and assumed to follow
the Maxwell–Boltzmann distribution function and are given as [32]

np � exp −γϕ( ), (4)

nc � μ exp
ϕ

μ + ]β
( ), (5)

nh � ] exp
βϕ

μ + ]β
( ), (6)

and

ne � 1 + ϕ + μ + ]β2( )
2 μ + ]β( )2ϕ2 + μ + ]β3( )

6 μ + ]β( )3ϕ3 +/ . (7)

In the aforementioned equations, ni is the density of ions normalized
by ni0; ui is the fluid velocity of the ion species normalized by ion
acoustic speed Ci; nc0, nh0, and ni0 are the equilibrium densities of
two electron populations and the ion component, respectively; ϕ is
the electrostatic potential normalized by thermal potential Teff/e; α is
the equilibrium density ratio of positron to electron species; ] is the
equilibrium density ratio of hot electrons to the total electron
number density; μ is the equilibrium density ratio of cold
electrons to the total electron number density; β is the ratio of
cold to hot electron temperatures; and δ is the ratio of ion to electron
effective temperature. In the aforementioned equations, time and
space coordinates have been normalized by the inverse of the
ion–plasma frequency ω−1

pi and Debye length λD, respectively,
whereas electron densities nh and nc are normalized by ne0. Here,
β = Tc/Th, α = npo/neo, μ = nco/neo, ] = nho/neo, δ = Ti/Teff, γ = Teff/Tp,
Teff = ThTh/(μTh + ]Tc), ci � (Teff/mi)1/2, ω−1

pi � (4πneoe2/mi)−1/2,
and λD � (Teff/(4πneoe2))1/2.

3 Derivation of the mKdVE

Before deriving the mKdV equation, we remark that in some
cases, it so happens that the nonlinear term in the KdV equation
becomes identically zero because of the value of plasma parameters.
As a consequence, no solitary wave is possible. This necessitates to
consider the next-order (higher-order) non-linearity to balance
dispersion in the governing equation leading to the mKdV
equation. Moreover, it is worthwhile to explore the effect of
cubic non-linearity on the formation of nonlinear structures,
which becomes possible with the mKdV equation. For that, the
following stretched coordinates ξ and τ are introduced [32]

ξ � ε x − λt( ),
τ � ε3t,

{ (8)

where λ indicates the phase velocity and ε is a small and real
perturbation parameter. We next expand the physical variables in
Eqs. (4)–(7) as follows:

ni � 1 + ϵni1 + ϵ2ni2 + ϵ3ni3 +/ ,
ui � ϵui1 + ϵ2ui2 + ϵ3ui3 +/ ,
ϕ � ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 +/ ,
ρ � ϵρ1 + ϵ2ρ2 + ϵ3ρ3 +/ .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (9)
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Substituting Eqs (8)–(9) into Eqs (1)–(3) and equating the terms
with same power of ϵ will yield the following equations in the lowest
order, that is, O (ϵ2)

ui1 � λni1 � 3λ

3λ2 − 5σ( )ϕ1,

λ �
�����������
1 − α( )
1 + αγ( ) + 5δ

3

√
.

(10)

For the next higher-order equations, that is, O (ϵ3), and after
substituting the values of ni1, ui1, and λ, we obtain

ui2 � 81λ3 − 18λ( )
2~λ

2 ϕ2
1 −

15δ

2~λ
3ϕ

2
1 +

3
~λ
ϕ2, (11)

ni2 � 81λ2 − 15δ( )
2~λ

3 ϕ2
1 +

3
~λ
ϕ2, (12)

αγ2 − μ + ]β2( )
μ + ]β( )2 + 81 1 − α( )λ2

~λ
3 − 15δ 1 − α( )

~λ
3 � 0, (13)

where ~λ � (3λ2 − 5δ).
To the next higher-order equation of ϵ, that is, O (ϵ4), we obtain

zτni1 − λzξni3 + zξ ui2ni1( ) + zξ ni2ui1( ) + zξui3 � 0, (14)
zτui1 − λzξui3 + ui1zξui2 + ui2zξui1 + zξϕ3 −

