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It is renowned that Hirota–Satsuma–Ito (HSI) equation is widely used to study wave
dynamics of shallow water. In this work, two new HSI-like equations are investigated
which could be extended to diversify problems in natural phenomena and give
admirable contributions by applying the generalized exponential rational function
method (GERFM). With the aid of symbolic calculations, various constraints on the
free parameters are given, while classes of wave solutions are explicitly constructed
from the coefficients of the combined non-linear and dissipative terms. After
specifying values for free parameters, singular, periodic singular and anti-kink
waves are demonstrated in 3D figures to exhibit different kinds of wave
propagations. The fact that parameters directly influence the wave amplitude and
speed of traveling waves is illustrated. The derived results are innovative and have
important applications in the current field of mathematical physics research.
Eventually, we show that generalized exponential rational function method is
effective and straightforward to solve higher-order and high-dimensional non-
linear evolution equations.
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1 Introduction

It is well-known that soliton waves are normally localized in time and space, and in the field
of the non-linear evolution equations (NLEEs) solitary waves are considered as the main
fundamental properties. Meanwhile, the multi-soliton waves are considered as significant
features to the integrable equations where the existence of soliton and multi-soliton waves is
naturally used to investigate non-linear physical phenomena in the real world [1]. Recently,
various versions of models have been explored, some of which are the Sawada–Kotera (SK)
equation to the study of the motion of long waves in shallow water under the gravity [2], the
Kadomtsev–Petviashvili (KP) equation to the study of bifurcation phenomena in fluids [3], the
Hirota–Satsuma–Ito (HSI) equation to the study of shallow water wave [4–12], the Schrodinger
equations to the study of fiber applications [13–15] and others [16–34]. Moreover, with the
rapid development of computer calculation science, in the latest decade, many scientists have
paid attention to the analytical solutions of NLEEs. In order to better understand the non-linear
features in reality, it is very important to obtain exact solutions used to simulate the non-linear
phenomena.

It is noted that several methods have been presented to generate the exact solutions of
non-linear mathematical models through the traveling wave transformation, converting
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the non-linear partial differential equations (NPDEs) into
ordinary differential equations (ODEs). As people known most
of the proposed methods can be divided into two categories. The
first one can be used to generate a limited set of exact solutions by
simple computation and the second one requires complex
computation, but can produce abundant wave solutions, such
as the symbolic computation method [20–22, 27–34].
References [16, 17] proposed other efficient methods to deal
with the complex computation issue. However, it is notable that
Kudryashov [18] indicated many popular methods in finding the
exact solutions are equivalent to each other. It means that although
there are several published effective methods for generating exact
solutions in various forms, some of them are redundant solutions.
Very recently, an efficient and effective methodology, called the
generalized exponential rational function method (GERFM)
[20–22, 31] has been presented to extract exact solutions of the
non-linear equations. After surveying the literature, it is clear to
see that GERFM is a powerful methodology to handle the tough
and tedious mathematical problems arising from solving high-
order and high-dimensional NLEEs. With the aid of symbolic
computation, complex equations solved in a single framework can
be efficiently handled with GERFM. Comparing to the methods in
literature, the presented method can effectively yield multiple
wave solutions instead of equivalent solutions. It is well known
that the study of exact solutions of NLEEs has plays a pivotal role
in understating the non-linear physical phenomena. In this
research, the derived results are innovative, and therefore, have
important applications in the current field of mathematical
physics research.

In the past two decades integrable equations play an important
role in simulating complex physical phenomena [1]. To be one of
integrable equations the HSI equation is considerable to
characterize the (2+1)-dimensional interaction of waves in
terms of dissipative effect in fluid mechanics. Accordingly, HSI
is an important one used in the study of the propagation of
shallow-water waves in non-linear systems. As a consequence,
we may trust that the investigation of the HSI equation is able to
further explore the diverse physical phenomena in non-linear
science, such as the reported works [32–34] given the lump and
Pfaffian form solutions.

