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Local community detection aims to detect local communities that have expanded
from the given node. Because of the convenience of obtaining the local information
of the network and nearly linear time complexity, researchers have proposed many
local community detection algorithms to discover the community structure of real-
world networks and have obtained excellent results. Most existing local community
detection algorithms expand from the given node to a community based on an
expansion mechanism that can determine the membership of nodes. However,
when determining the membership of neighboring nodes of a community, previous
algorithms only considered the impact from the current community, but the impact
from the potential communities around the node was neglected. As the name
implies, a potential community is a community structure hidden in an unexplored
network around a node. This paper gives the definition of potential communities of a
node for the first time, that is, a series of connected components consisting of the
node’s neighbors that are in the unexplored network. We propose a three-stage local
expansion algorithm, named LCDPC, that performs Local Community Detection
based on Potential Community exploration. First, we search for a suitable node to
replace the given node as the seed by calculating the node importance and the node
similarity. Second, we form the initial community by combining the seed and its
suitable potential community. Finally, the eligible nodes are selected by comparing
the similarities between potential communities and the expanding community and
nodes and adding them to the initial community for community expansion. The
proposed algorithm is comparedwith eight state-of-the-art algorithms on both real-
world networks and artificial networks, and the experimental results show that the
performance of the proposed algorithm is better than that of the comparison
algorithms and that the application of potential community exploration can help
identify the community structure of networks.
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1 Introduction

In recent years, there have been many changes in people’s lifestyles brought by the
emergence of various kinds of complex networks in different domains, such as computer
networks, social media networks, biological networks, and power system networks [1]. Research
on complex networks, especially the community structure of complex networks, has received
much attention in various fields and interdisciplinary subjects [2, 3]. In a real-world network,
the node represents an entity and the edge represents the correlation among entities [4]. In
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addition, edges in the same community are connected densely, and
edges between communities are sparse in contrast [3, 5].

The detection and analysis of community structure are helpful to
discover the interaction between people in social networks, the
function of proteins in protein networks, and the research fields of
scholars in academic cooperation networks. These can help people
solve practical problems in society, such as personalized
recommendations of products and information in the commercial
field, technological breakthroughs in the medical field, and expert
mining in the academic field.

Research on community detection aims to detect the community
structure in complex networks quickly and accurately. Girvan et al. [6]
proposed the classic Girvan–Newman (GN) algorithm based on the
Betweenness, which denotes the number of shortest paths between two
nodes. The GN algorithm is a hierarchical clustering algorithm based
on global information. The basic idea of GN is to delete edges in the
network with the maximum Betweenness relative to all source nodes
continuously and then recalculate the Betweenness of remaining edges
in the network relative to all source nodes all edges in the network are
deleted.

Subsequently, various excellent community detection algorithms
that depend on the global information of the network were proposed
[7]. However, accessing the global information of a real-world network
is sometimes impossible and in some cases, unnecessary [8]. On the
one hand, for large-scale or dynamic real-world networks, it is difficult
and time-consuming to obtain global information [9]. On the other
hand, in some practical applications, one does not need the global
information of the entire network but just needs to obtain local
information from a specific node [10]. Different from the
algorithms based on global information, the local community
detection algorithm is capable of obtaining the local community
based on only local information around the target node. Therefore,
an increasing number of local community detection algorithms based
on local information have emerged over time.

Most existing local community detection algorithms expand from
the given node to a community based on an expansion mechanism
that can determine the membership of nodes. The expansion
mechanism of previous algorithms is generally based on the
relationship between the community under expansion and its
neighboring nodes. However, the communities existing in the
undetected area of the network also impact these neighboring
nodes. It is arbitrary and inefficient to determine the membership
of neighboring nodes based only on the relationship between the
community and its neighboring nodes while ignoring the relationship
between the neighboring nodes and these communities in the
undetected area of the network. In addition, ignoring the
communities in the undetected area of the network means that the
lack of topological information about the node leads to a decline in the
accuracy of node membership.