5
9
δni2zξni1 + 5

3
δzξni3

−5
9
δni1zξni2 + 10

27
δn2i1zξni1 � 0, (15)

and

z2ξϕ1 + 1 − α( )ni3 − αγϕ3 −
1
6
αγ3ϕ3

1 + αγ2ϕ1ϕ2 − ϕ3 −
μ + ]β2( )ϕ1ϕ2

μ + ]β( )2
−1
6

μ + ]β3( )ϕ3
1

μ + ]β( )3 � 0. (16)

Differentiating Eqs (11), (12) and using Eq. (13), the following
mKdVE is obtained:

zτϕ1 + Aϕ2
1zξϕ1 + Bz3ξϕ1 � 0, (17)

with

A � 3λ2 − 5δ( )2
18 1 − α( )λ

6561 1 − α( )λ4
2~λ

5 − 2565 1 − α( )δλ2
2~λ

5 − 486 1 − α( )λ2
~λ
4[

+225δ
2 1 − α( )
2~λ

5 + 30 1 − α( )δ
~λ
4 − αγ3

2
− 1
2

μ + ]β3( )
μ + ]β( )3⎤⎦ (18)

and

B � 3λ2 − 5δ( )2
18 1 − α( )λ . (19)

4 Solution to the mKdVE via JEFEM

Considering the mKdV Eq. (17), we obtain

zτϕ1 + Aϕ2
1zξϕ1 + Bz3ξϕ1 � 0, (20)

where ϕ1 ≡ ϕ1(ξ, τ).
Substituting the traveling wave solution ϕ1 = ψ(η), where η = k (ξ −

uτ), into Eq. (20), the following Duffing equation is obtained [61–66]:

€ψ + pψ + qψ3 � 0, (21)
where €ψ ≡ d2ψ/dη2, p � −u/(Bk2), and q � A/(3Bk2).

4.1 Periodic solution to the mKdVE

For the JEFEM, we consider the ansatz

ψ η( ) � ∑n
j�0

ajSn
j η( ), (22)

where Sn(η) ≡ Sn(η, m) indicates the modulus of the JEF such that
0 ≤ m ≤ 1.

Inserting Eq. (22) in Eq. (21) and using the balancing principle
(higher non-linearity gives 3n, while higher derivative gives n + 2),
we find n = 1; thus, Eq. (22) reduces to

ψ η( ) � a0 + a1Sn η( ). (23)
Substituting Eq. (23) into Eq. (21) and equating the terms of the
same orders to zero, we obtain

a0 � 0, a1 � ±

����−6B
A

√
mk,

u � −Bk2 1 +m2( ).
⎧⎪⎪⎨⎪⎪⎩ (24)

Note that the velocity u is a free parameter. Thus, from Eq. 24, we
can obtain the value of k as follows:

k �
����������
− u

B 1 +m2( )
√

, (25)

leading to the following new form of a1

a1 � ±

���������
6u

A 1 +m2( )

√
m. (26)

Thus, the periodic solution to the mKdVE can be expressed as

ψ ξ, τ( ) � ±

���������
6u

A 1 +m2( )

√
mSn

���������−u
B 1 +m2( )

√
ξ − uτ( )[ ]. (27)

However, knowing that B > 0 and u > 0, this solution can only exist
for A < 0. Eq. (28), therefore, takes the following form:

ψ ξ, τ( ) � ∓
���������

6u
A 1 +m2( )

√
mSn

���������
u

B 1 +m2
1( )

√
ξ − uτ( )⎡⎢⎢⎣ ⎤⎥⎥⎦, (28)

wherem1 = 1 −m. However, this is the unbounded periodic solution
which is of little physical significance. Thus, we can consider a new
ansatz

ψ η( ) � ∑n
j�0

bjCn
j η( ). (29)