On the other hand, the mathematical modeling of countless
physical systems has implications for NLEEs in various fields of
applied science and engineering. Fortunately, two newly
constructed (2+1)-dimensional HIS-like equations were proposed
[9] constructed as

α 3 uxut( )x + uxxxt[ ] + δ1uyt + δ2uxx � 0, (1.1)
and

α 3 uxut( )x + uxxxt[ ] + β 3 uxuy( )
x
+ uxxxy[ ] + δ3uxx + δ4uxy + δ5uyy

� 0,

(1.2)
where the study of the resonance Y-type multi-soliton solutions
and soliton molecules were achieved. The research results can be
utilized to better describe a variety of physical phenomena and
understand the inelastic interactions of wave propagating in
shallow-water wave and the related field of Jimbo–Miwa (JM)
classification [9]. As mentioned above, more and more accurate

solutions will be of great help to scientists to further study
traveling waves in non-linear fluids. However, the
correspondingly traveling wave solutions to the above equations
have hitherto been unreported. Thus, in order to make more
contributions to the study of traveling wave, the above two
equations are examined by GERFM.

A class of new and different solutions including periodic and Anti-
kink waves are explicitly constructed from the coefficients of
combined non-linear and dissipative terms via symbolic
calculations. The rest sections of this work are as follows. In
Section 2, the algorithms of GERFM are illustrated step by step. In
Section 3, a variety of exact solutions to above equations are formally
generated and simulated in 3D figures. Meanwhile, the characteristics
of traveling waves are elaborated in detail. Finally, the conclusion is
given.

2 Methodology

GERFM is a relatively novel methodology to handle the partial
differential equations by utilizing the wave transformation to
transform the examined NPDEs into ODEs. To illustrate the
method, let us consider a NPDE in the form:

L ψ,ψx,ψt,ψxx, . . .( ) � 0. (2.1)
Firstly, via taking into account the new variable of

ξ � κx + μy + ωt, Eq. 2.1 can be turned to the non-linear ODE as

L ψ ξ( ), dψ
dξ

,
d2ψ

dξ2
, ...( ) � 0, (2.2)

where k, μ,ω are some undetermined parameters that are determined
during the procedure.

Step 2: Assume that Eq. 2.2 has the solution constructed as

ψ ξ( ) � A0 +∑M
i�1
Ai

Φ ξ( )
Φ′ ξ( )( )i

+∑M
i�1
Bk

Φ ξ( )
Φ′ ξ( )( )−i

, (2.3)

where

Φ ξ( ) � p1 exp q1ξ( ) + p2 exp q2ξ( )
p3 exp q3ξ( ) + p4 exp q4ξ( ). (2.4)

The value ofM in Eq. 2.3 is yield via the balance principle [1] and
the unknown parameter pj, qj(1≤ j≤ 4), A0, . . . , Ai and
Bi(1≤ i≤M) will be determined by the examined Eq. 2.2.

Step 3: Following the above steps Eq. 2.3 will satisfy Eq. 2.2. Then,
putting Eq. 2.3 into Eq. 2.2 yields a system of non-linear equations.
Then, with the aid of the symbolic computation software such as
Maple, the values of pi, qi(1≤ i≤ 4), A0, . . . , Ak, and Bk(1≤ k≤M) are
determined. Finally, by using Eq. 2.3 various versions of exact
solutions to Eq. 2.1 are extracted.

3 Two new HSI-like equations

In this section, we will exert the GERFM to obtain the wave
solutions to Eq. 1.1 and Eq. 1.2, including periodic wave, solitary wave
and others.
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3.1 The solutions to Eq. 1.1

Via wave transformation ξ � κx + μy + ω t along with U(ξ) �
u(x, y, z, t) Eq. 1.1 is transformed into an ODE as

d2

dξ2
U( ) 6ακ2ω

d

dξ
U( ) + μωδ1 + δ2κ

2( ) + ακ3ω
d4

dξ4
U( ) � 0,

(3.1)
and integrating Eq. 3.1, once yields

3ακ2ω
d

dξ
U( )2

+ δ2κ
2 d

dξ
U( ) + μωδ1

d

dξ
U( ) + ακ3ω

d3

dξ3
U( ) � 0.

(3.2)
Now, Eq. 3.2 is ready to be handled by GERFM.
Via the balancing principle between Uξ

2 and Uξξξ in Eq. 3.2, we
get M � 1. Hence, from Eq. 2.3, the solution form will be
constructed as

u ξ( ) � A0 + A1
Φ ξ( )
Φ′ ξ( )( ) + B1

Φ ξ( )
Φ′ ξ( )( )−1

. (3.3)

Based on the algorithms in Section 2, several different kinds of
resolutions are accordingly derived as follows.