Accordingly, this paper introduces the concept of the potential
community which represents the potential community structure
hidden in the unexplored network, to solve the problem above. We
define the potential communities of a node as a set of connected
components composed of node neighbors. The connected component
is a set of nodes, where there is a path between each of the two nodes.
The consideration of the potential community serves to provide the
suspicious node with the topological information of its neighboring
communities in the undetected area of the network. We propose a
three-stage local community detection algorithm named LCDPC,

which performs Local Community Detection based on Potential
Community exploration. The algorithmic process of LCDPC
consists of three stages: the seed selection stage, the community
initialization stage, and the community expansion stage. First, the
seed selection searches for a suitable seed to replace the given node.
Second, the community initialization process forms the initial
community by combining the seed and its suitable potential
community. Finally, the community expansion process adds eligible
nodes to the initial community for community expansion. The main
contributions of this paper are as follows.

• This paper gives the definition of the potential community. For
the first time, the notion of potential community is applied to the
process of node identification to increase the accuracy of the
local community detection algorithm.

• In addition, we propose a three-stage local expansion algorithm
based on potential community exploration, which performs seed
selection, community initialization, and community expansion
in order.

• Experimental results show that the application of potential
community exploration can help identify the community
structure of networks.

The rest of this paper is organized as follows. Section 2 reviews the
basic theory and the related algorithms. The basic definitions and
detailed description of the proposed algorithm are presented in
Section 3. Experimental results are shown in Section 4. Section 5
concludes this paper and outlines future work.

2 Related works

A typical local community detection algorithm consists of two
main processes: the seed selection process and community expansion
process. The seed or the seed community generated by the seed
selection process is the basis of the algorithm, which directly
determines the quality of the result. The community expansion
process takes the seed as the initial community and expands the
community by optimizing the quality function or node similarity. This
section outlines representative methods in terms of seed selection and
community expansion as well as node centrality metrics and quality
functions.

2.1 Seed selection

To obtain high-quality communities, the seed selection method is
applied to detect the most appropriate node of the target community
that contains the given node as the seed. In recent years, scholars have
proposed a variety of local community detection algorithms based on
local expansion. Lancichinetti et al. [11] developed an algorithm that
takes random nodes as the seed. Although this method has a fast
running time, it reduces the quality of the resulting community, and
the test is unstable. Baumes et al. [12] proposed a robust algorithm,
named IC (iterative scan), which takes a random edge as the seed.
However, this method is time-consuming because it produces a great
many duplicate communities when searching for seeds. Lee et al. [13]
proposed a method named GCE (greedy clique expansion), which
takes a k-clique as the seed.Whang et al. [14] proposed a new seeding
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strategy based on the same distance kernel and degree. Taking
maximal cliques as the seed, Li et al. [15] introduced a deep and
broad searching method to detect maximal cliques, where different
communities are allowed to be merged into a larger subgraph
according to some given rules. Li et al. [16] considered some
eligible nodes as a seed community and expanded the seed
community by absorbing adjacent nodes of the seed community
based on the absorbing degree function. Zareie et al. [17]
introduced a hierarchical community detection method, which
proposed two indices, the topological location of a node and the
closeness to the network graph core, to measure the influence of node
and rank them based on these two indices. To solve the seed-
dependent problem, Ding et al. [18] introduced a core detecting
method to replace the seed with the core member of the target
community. Mohammadi et al. [19] developed a new node ranking
strategy based on nodes’ global potential values, such as influence and
importance, to reveal the core of the community. Cheng et al. [20]
proposed an algorithm that performs the TOPSIS (Technique for
Order of Preference by Similarity to Ideal Solution) to rank each node
and take the node with the highest score as the seed. Rezaei et al. [21]
proposed a non-heuristic algorithm EML (Extended Machine
Learning-based vital node identification), which makes use of the
vitality of a part of a network for training a SVRmodel and predicts the
vitality of each node based on this trained SVR.

2.2 Community expansion

The community expansion method takes a seed or a seed
community as the initial community and expands it by absorbing
the appropriate neighboring nodes iteratively. There are two common
ways to determine the fitness of a node: running a greedy optimization
process for a quality function [22–26] and spreading the influence of
the seed throughout the network [27–32]. The quality function
evaluates the quality of the community partition, and the scores
generated by it can be used for partition ranking [2]. In a study on
13 quality functions based on 230 large real-world social,
collaboration, and information networks, Yang et al. distinguished
quality functions from (1) only internal community connectivity, (2)
only connectivity between internal nodes and external networks; (3)
both internal and external community connectivity and (4)
modularity [33].