Applying Eq. (29) to Eq. (21) and by applying the balancing
principle, we obtain n = 1, which leads to

ψ η( ) � b0 + b1Cn η( ). (30)
Substituting Eq. (30) into Eq. (21) yields
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b0 � 0, b1 � ±

���
6B
A

√
km,

u � Bk2 2m2 − 1( ),
⎧⎪⎪⎨⎪⎪⎩ (31)

with

b0 � 0, b1 � ±

����������
6u

A 2m2 − 1( )
√

m,

k �
����������

u

B 2m2 − 1( )√
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (32)

Accordingly, the periodic Cn solution reads

ψ ξ, τ( ) � ±

����������
6u

A 2m2 − 1( )

√
mCn

����������
u

B 2m2 − 1( )
√

ξ − uτ( )[ ]. (33)

The solution given by Eq. (33) demands u > 0, A > 0, and 2m2 −
1 > 0 or u > 0, A < 0, and 2m2 − 1 < 0. The first choice gives the

bounded Cn periodic solution, whereas the second choice leads to
the solution

ψ ξ, τ( ) � ±

����������
6u

A 2m2 − 1( )

√
mnC

����������
u

B 2m2
1 − 1( )

√
ξ − uτ( )⎡⎢⎢⎣ ⎤⎥⎥⎦, (34)

where nC = 1/Cn. Equation 34 reveals unbounded periodic solutions for
0.29 < m < 0.7071 and bounded periodic solutions for 0 < m < 0.29.
Remember that thewave profile depends on the phase and themodulus of
the JEF. Note that hitherto invisible behavior for the second choice
emerges for some range of the parameter values of m, which is also of
physical significance (bounded periodic solution).

4.2 Shock solution to the mKdVE

First, we note that the elliptic Jacobi functions become
hyperbolic functions at m = 1. When m = 1, the solution Eq.
(27) reduces to the shock wave solution

ψ ξ, τ( ) � ±

���
3u
A

√
tanh

���−u
2B

√
ξ − uτ( )[ ]. (35)

For the real solution to this equation, we have two choices i) B < 0
and A > 0 and ii) B > 0 and A < 0. The first choice is not
possible for the values of the plasma parameters of this problem,
and the second choice gives the unbounded periodic
solution. Thus, it eliminates the possibility of the shock wave
structure.

4.3 Solitary wave solution to the mKdVE

For m = 1, the solution Eq. 33 reduces to the solitary wave
solution

ψ ξ, τ( ) � ±

���
6u
A

√
sech

��
u

B

√
ξ − uτ( )[ ]. (36)

We note that based on the solution Eq. (33), the solitary wave
solution is only possible for A > 0 and 2m2 − 1 > 0. Thus, the
analytical analysis using the JEFEM shows periodic and solitary
solutions and no shock wave solution. The method also reveals
unbounded periodic solutions which are presented for
mathematical interest.

5 Qualitative analysis of the mKdVE
(traveling wave solution)

For brevity, we take BC = A here and rewrite Eq. (20) in the
following form:

zτψ + Aψ2zξψ + Bz3ξψ � 0. (37)

According to the Lie symmetry method, Eq. (37) is invariant under
the translational symmetry. For the invariant traveling wave
solution, taking

η � k ξ − uτ( )

FIGURE 1
Periodic solution Sn for plasma parameters α =0.1, β =0.026,
γ =0.7, δ =0.01, μ =0.1, ] =0.9, and m � 1

3. Here, A <0 and 0< m <1.

FIGURE 2
Periodic solution Cn for plasma parameters α =0.1, β =0.026,
γ =0.7, δ =0.01, μ =0.1, ] =0.9, and m � 1

3. Here, A <0 and 0.29<
m <0.707.
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in Eq. (37) yields the following standard Duffing equation Eqs
(61)–(66).