Category 1: Taking into account p � [−3,−1, 1, 1] and q �
[1,−1, 1,−1] gives

Φ ξ( ) � −sinh ξ( ) − 2 cosh ξ( )
cosh ξ( ) . (3.4)

and the several different sets of resolutions as follows.
Set 1:

ω � − κ2δ2
4α κ3 + δ1μ

, A1 � 0, B1 � 6κ, (3.5)

where A0, κ, μ are arbitrary contents.
Substituting the values of the parameters Eq. 3.5 into Eq. 3.3 and

Eq. 3.4, one obtains the following wave solution as

U ξ( ) � −6κ + 2A0( )cosh ξ( ) + A0 sinh ξ( )
sinh ξ( ) + 2 cosh ξ( ) . (3.6)

Thereupon, Eq. 1.1 admits the following exact solution

u1,1 x, y, t( ) �
−6κ + 2A0( )cosh κx + μy − κ2δ2

4α κ3+δ1μ t( ) + A0 sinh κx + μy − κ2δ2
4α κ3+δ1μ t( )

sinh κx + μy − κ2δ2
4α κ3+δ1μ t( ) + 2 cosh κx + μy − κ2δ2

4α κ3+δ1μ t( ) .

(3.7)
Numerical simulation corresponding to the solution

u1,1(x, y � 1, t) while taking κ � 0.1, μ � 0.2, α � 0.5,
δ1 � 1, δ2 � 0.5, A0 � 0.5, which is an anti-kink type solution, is
presented in Figure 1.

Set 2:

ω � − κ2δ2
4α κ3 + δ1μ

, A1 � −2κ, B1 � 0, (3.8)

where A0, κ, μ are arbitrary contents.
Substituting the values of the parameters Eq. 3.8 into Eq. 3.3 and

Eq. 3.4, one obtains the following wave solution as

U ξ( ) � 4κ + A0( )cosh ξ( ) + 2κ sinh ξ( )
cosh ξ( ) . (3.9)

Thereupon, Eq. 1.1 admits the following exact solution

FIGURE 1
Numerical simulation of u1,1(x, y � 1, t).
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u1,2 x, y, t( ) �
4κ + A0( )cosh κx + μy − κ2δ2

4α κ3+δ1μ t( ) + 2κ sinh κx + μy − κ2δ2
4α κ3+δ1μ t( )

cosh κx + μy − κ2δ2
4α κ3+δ1μ t( ) .

(3.10)
Category 2: Taking into account p � [1, 0, 1, 1] and

q � [1, 0, 1, 0], one achieves that

Φ ξ( ) � exp ξ( )
1 + exp ξ( ). (3.11)

Set 1:

ω � − κ2δ2
α κ3 + δ1μ

, A1 � 2κ, B1 � 0, (3.12)

where A0, κ, μ are arbitrary contents.
Substituting the values of the parameters Eq. 3.12 into Eq. 3.11 and

Eq. 3.3, one obtains the following kink wave as

U ξ( ) � A0 + 2κ + A0( ) exp ξ( )
1 + exp ξ( ) . (3.13)

There upon, Eq. 1.1 admits the following exact solution

u1,3 x, y, t( ) � A0 + 2κ + A0( ) exp κx + μy − κ2δ2
α κ3+δ1μ t( )

1 + exp κx + μy − κ2δ2
α κ3+δ1μ t( ) . (3.14)

Numerical simulation corresponding to the solution
u1,3(x, y � 1, t) while taking κ � 0.6, μ � 0.5, α � 0.9, δ1 � 0.8,
δ2 � 0.1, A0 � 0.5, which is an anti-kink type solution, is presented
in Figure 2.

Category 3: Taking into account p � [1 + i, 1 − i, 1, 1] and
q � [i,−i, i,−i], one achieves that

Φ ξ( ) � −sin ξ( ) + cos ξ( )
cos ξ( ) . (3.15)

Set 1:

ω � − κ2δ2
−4α κ3 + δ1μ

, A1 � 2κ, B1 � 0, (3.16)

where A0, κ, μ are arbitrary contents.
Substituting the values of the parameters Eq. 3.16 into Eq. 3.15 and

Eq. 3.3, one obtains the following periodic wave as

U ξ( ) � 2κ + A0( ) cos ξ( ) − 2κ sin ξ( )
cos ξ( ) . (3.17)

Thereupon, Eq. 1.1 admits the following exact solution

u1,4 x, y, t( ) �
2κ + A0( ) cos κx + μy − κ2δ2

−4α κ3+δ1μ t( ) − 2κ sin κx + μy − κ2δ2
−4α κ3+δ1μ t( )

cos κx + μy − κ2δ2
−4α κ3+δ1μ t( ) .