Influence spreading is a method that spreads the seed influence
throughout the entire network. Inspired by the epidemic spreading
model, Raghavan et al. [34] proposed the classical LPA (Label
Propagation algorithm). LPA initializes each node in the network
with a unique label and propagates the label throughout the network.
The method stops when the node label does not change. Gregory et al.
[35] proposed an improved LPA algorithm, named COPRA
(Community Overlap PRopagation Algorithm), which allows
overlapping by multiple labels on each node. Tang [36] proposed
an algorithm based on speaker-listener label propagation to detect
overlapping nodes.

In recent years, some other excellent expansion methods have
been proposed. Tao et al. [37] proposed a method based on local
similarity, which expands the community by connecting the node of a
small-scale community with the nodes that have a high degree. Li et al.
[38] proposed an algorithm to detect overlapping communities by
diffusing the local spectral which is simulated by short random walks.

Based on the idea that walkers who follow the same node sets should
be assigned to the same community, Makoto et al. [39] proposed a
retrained random-walk similarity algorithm for community
expansion. Taking advantage of NGC (Nearest Greater Centrality)
nodes, Luo et al. [40] proposed a novel community expansion method
that adds the node that has the largest fuzzy relation with its NGC
nodes into the local community. Bahadori et al. [41] proposed a
probabilistic overlapping community detection method called
PODCD which addresses dynamic communities efficiently.
PODDCD scans communities by a probabilistic generative model
which is constructed by a multi-objective optimization
evolutionary-based method.

To enable readers to clearly understand recent achievements in the
field of seed selection and community expansion, we summarize the
characteristics, advantages, and disadvantages of the abovementioned
methods in the following Table 1.

3 Basic definitions and algorithms

3.1 Motivation

As mentioned in Section 2, researchers have proposed many local
expansion algorithms and made great progress in terms of seed
selection and community expansion. However, there are still
problems in local expansion algorithms when determining the
membership of suspicious nodes. Previous algorithms only consider
the relationship between the community and suspicious nodes while
ignoring the relationship between the suspicious node and its potential
communities.

Let us take a brief figure legend of local community detection
shown in Figure 1 to illustrate this problem. In Figure 1, subgraph C
denotes the community under detection. Subgraph N denotes the
neighboring nodes of C. The orange nodes in subgraph N denote the
suspicious nodes of C. Subgraph Pi(i∈{1−5}) denotes the potential
communities of the suspicious nodes. The area No in the dotted
line denotes the neighboring nodes outside C of suspicious node n.
The area Ni in the dotted line denotes the neighboring nodes inside C
of suspicious node n.

Node n in Figure 1 is a suspicious node of community C that is
under detection. The neighboring nodes of n can be divided into
two parts: subgraph Ni located in community C and subgraph No

located in the rest of the network. Most proposed algorithms
determine the membership of suspicious node n on the basis of
the relationship between Ni and n. Some algorithms take the
relationship between No and node n into consideration, but they
regard No as a whole. Actually, No is not an integrated whole, where
nodes likely belong to different communities. As shown in Figure 1,
No is composed of P1 and P2, which impact n. Therefore, treating
adjacent nodes as a whole in undetected areas will lead to a
reduction in the accuracy of node membership judgment in the
process of community detection.

Topological structure refers to describing the entities and their
relationships in complex networks by two basic graphic elements:
nodes and links. The more topological structure information we have,
the more precisely and rapidly we can detect the community structure
from the complex network. Therefore, the motivation of this paper is
to explore the topological structure information and subdivide the
neighborhood of suspicious nodes. Therefore, we introduce the
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abstract concept of potential community into the local community
detection algorithm. Detailed topological structure information can be
obtained by exploring the potential communities of suspicious nodes
to determine the membership of suspicious nodes accurately. As
shown in Figure 1, P1 and P2 are the potential communities of
node n. In our method, we first calculate the similarity between P1,
P2, and n. Then calculate the similarity between Ni and n. Finally, we
choose the most similar one from P1, P2, and n as the result
community. Thus we can obtain a more accurate result on the
basis of more topological structure information.