€ψ � u

B
ψ − C

3
ψ3, (38)

where k = 1. Differential Eq. (38) is now expressed as an autonomous
system of first-order equations (dynamical system)

_ψ � z � f ψ, z( ),
_z � u

B
ψ − C

3
ψ3 � g ψ, z( ).

⎧⎪⎪⎨⎪⎪⎩ (39)

The Hamiltonian function (total energy) of the aforementioned
system reads as follows:

H ψ, z( ) � z2

2
− u

2B
ψ2 + C

12
ψ4. (40)

The dynamical system Eq. 39 reveals three equilibrium points
(stationary solutions):

ψ1, z1( ) � 0, 0( ),

ψ2, z2( ) � ���
3u
BC

√
, 0( ),

ψ3, z3( ) � −
���
3u
BC

√
, 0( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

The nature of the equilibrium can be determined from the eigenvalues of
the Jacobian matrix at the location of the critical points. The eigenvalues
of the Jacobian matrix of stationary solutions turn out to be

λ1 � ±
��
u

B

√
,

λ2,3 � ± i

���
2u
B

√
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (42)

The first stationary solution is a saddle, while the second and third
are centers. The local behavior of the solution at the saddle point
(hyperbolic point) matches with the global behavior of the
Hartman–Grobman theorem. For the centers (non-hyperbolic
point), the Hartman–Grobman theorem does not apply [67], and
we use the energy method. Since the Hamiltonian function Eq. (40)
is conserved dH

dψ � 0, closed orbits are represented by the center. We
make a remark that for the traveling wave solution, we expect only
three types of the waves, namely, periodic, solitary, or the shock

FIGURE 3
Periodic solution Cn for plasma parameters α =0.3, β =0.026,
γ =0.7, δ =0.01, μ =0.1, ] =0.9, and m =0.8. Here, A >0 and 2m2−1>0.

FIGURE 4
Periodic solution Cn for plasma parameters α =0.1, β =0.026, γ =0.7, δ =0.0, μ =0.1, ] =0.9, and m =0.2. Here, A <0 and 0< m <0.29.
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waves. Furthermore, we discuss the qualitative behavior of the
solution for a continuous range of the characteristic parameters
with the help of bifurcation diagrams (branches). The results of
bifurcation analysis are provided in Figures 8F, 9F, 10.

6 Results and discussion

6.1 Analytical approach

In this section, we will discuss the graphs of the numerically
investigated parametric regimes for which we obtain solitonic,
shock, and periodic solutions of the mKdVE admitted by the
JEFEM. We mention at the outset that for the present model, the
mKdVE does not admit any shock solutions; however, it allows the
formation of solitonic and periodic solutions. It is also apt to
mention here that the most important plasma parameters of the
model are the positron concentration, α, and the percentage of cold
and hot electrons present in the system represented by the
parameters μ and ], respectively.

The JEF, Sn, gives unbounded periodic solutions for A < 0 for all
values of 0 < m < 1 (an outcome of Sn property). When m = 1, the
corresponding tanh solution (shock wave) does not exist for the
parametric values of the present model. The function, Cn, clearly
gives bounded periodic solutions for A > 0 and 2m2 − 1 > 1, that is,
m > 0.707. Finally, when A < 0 and 2m2 − 1 < 0, Cn gives the
unbounded periodic solution for 0.29 < m < 0.707 and bounded
periodic solution for 0 <m < 0.29. The unexpected periodic solution
suddenly emerges depending on the value of the modulus of Jacobi
elliptic function (eccentricity of the ellipse) that strongly influences
the behavior of the wave. Once again, this conclusion comes from
the property of the Cn function with imaginary argument. The
corresponding solitonic solution, sec h (limiting the solution of Cn
when m reaches 1), exists for A > 0. From the aforementioned
discussion, we conclude that for A > 0, bounded periodic Cn and
solitary (sec h) wave solutions exist. For A < 0, there are unbounded
periodic solutions because Sn, Cn, and tanh have imaginary
arguments. An exception in the case of A < 0 comes from nC for