(3.18)
Numerical simulation corresponding to the solution

u1,4(x, y � 1, t) while taking κ � 0.6, μ � 0.5, α � 0.9, δ1 � 0.8,
δ2 � 0.1, A0 � 0.5, which is a periodic singular solution, is
presented in Figure 3.

Category 4: Taking into account p � [1 − i, 1 + i, 1, 1] and
q � [i,−i, i,−i], one achieves that

Φ ξ( ) � cos ξ( ) + sin ξ( )
cos ξ( ) . (3.19)

FIGURE 2
Numerical simulation of u1,3(x, y � 1, t).
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Set 1:

ω � − κ2δ2
−4α κ3 + δ1μ

, A1 � 0, B1 � 4κ, (3.20)

where A0, κ, μ are arbitrary contents.
Substituting the values of the parameters Eq. 3.20 into Eq. 3.19 and

Eq. 3.3, one obtains the following periodic wave as

U ξ( ) � 4κ + A0( ) cos ξ( ) + A0 sin ξ( )
cos ξ( ) + sin ξ( ) . (3.21)

Thereupon, Eq. 1.1 admits the following exact solution

u1,5 x, y, t( ) �
4κ + A0( ) cos κx + μy − κ2δ2

−4α κ3+δ1μ t( ) + A0 sin κx + μy − κ2δ2
−4α κ3+δ1μ t( )

cos κx + μy − κ2δ2
−4α κ3+δ1μ t( ) + sin κx + μy − κ2δ2

−4α κ3+δ1μ t( ) .

(3.22)
Numerical simulation corresponding to the solution

u1,5(x, y � 1, t) while taking κ� 1, μ� 1.2, α� 0.3,δ1 � 0.8,δ2 � 0.7,
A0 � 0.7, which is a periodic singular solution, is presented in Figure 4.

Category 5: Taking into account p � [−2 − i, 2 − i,−1, 1] and
q � [i,−i, i,−i], one achieves that

Φ ξ( ) � cos ξ( ) + 2 sin ξ( )
sin ξ( ) . (3.23)

Set 1:

ω � − κ2δ3
−4α κ3 + δ1μ

, A1 � 2κ, B1 � 0. (3.24)

where A0, κ, μ are arbitrary contents.

Substituting the values of the parameters Eq. 3.24 into Eq. 3.23 and
Eq. 3.3, one obtains the following wave solution as

U ξ( ) � 4κ + A0( ) sin ξ( ) + 2κ cos ξ( )
sin ξ( ) . (3.25)

Thereupon, Eq. 1.1 admits the following exact solution

u1,6 x, y, t( ) �
4κ + A0( ) sin κx + μy − κ2δ2

−4α κ3+δ1μ t( ) + 2κ cos κx + μy − κ2δ2
−4α κ3+δ1μ t( )

sin κx + μy − κ2δ2
−4α κ3+δ1μ t( ) .

(3.26)
Category 6: Taking into account p � [−1, 3, 1,−1] and

q � [1,−1, 1,−1], one achieves that

Φ ξ( ) � cosh ξ( ) − 2 sinh ξ( )
sinh ξ( ) . (3.27)

Set 1:

ω � − κ2δ2
4α κ3 + δ1μ

, A1 � 2κ, B1 � 0. (3.28)

where A0, κ, μ are arbitrary contents.
Substituting the values of the parameters Eq. 3.28 into Eq. 3.27 and

Eq. 3.3, one obtains the following wave solution as

U ξ( ) � −4κ + A0( )sinh ξ( ) + 2κ cosh ξ( )
sinh ξ( ) . (3.29)

Thereupon, Eq. 1.1 admits the following exact solution

FIGURE 3
Numerical simulation of u1,4(x, y � 1, t).
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u1,7 x, y, t( ) �
−4κ + A0( )sinh κx + μy − κ2δ2t

4α κ3+δ1μ( ) + 2κ cosh κx + μy − κ2δ2t
4α κ3+δ1μ( )

sinh κx + μy − κ2δ2t
4α κ3+δ1μ( ) .

(3.30)
Numerical simulation corresponding to the solution

u1,7(x, y � 1, t) while taking κ � 1, μ � 1.2, α � 0.8, δ1 � 0.2,
δ2 � 0.3, A0 � 0.7, which is a singular solution, is presented in
Figure 5.