3.2 Problem definition

In this paper, we use a graph G = (V, E), where V is the node set
and E is the link set. The graph G can be represented as an
adjacency matrix A, where Aij denotes the connection of node i
and node j, if node i and node j are connected, Aij = 1; otherwise
Aij = 0. The graph G consists of communities, where C = {C1, C2, . . .
, Ci}(C1 ∪ C2, . . . , ∪ Ci ⊆ V). A community can be represented as a
node set C = {v1, v2, . . . , vj}(C ∈ C, vi ∈ V). The given node vg is the
initial node for local community detection, where vg ∈ V. The target
community Ctarget is a community where the given node is located
in the real network, where Ctarget ∈ C, vg ∈ Ctarget. The
local community detection aims to detect the most
similar community to the target community based on the
given node.

3.3 Basic definitions

The definitions related to this paper are presented in this
subsection.

Definition 1. (Neighboring nodes). The neighboring nodes N(v) of
node v is defined as follows:

N v( ) � u| v, u( ) ∈ E, u ∈ V{ }, v ∈ V (1)

TABLE 1 Pros and cons of common methods.

Methods Characteristics Advantages and disadvantages Ref

Lancichinetti Random selecting nodes as seeds Low time complexity, but high randomness [11]

Baumes Random selecting edges as seeds Low time complexity, but producing duplicate
communities

[12]

GCE Selecting k-clique as seeds Unable to address diversity of community [13]

Whang Seeding based on the same distance kernel Needing big trainset size [14]

Li Taking maximal cliques as seeds High time complexity [15]

Mohammadi Ranking nodes based on nodes’ global potential values to reveal the core of a community Strong adaptability [19]

Cheng Performing the TOPSIS to rank each node, and took the node with the highest score as seeds High time complexity [20]

Zareie Ranking nodes with two indices, the topological location of a node and the closeness to the network
graph core

Sufficient topological information [17]

Ding Searching the core of community as the alternative seed for the given node Solving seed-dependent problem [18]

Rezaei Predicting the vitality of each node based on the trained SVR model Strong adaptability, but relies on simulating the
dynamics

[21]

LPA Low time complexity Unstabitily and high randomness [34]

COPRA An improved LPA algorithm allows overlapping by multiple labels on each node Detecting overlapping communities [36]

Tao Expanding community by connecting the node in small scale community with the nodes own high
degree

High time complexity [37]

Li Detecting the overlapping communities by diffusing the local spectral which is simulated by short
random walks

Unstabitily and unpredictable [38]

Makoto Proposing a retrained random-walk similarity algorithm for community expansion Unstabitily and unpredictable [39]

Bahadori Scaning communities by a probabilistic generative model which is constructed by a multi-objective
optimization evolutionary-based method

Identifying dynamic communities efficiently [41]

FIGURE 1
An example of local community detection and the potential
communities of nodes.
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where node v and node vi are connected by a link. E is the link set and
V is the node set of network G.

Definition 2. (Neighboring Community). The neighboring
community Γ(v) of node v is defined as follows:

Γ v( ) � N v( ) ∪ v{ }, v ∈ V (2)
The neighboring community of a node is the union of the

node and its neighboring nodes. Figure 2 displays the nodes
distribution of Karate network, and Figure 3 displays a part of
Karate network. For instance, all nodes in Figure 3A make up
the neighboring community of node v1, Γ(1) = {1, 2, 3, 4, 5, 6, 7,
8, 9, 11, 12, 13, 14, 18, 20, 22, 32}. Our algorithm takes the
neighboring community of the seed node as the initial community
for expansion.

Definition 3. (Community Neighbors). The community neighbors
N(C) of community C is defined as follows:

N C( ) � u|u ∉ C,∃v ∈ C, u, v( ) ∈ E{ }, C ∈ V (3)
The community neighbors are neighboring nodes of community

members, which are not in the community. Our algorithm takes the
community neighbors of the detected community as suspicious nodes.

Definition 4. (Connected component). The connected component is
defined as follows:

The connected component is a set of nodes, where there is a path
between each pair of nodes. Nodes in the connected component are
closely connected.

Definition 5. (Potential Community). The potential community of a
node is defined as follows:

The potential communities of a node are a series of
connected components that consist of the node’s neighbors.
That is, every pair of nodes in the adjacent node is connected to
each other.

We can search for the potential communities of node v by the
following steps.