which the bounded periodic solution exists for a range of small
values of m. As m reaches closer to zero, elliptic Jacobi functions
tend to yield trigonometric functions and the unbounded periodic
solutions become bounded periodic functions. The mathematical
reason is that in nC, it is the complimentary of m, that is, m1 that
matters instead ofm. The fate of the waveforms depends on the sign
of the non-linearity coefficientA and the value ofm. For all the cases,
the amplitude needs to be real for physical solutions. We once again
emphasize that unbounded solutions are not physical. The shock
solution does not appear for any choice of parameters of the
problem. We now proceed to the discussion of the figures and
emphasize that the reader should look at them in the light of
aforementioned explanation. Here, we plot only the positive
solutions.

The Sn periodic solution for μ = 0.1 and α = 0.1 is shown in Figure 1.
These values yield A < 0, which corresponds to the unbounded periodic
solution. If we keep α the same and choose μ > 0.17, the non-linearity

FIGURE 5
Soliton profile for plasma parameters α =0.1, β =0.026, γ =0.7,
δ =0.01, μ =0.2, ] =0.8, and m =1. Here, A >0 and 2m2−1>0.

FIGURE 6
Soliton profile for plasma parameters α =0.0, β =0.026, γ =0.7,
δ =0.01, μ =0.25, ] =0.75, and m =1. Here, A >0 and 2m2−1>0.

FIGURE 7
Comparison of two periodic waves: the dashed line represents
α =0 and thick line represents α =0.1 drawn for A >0 and 2m2−1>0.
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coefficient A becomes greater than zero and Sn function offers no
solution. Physically, this means that the change in values of the
positron concentration will change the range of A for which it goes
from positive to negative, turning the unbounded periodic solution into
no solution. The aforementioned analysis is true for all values ofm. Before
discussing Figure 2, we recall that the periodic solution, Cn, exists, in
principle, for bothA≶ 0 subject to (2m2− 1)≶ 0. ForA> 0 (μ> 0.17), the
Cn solution gives the bounded periodic solution—the physically plausible
solution (Figure 3). For A < 0 (μ = 0.1) and 0.29 <m < 0.707, we obtain
the unbounded periodic solution (Figure 2), whereas for 0<m< 0.29, the
solution turns into the bounded periodic solution (Figure 4). The former
solution is not physical, whereas the latter is physical. The interesting
physical solution emerges suddenly because of small values ofm, and the
Jacobi function approaches the trigonometric function which is certainly
bounded.

The Jacobi functions turn into hyperbolic functions form = 1. In this
case, the bounded Cn function becomes sech function representing the
solitarywave solution. This is substantiated in Figure 5 by choosingα= 0.1
and μ = 0.2 (A > 0). However, for α = 0 and μ = 0.2, A becomes negative,
and the solitary solution does not exist. However, if we increase μ to 0.25,
A becomes positive, and the solitary wave appears once again. These
observations lead us to the physics of the plasma. The addition of
positrons admits a solitary wave for a less percentage of cold electrons
in comparison with ordinary (EI) plasma. Figures 5–7 plot the acoustic

solitary wave for both EPI and EI plasmas for the set of values which
admits solitary waves. It is found that the inclusion of positrons mitigates
the amplitude of the solitary wave significantly. The solitary wave solution
is another physical solution in addition to the two discussed previously. It
may be added that the unbounded periodic solutions are interesting from
the mathematical standpoint and add to the understanding of various
possibilities of physical parameters of the problem and cannot be
summarily toned down even from the point of view of physicists.

All solutions that have been discussed so far theoretically are
supported by the dynamical system via the phase plane analysis and
the bifurcation diagrams. The topological behavior (local behavior) near
the equilibrium points in the phase plane provides the wave patterns
representing the solution to the mKdVE, and the bifurcation diagrams
predict the behavior for the continuous spectrum of the physical
parameters of the problem. The dynamical system approach is
presented in the following section.