Category 7: Taking into account p � [i,−i, 1, 1] and
q � [i,−i, i,−i], one achieves that

Φ ξ( ) � −sin ξ( )
cos ξ( ). (3.31)

Set 1:

κ � −B1

2
, μ � −B

2
1 8B1ωα + δ2( )

4δ1ω
, A1 � −B1, (3.32)

where A0, B1, ω are arbitrary contents.
Substituting the values of the parameters Eq. 3.32 into Eq. 3.31 and

Eq. 3.3, one obtains the following periodic wave as

U ξ( ) � −4B1cos 2 ξ( ) + A0 sin 2ξ( ) + 2B1

sin 2ξ( ) . (3.33)

Thereupon, Eq. 1.1 admits the following exact solution

u1,8 x, y, t( ) � −4B1cos 2 ξ( ) + A0 sin 2ξ( ) + 2B1

sin 2ξ( ) , (3.34)

where

ξ � −B1x − B2
1 8B1ωα + δ2( )

2δ1ω
y + 2ω t. (3.35)

Numerical simulation corresponding to the solution
u1,8(x, y � 1, t) while taking κ � 1, μ � 0.8, α � 0.8, δ1 � 0.7,
δ2 � 0.3, ω � 0.3, A0 � 0.7, B1 � 0.7, which is a periodic singular
solution, is presented in Figure 6.

Category 8: Taking into account p � [1,−1, 1,−1] and
q � [1,−1, 1,−1], one achieves that

Φ ξ( ) � −cosh ξ( )
sinh ξ( ). (3.36)

Set 1:

κ � −B1

2
, μ � B2

1 8B1ωα − δ2( )
4δ1ω

, A1 � B1, (3.37)

where A0, B1, ω are arbitrary contents.
Substituting the values of the parameters Eq. 3.37 into Eq. 3.36 and

Eq. 3.3, one obtains the following wave solution as

U ξ( ) � −B1coth
2 ξ( ) + A0 coth ξ( ) − B1

coth ξ( ) . (3.38)

Thereupon, admits the following exact solution

u1,9 x, y, t( ) � −B1coth
2 ξ( ) + A0 coth ξ( ) − B1

coth ξ( ) , (3.39)

Where

ξ � −B1x

2
+ B2

1 8B1ωα − δ2( )y
4δ1ω

+ ω t. (3.40)

Category 9: Taking into account p � [−1, 1, 1, 1] and
q � [1,−1, 1,−1], one achieves that

Φ ξ( ) � −sinh ξ( )
cosh ξ( ). (3.41)

FIGURE 4
Numerical simulation of u1,5(x, y � 1, t).
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Set 1:

κ � −A1

2
, μ � A2

1 2αωA1 − δ2( )
4δ1ω

, B1 � 0, (3.42)

where A0, A1, ω are arbitrary contents.
Substituting the values of the parameters Eq. 3.42 into Eq. 3.41 and

Eq. 3.3, one obtains the following kink wave as

U ξ( ) � A0 − A1 tanh ξ( ). (3.43)
Thereupon, Eq. 1.1 admits the following exact solution

u1,10 x, y, t( ) � A0 − A1 tanh −A1x

2
+ A2

1 2αωA1 − δ2( )y
4δ1ω

+ ω t( ).
(3.44)

Numerical simulation corresponding to the solution u1,10(x, y �
1, t) while taking κ � 1, μ � 0.8, α � 0.6, δ1 � 0.5,
δ2 � 0.3, ω � 0.9, A0 � 0.1, A1 � 0.7, which is an anti-kink type
solution, is presented in Figure 7.

Category 10: Taking into account p � [1, 1,−1, 1] and
q � [1,−1, 1,−1], one achieves that

Φ ξ( ) � cosh ξ( )
sinh ξ( ). (3.45)

Set 1:

κ � B1

2
, μ � −B

2
1 8B1ωα + δ2( )

4δ1ω
, A1 � B1, (3.46)

where A0, B1, ω are arbitrary contents.
Substituting the values of the parameters Eq. 3.46 into Eq. 3.45 and

Eq. 3.3, one obtains the following wave solution as

U ξ( ) � 2B1cosh
2 ξ( ) + A0 sinh 2ξ( ) − B1

sinh 2ξ( ) . (3.47)

Thereupon, Eq. 1.1 admits the following exact solution

u1,11 x, y, t( ) � 2B1cosh
2 ξ( ) + A0 sinh 2ξ( ) − B1

sinh 2ξ( ) . (3.48)

where

ξ � B1x − B2
1 8B1ωα + δ2( )y

2δ1ω
+ ω t. (3.49)

So far, via the appropriate choice of free parameters there has
11 exact solutions are formally presented to Eq. 1.1 which are valuable
to demonstrate the propagation of traveling waves.