Step 1: Set up a subgraph Gv that is composed of node neighbors N(v)
and links between them. That is, a tight node set formed by
neighbors where each pair of nodes have a path, which is called
the potential community.

Step 2: Starting from one node in Gv, the proposed algorithm walks
along the link and records the nodes encountered. When a
path ends, it continues to walk along the previous branch
until no branch can be continued. The nodes recorded
constitute a connected component (The subnetwork with
only one node is also considered to be a connected
component.)

Step 3: The connected component found in step 2 is one potential
community of v, denoted by P(v)i. Remove P(v)i from Gv. The
proposed algorithm iterates step 2 until there are no nodes left
in Gv.

Note that ⋃P(v)i∈P(v) � N(v), and ∀P(v)i, P(v)j ∈ P(v), i ≠ j, P(v)i ∩
P(v)j = ∅, where P(v) represents the union of P(v)i.

Figure 3 displays the process of exploring the potential
communities of node v1 in the Karate Club Network [42].

FIGURE 2
The node distribution of the Karate network.

FIGURE 3
An example of exploring the potential community of node v1. (A) The distribution of node v1 and its neighbors. (B) Remove v1 and its links between its
neighbors. (C) Potential communities of v1.

Frontiers in Physics frontiersin.org05

Wang et al. 10.3389/fphy.2023.1114296

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1114296


We use all neighboring nodes of node v1 to form a subgraph Gv1.
The connected components determined by the proposed
algorithm are {2, 3, 4, 5, 13, 14, 18, 20, 22}, {5, 6, 7, 11}, {12}
and {32}.

Definition 6. (Node Similarity). The similarity between a pair of
nodes is defined as follows:

NS vi, vj( ) � Γ vj( ) ∩ Γ vi( )
Γ vi( ) ∪ Γ vj( )

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
, vi ∈ V, vj ∈ V (4)

The Jaccard similarity coefficient [43] is a common measure used
to compare the similarity between two finite sets. It is easy to compute
and has linear time complexity. Therefore, we use the Jaccard
similarity coefficient value of two nodes’ neighboring communities
to measure the similarity between the two nodes.

Definition 7. (Node Community Similarity). The similarity between
community C and node v is defined as follows:

NCS v, C( ) � |Γ v( ) ∩ C|× ∑
i,j∈ Γ v( )∩C( )

Aij d vi( ) + d vj( )( ), v ∈ V,C ∈ V

(5)
where |Γ(v) ∩ C| denotes the number of nodes in the intersection of the
neighboring community of node v and community C and d(v) denotes
the degree of node v.

We use the internal links in the intersection of the neighboring
community of the node and community as the measurement of
similarity between the node and community. To distinguish the
situation in which there is the same number of links in the
intersection, we set the degree of nodes on both sides of the link as
the weight of the link. In addition, a larger scale of intersectionmeans a
higher similarity between the node and community. Therefore, we add
the number of nodes in the intersection to the formula.

Definition 8. (Fittest Community). The fittest community FC to
which node v belongs is defined as follows:

FC v( ) � argmax NCS v, C( )( ), C ∈ P ∪ Cdetected( ), v ∈ V (6)
where P is the potential community set of node v.

The fittest community to which a node belongs is the community
that has the greatest similarity to the node among the potential
communities of the node and the detected community. In the
process of community expansion, nodes with the fittest community
being the detected community will be added to the detected

community. In addition, when the detected community and the
potential communities have the greatest similarity to the node at
the same time, we choose the detected community as the fittest
community.

3.4 The proposed algorithm

The proposed algorithm named LCDPC includes three stages:
seed selection, community initialization, and community
expansion. In order to give readers a clear description of the
proposed algorithm, we show an example on Karate Club
Network in Figures 3, 4.

Figure 3 shows an example of exploring the potential community
of node v1. As described in Definition.5, we first get the network
composed of the node v1 and its neighboring nodes in Figure 3A.
Second, we removed node v1 and its links which is shown in Figure 3B.
Third, each circle in Figure 3C is a connected component, the potential
community of node v1.