6.2 Dynamical system and bifurcation
diagram

6.2.1 Variation with respect to α
The phase portrait in the (ψ, z) plane is given by Figure 8A. In

this figure, the center corresponds to the closed orbits having a finite

FIGURE 8
(A) Phase plane diagram in the (ψ, z) plane for α =0.3 and A >0. (B) Solitary wave. (C)–(D) Periodic wave for α =0.3 and A >0. (E) Phase plane
diagram in the (ψ, z) plane for α =0.1 and A <0. (F) Bifurcation diagram between α and ψ keeping other parameters as β =0.026, δ =0.01, γ =0.7,
] =0.9, and μ =0.1.
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period, and the homoclinic orbits (saddle is connected to itself)
correspond to the solitary wave with an infinite period. The two
pairs of homoclinic orbits represent rarefaction and compression
waves, and the orbit outside the homoclinic orbit corresponds to a

super periodic wave. No heteroclinic orbit (two or more saddles and
at least one center in the phase plane) suggests that no traveling
shock wave solution is expected for the mKdVE for this choice of
parameters. This observation is in conformity with the analytical

FIGURE 9
(A) Phase plane diagram in the (ψ, z) plane for β =0.1 and A >0. (B) Solitary wave. (C)–(D) Periodic wave for β =0.1 and A >0. (E) Phase plane
diagram in the (ψ, z) plane for β =0.01 and A <0. (F) Bifurcation diagram between β and ψ keeping other parameters as α =0.3, δ =0.01, γ =0.7,
] =0.9, and μ =0.1.

FIGURE 10
Bifurcation diagram between μ and ψ. (A) α =0.0; (B) α =0.1.
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observation made previously. Figure 8B is the solitary wave
representing the homoclinic orbit that satisfies the boundary
conditions at infinity for mKdVE. Figure 8F gives the bifurcation
diagram for α in the α − ψ plane, keeping other parameters fixed. The
bifurcation diagram defines the solution behavior over a continuous
range 0 < α < 1. For 0 < α < 0.3, there is only one saddle point at (0,0),
whereas for α ≥ 0.3, there is a saddle at (0,0) and centers at ±

��
3u
BC

√
(Figures 8E, F). The phase portraits give the solution behavior for the
specific choice of α parameter, whereas the bifurcation diagrams
predict the solution behavior for all possible choices of this
parameter. The qualitative behavior for other values of α

(including α = 0.3) is determined from the bifurcation diagram.
For instance, at α = 0.5, the bifurcation diagram shows the existence
of two centers (red branches) and one saddle (blue branch).
Similarly, for α = 0.1, there is only one singular point, saddle,
which is unstable equilibrium. The value of α = 0.3 corresponds to
two bifurcation points (−0.64, 0) and (0.64,0). The behavior for this
value of α is also supported by the bifurcation diagram, that is,
Figure 8F. A single saddle point (which does exist in the phase plane)
has two branches. One branch moves toward the critical point
(stable branch), and the other (unstable branch) moves away from
the critical point. The one which moves away from the saddle point
gives the periodic wave of infinite amplitude (the singular solution).
Moreover, the inset branches of the saddle show the stable manifold,
and outset branches are the unstable manifold (see Figure 8E). From
the foregoing analysis, the sensitivity of the positron concentration is
evident. The switching of the dynamical behavior takes place at the
parametric value α = 0.3. For the range 0 < α < 0.3, there is only
saddle (showing unbounded periodic solutions) and two centers
(closed orbits) for α ≥ 0.3. It may further be noted that for 0 < α < 0.3
and A < 0, unbounded periodic solutions are obtained as shown in
Figure 8E, whereas for α ≥ 0.3, the bounded periodic solutions are
obtained as shown in Figures 8C, D. These observations are in
conformity with the analytical results given previously in Section 4.