3.2 The solutions for Eq. 1.2

In this section, we will exert the GERFM to obtain the wave
solutions to Eq. 1.2 including periodic wave, solitary wave and others.

Via the mentioned algorithm Eq. 1.2 is transformed into an ODE as

ακ3ω
d4

dξ4
U( ) + d2

dξ2
U( )

× 6κ2 αω + βμ( ) d

dξ
U( ) + μ2δ5 + μδ4κ + δ3κ

2( ) � 0.
(3.50)

Then, integrating Eq. 3.50 once yields

ακ3ω
d3

dξ3
U( ) + 3ακ2ω + 3βκ2μ( ) d

dξ
U( )2

+ δ3κ
2 + μδ4κ + μ2δ5( ) d

dξ
U( ) � 0. (3.51)

Now, Eq. 3.51 is the perfect form to be handled by GERFM and
used to retrieve a variety of wave solutions to Eq. 1.2. It is noted that
employing the balancing principle in Eq. 3.51 gives M � 1. Hence,

FIGURE 5
Numerical simulation of u1,7(x, y � 1, t).
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from Eq. 2.3, the solution of Eq. 3.51 will be constructed as same as Eq.
3.3. Then, proceeding as before we get the following solutions:

Category 1: Taking into account p � [1, 1,−1, 1] and
q � [1,−1, 1,−1], one achieves that

Φ ξ( ) � −cosh ξ( )
sinh ξ( ). (3.52)

Set 1:

ω � −κ2δ3 − μδ4κ − μ2δ5
16α κ3

, A1 � B1 � − 2 κ2δ3 + μδ4κ + μ2δ5( )κ
−16β κ3μ + κ2δ3 + μδ4κ + μ2δ5

,

(3.53)
where κ, μ, A0 are arbitrary contents.

Substituting the values of the parameters Eq. 3.53 into Eq. 3.52 and
Eq. 3.3, one obtains the following wave solution as

U ξ( ) �
2μ2δ5κ + 2μδ4κ

2 + 2κ3δ3 + 2κ3δ3 + 2μδ4κ
2 + 2μ2δ5κ( )coth2 ξ( )

+A0 −16β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( )( )
−16β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( ) .

(3.54)
Thereupon, Eq. 1.2 admits the following exact solution

u2,1 x, y, t( ) �
2μ2δ5κ + 2μδ4κ

2 + 2κ3δ3 + 2κ3δ3 + 2μδ4κ
2 + 2μ2δ5κ( )coth2 ξ( )

+A0 −16β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( )( )
−16β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( ) ,

(3.55)
where

ξ � κx + μy + −κ2δ3 − μδ4κ − μ2δ5( )
16α κ3

t. (3.56)

Set 2:

ω � −κ2δ3 − μδ4κ − μ2δ5
4α κ3

, A1 � − 2 κ2δ3 + μδ4κ + μ2δ5( )κ
−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5

,

B1 � 0, (3.57)
where κ, μ, A0 are arbitrary contents.

Substituting the values of the parameters Eq. 3.57 into Eq. 3.52 and
Eq. 3.3, one obtains the following wave solution as

U ξ( ) �
2κ3δ3 + 2μδ4κ2 + 2μ2δ5κ( )coth ξ( ) + A0 −4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )

−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5
.

(3.58)
Thereupon, Eq. 1.2 admits the following exact solution

u2,2 x, y, t( ) �
2κ3δ2 + 2μδ4κ

2 + 2μ2δ5κ( )coth κx + μy + −κ2δ3 − μδ4κ − μ2δ5( )
4α κ3

t( )
+A0 −4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5

.

(3.59)
Set 3:

ω � −κ2δ3 − μδ4κ − μ2δ5
4α κ3

, A1 � 0, B1 � − 2 κ2δ3 + μδ4κ + μ2δ5( )κ
−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5

,

(3.60)
where κ, μ, A0 are arbitrary contents.

Substituting the values of the parameters Eq. 3.60 into Eq. 3.52 and
Eq. 3.3, one obtains the following wave solution as

FIGURE 6
Numerical simulation of u1,8(x, y � 1, t).
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U ξ( ) �
A0 −4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( ) + 2μ2δ5κ + 2μδ4κ2 + 2δ3κ3

−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( ) .