6.2.2 Variation with respect to β
Similar analysis is repeated for β = 0.1 in Figure 9. The analysis

shows two centers and one saddle in the phase plane. According to
the physics of these critical points, they correspond to close orbits
and homoclinic orbit, respectively (Figure 9A). The homoclinic orbit
represents the solitary wave structure of the wave form shown in
Figure 9B. The value β = 0.01 reveals only one critical point—saddle
point (unstable equilibrium). These observations are authenticated
from the bifurcation diagram (Figure 9F), showing a saddle at (0,0)
for 0 < β < 0.02 and centers at ±

��
3u
BC

√
for β ≥ 0.02. The value of β =

0.026 corresponds to two bifurcation points (−0.64, 0) and (0.64,0)
(Figure 9F).We further observe that the non-linearity coefficientA <
0 for 0 < β < 0.02 gives rise to unbounded periodic solutions
(Figure 9E), and for A > 0, the bounded periodic solution is
obtained, as shown in Figures 9C, D. We conclude that the
nature of these critical points, for the continuous range of their
values, can be forecasted without actually experimenting for the
specific values of these parameters from the phase plane analysis or
analytic considerations.

6.2.3 Variation with respect to μ

First, we recall that variation of positron concentration (μ) in the
system changes the range of percentage of cold electrons for which

the periodic or solitary waves exist. The bifurcation diagram between
μ and ψ is shown in Figures 10A, B) for different values of α

(positron concentration). It is observed that the region for the
existence of solitary wave increases with α. From the bifurcation
diagram, we infer that an increase in positron concentration gives
solitary behavior for lesser percentage of cold electrons μ. The
branch points with respect to μ for α = 0.0 and α = 0.1 are
(±0.97, 0) and (±0.94, 0), respectively (Figures 10A, B). This
observation is in agreement with the analytic results obtained
previously. The wave forms for saddles in Figures 8E, 9E are not
presented since they correspond to unbounded periodic solutions
and are of little physical significance.

6.2.4 Some significant observations of bifurcation
analysis

The bifurcation diagrams provide the solution behavior for a
continuous range of physically important parameters, namely, α,
β, and μ. Another important aspect of even greater significance is
that the bifurcation theory predicts and identifies the switching of
the solution behavior from one topological space to another when
the value of a parameter crosses some threshold value. For
example, the bifurcation diagram predicts the change in
behavior from periodic to solitary at α = 0.3 and β = 0.026.
Similarly, a cut off from the periodic to solitary waves with
respect to μ for α = 0.0 and α = 0.1 comes at (±0.97, 0) and
(±0.94, 0), respectively. Moreover, the bifurcation theory plays an
important role in the analysis of highly nonlinear models whose
analytical solution is not possible. It is effective to probe the
stability of the solution by investigating the equilibrium curves
drawn versus characterized parameters in advance without
plotting the topological structures.

7 Summary and conclusion

The nonlinear ion acoustic waves in unmagnetized collisionless
plasma consisting of two populations of electrons (cold and hot),
positrons, and warm adiabatic ions are investigated. The mKdVE is
derived using multi-scale analysis and solved by the Jacobi elliptic
function expansion method. The bounded periodic and solitary
solutions are obtained. In addition to that, unbounded periodic
solutions (of little physical significance) also appear in the solution.
No shock wave is found for any value of plasma parameters.

The dynamical system theory and the bifurcation analysis are
applied to determine the qualitative behavior of the mKdVE. The
behaviors are determined from the nature of the critical points and
the corresponding phase plane diagrams. The centers and
homoclinic orbits ensure periodic and solitary wave behaviors,
whereas the absence of heteroclinic orbit confirms the non-
existence of the shock wave and corroborates the analytical
results. A complete convergence between the analytical results
and the qualitative behavior is established. In the end, we
conclude with the remark that the qualitative behavior is useful
when the closed-form solutions of the nonlinear differential
equations are known and crucial and when analytic solutions are
not possible. The results presented here provide a general framework
and can be used to study a variety of plasma waves in laboratory,
space, and astrophysical plasmas.
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