(3.61)
Thereupon, Eq. 1.2 admits the following exact solution

u2,3 x, y, t( ) �
A0 −4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( ) + 2μ2δ5κ + 2μδ4κ2 + 2δ3κ3

−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )coth ξ( ) ,

(3.62)
where

ξ � κx + μy + −κ2δ3 − μδ4κ − μ2δ5( )
4α κ3

t. (3.63)

Numerical simulation corresponding to the solution
u2,3(x, y � 1, t) while taking κ � 0.3, μ � 0.8, α � 0.9, β � 0.8, δ3 �
0.5, δ4 � 0.5, δ5 � 0.3, A0 � 0.1, which is an anti-kink type solution,
is presented in Figure 8.

Category 2: Taking into account p � [−1, 0, 1, 1] and
q � [0, 0, 0, 1], one achieves that

Φ ξ( ) � − 1
1 + exp ξ( ). (3.64)

Set 1:

ω � −κ2δ3 − μδ4κ − μ2δ5
α κ3

, A1 � 2 κ2δ3 + μδ4κ + μ2δ5( )κ
−β κ3μ + κ2δ3 + μδ4κ + μ2δ5

,

B1 � 0, (3.65)
where κ, μ, A0 are arbitrary contents.

Substituting the values of the parameters Eq. 3.65 into Eq. 3.64 and
Eq. 3.3, one obtains the following kink wave as

U ξ( ) �
A0 −β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) exp ξ( ) + −βμA0 − 2δ3( )κ3

+ −2μδ4 + A0δ3( )κ2 + −2μ2δ5 + μA0δ4( )κ + μ2A0δ5
( )

−β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) 1 + exp ξ( )( ) .

(3.66)
Thereupon, Eq. 1.2 admits the following exact solution

u2,4 x, y, t( ) �
A0 −β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) exp ξ( ) + −βμA0 − 2δ3( )κ3

+ −2μδ4 + A0δ3( )κ2 + −2μ2δ5 + μA0δ4( )κ + μ2A0δ5
( )

−β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) 1 + exp ξ( )( ) ,

(3.67)
where

ξ � κx + μy + −κ2δ3 − μδ4κ − μ2δ5( )
α κ3

t. (3.68)

Numerical simulation corresponding to the solution
u2,4(x, y � 1, t) while taking κ � 0.3, μ � 0.2, α � 0.9, β � 0.8, δ1 �
0.5, δ2 � 0.3, δ3 � 0.2, δ4 � 0.5, δ5 � 0.8, A0 � 0.1, which is an anti-
kink type solution, is presented in Figure 9.

Category 3: Taking into account p � [−3,−1, 1, 1] and
q � [1,−1, 1,−1], one achieves that

Φ ξ( ) � −sinh ξ( ) − 2 cosh ξ( )
cosh ξ( ) . (3.69)

Set 1:

ω � −κ2δ3 − μδ4κ − μ2δ5
4α κ3

, A1 � 0, B1 � 6 κ2δ3 + μδ4κ + μ2δ5( )κ
−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5

,

(3.70)

where κ, μ, A0 are arbitrary contents.

FIGURE 7
Numerical simulation of u1,10(x, y � 1, t).
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Substituting the values of the parameters Eq. 3.70 into Eq. 3.69 and
Eq. 3.3, one obtains the following wave solution as

U ξ( ) �

−8βμA0 − 6δ3( )κ3 + −6μδ4 + 2A0δ3( )κ2
+ −6μ2δ5 + 2μA0δ4( )κ + 2μ2A0δ5

( )cosh ξ( )
+A0 −4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )sinh ξ( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) sinh ξ( ) + 2 cosh ξ( )( ) .

(3.71)
Thereupon, Eq. 1.2 admits the following exact solution

u2,5 x, y, t( ) �
−8βμA0 − 6δ3( )κ3 + −6μδ4 + 2A0δ3( )κ2
+ −6μ2δ5 + 2μA0δ4( )κ + 2μ2A0δ5

( )cosh ξ( )
+A0 −4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( )sinh ξ( )

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
−4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) sinh ξ( ) + 2 cosh ξ( )( ) ,

(3.72)

where

ξ � κx + μy + −κ2δ2 − μδ4κ − μ2δ5( )
4α κ3

t. (3.73)

Category 4: Taking into account p � [2 − i,−2 − i,−1, 1] and
q � [i,−i, i,−i], one achieves that

Φ ξ( ) � cos ξ( ) − 2 sin ξ( )
sin ξ( ) . (3.74)

Set 1:

κ � κ, μ � μ,ω � κ2δ3 + μδ4κ + μ2δ5
4α κ3

, A0 � A0,

A1 � 0, B1 � − 10 κ2δ3 + μδ4κ + μ2δ5( )κ
4β κ3μ + κ2δ3 + μδ4κ + μ2δ5

.

(3.75)

Substituting the values of the parameters Eq. 3.75 into Eq. 3.74
and Eq. 3.3, one obtains the following periodic wave as

U ξ( ) �

−8βμA0 − 10δ3( )κ3 + −10μδ4 − 2A0δ3( )κ2
+ −10μ2δ5 − 2μA0δ4( )κ − 2μ2A0δ5

( ) sin ξ( )
+A0 4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) cos ξ( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) cos ξ( ) − 2 sin ξ( )( ) .

(3.76)
Thereupon, Eq. 1.2 admits the following exact solution

u2,6 x, y, t( ) �
−8βμA0 − 10δ3( )κ3 + −10μδ4 − 2A0δ3( )κ2

+ −10μ2δ5 − 2μA0δ4( )κ − 2μ2A0δ5
( ) sin ξ( )

+A0 4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) cos ξ( )
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠

4β κ3μ + κ2δ3 + μδ4κ + μ2δ5( ) cos ξ( ) − 2 sin ξ( )( ) ,

(3.77)

Where

ξ � κx + μy + κ2δ3 + μδ4κ + μ2δ5( )
4α κ3

t. (3.78)

Numerical simulation corresponding to the solution
u2,6(x, y � 1, t) while taking κ � 0.3, μ � 0.2, α � 0.3,
β � 0.3, δ1 � 0.5, δ2 � 0.3, δ3 � 0.2, δ4 � 0.5, δ5 � 0.8, A0 � 0.1,
which is a periodic singular solution, is presented in Figure 10.

So far, via the appropriate choice of free parameters there has six
exact solutions are formally presented to Eq. 1.2 which are valuable to
demonstrate the propagation of traveling waves.

FIGURE 8
Numerical simulation of u2,3(x, y � 1, t).
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4 Discussions

i) Based on the balancing equation the pre-constructed solution
forms to the examined Eq. 1.1 and Eq. 1.2 are generated as same as
Eq. 3.3. Nevertheless, by using the powerful GERFM, seventeen
completely different forms of seed solutions can be constructed
with distinct physical structures according to their respective
dispersion, dissipation and non-linear terms to further
demonstrate the significant properties of traveling wave.

ii) It is clear to see that wave amplitude of all extract solutions is
directly influenced by wave number κ of x direction. Moreover, the
wave speed is determined by the coefficients of dissipative terms,
uxx, uxy, and uyy.

iii) Based on the crucial idea of GERFM, there has no pre-defined seed
solutions to the investigated equations. The seed solutions are
derived by the original forms of the examined HSI-like equations
[27]. In other words, there has no redundant solutions to our
generated results. Although most of the generated solutions are in

FIGURE 9
Numerical simulation of u2,4(x, y � 1, t).

FIGURE 10
Numerical simulation of u2,6(x, y � 1, t).
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complex form, 3D plots can show different kinds of wave
propagation to help scientists understand the properties of
different solutions.

iv) The class of obtained wave solutions is explicitly constructed
from the coefficients of the combined non-linear and
dissipative terms, including singular, periodic singular, and
anti-kink waves. While singular solutions may not be very
useful from a physical point of view, they are valuable
achievements of GERFM’s approach to the problem from a
mathematical point of view.

5 Conclusion

Studying exact solutions of the non-linear problems plays a
pivotal role in understanding the non-linear physical phenomena.
In this paper, we demonstrate that HSI-like equations still have
abundant and interesting solution structures by applying
GERFM.

Meanwhile, the traveling singular waves, periodic singular waves
and anti-kink waves are presented in Figures through mathematical
software Maple. The important properties of traveling waves are
elaborated, in which the amplitude is affected by the wave number,
and the wave speed is determined by the value of the coefficient of
dissipation terms.

To summarize, under specified constraints, eleven exact
solutions to Eq. 1.1 and six ones to Eq. 1.2 are formally
presented. The singular solutions may be less useful from a
physical point of view, but from a mathematical point of view,
they are valuable achievements for GERFM to handle high-order
and high-dimensional non-linear equations. According to the
extracted results, the diversity of non-linear fluid traveling
waves related to the HSI equation is brought to light. The
presented GERFM is confirmed as an effective mathematical
tool for generating abundant wave solutions.
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