When node v1 is the seed, the initial community of seed v1 is
shown in Figure 4A. We can get the connected components of node v1
is {v2, v3, v4, v8, v9, v13, v14, v18, v20, v22} with similarity 3,784, {v5, v6, v7,
v11} with similarity 450, {v12} with similarity 30 and {v32} with
similarity 40 from Figure 3C. Therefore, we will form the initial
community with node v1 and the connected component that is
most similar to node v1.

Figure 4B shows the process of identification on the membership
of node v5. Note that, the value of node degree is in the whole network
rather than in the subgraph. First, we get the neighboring nodes of v5,
where {v1} is neighbor inside the community and {v7, v11} are
neighbors outside the community. Then, we explore the potential
community of v5, {v7} and {v11}. The similarity between {v7} and v5 is
(3 + 4)*2 = 14 is bigger than the similarity between {v11} and v5 is (3 +
3)*2 = 12. So the external similarity is 14 The internal similarity
between {v1} and v5 is (16 + 3)*2 = 38 is bigger than 14. Therefore,
node v5 is assigned to the community. If we perform the process
without the application of potential community, the external
neighboring nodes are considered as a whole {v7, v11}. The
similarity between {v7, v11} and v5 is ((3 + 4) + (3 + 3))*2 = 39
which is bigger than internal similarity 38. Therefore, node v5 is not a
member of the detected community.

There are four pseudo-code of LCDPC displaying in Algorithm 1,
Algorithm 2, Algorithm 3, and Algorithm 4. The flow chart of each
process is shown in Figure 5. The details of each procedure are shown
in the following text.

Potential community exploration. Line three initializes a
community P to the empty set to store the potential
community. Line four initializes a list to store the nodes that
make up the potential community. Then the first node from list is
pulled out and vtemp is initialized as this node (Line 6). Lines eight
to nine search for node sets that are linked in the common
neighbors between the neighbors of v’ and the neighbors of
vtemp and store these nodes in P and list, respectively. Lines
5–10 repeat the algorithm until there are no nodes in list.
Saving a potential community P obtained above to Ps (Line 11).
Lines 2–12 repeat the algorithm until each node vi neighbors v.
Line 13 returns all the potential communities Ps.

Seed selection. The seed selection procedure aims to search for the
most suitable node as the seed of the target community where the

FIGURE 4
An example of community initialization and community expansion
of seed v1. (A) The initial community of seed v1. (B) The process of
identification on the membership of node v5.
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given node is located. In the process of seed selection, LCDPC searches
the node that meets the following two conditions: first, the degree of
the node is greater than that of the given node; second, the node
similarity between this node and the given node is the highest among
neighboring nodes of the given node. In Algorithm 2, Line one
initializes a community to the empty set to store the result
community after the community expansion procedure. Line two
calculates the degree of each node in the graph, which is the
measurement of node similarity. Line seven calculates the
neighboring nodes N (vtemp). Line 10 calculates the similarity
between the seed and each node in the neighboring nodes of the
seed. Lines 8–17 search the seed based on the two conditions among N
(vtemp). The seed will be replaced iteratively by the node searched by
the program above until no node meets the conditions (Lines 5–18)).

Community initialization. The community initialization
procedure generates an initial community based on the seed.
The initial community consists of the seed and the potential
community of the seed that has the highest similarity to the
seed. In Algorithm 3, Line three calculates the potential
community sets P(vseed) of the seed based on Definition.5. Line
five calculates the similarity between the seed and each potential
community in P(vseed). The seed and the potential community with
the highest similarity to the seed form the initial community
(Lines 4–10).

Community expansion. The community expansion procedure
adds eligible suspicious nodes to the initial community to form the
resulting community. The eligible suspicious nodes should satisfy
the condition that the fittest community of the node is the detected

FIGURE 5
The flow chart of LCDPCs. (A) The flow chart of seed selection process. (B) The flow chart of community initialization process. (C) The flow chart of
community expansion process.
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community expanded from the initial community. In Algorithm 4,
the initial community generated by the community initialization
procedure is assigned to the temporary community (Line 1). Line
two initializes a list of suspicious nodes to the empty set. Line five
obtains the community neighbors N(Ctemp) of community Ctemp

based on Definition.3. Line one assigns N(Ctemp) to the list of
suspicious nodes. For each node in the list of suspicious nodes,
LCDPC gets the potential community set (Line 9) and calculates the
fittest community (Line 10). If the fittest community is the detected
community, the node will be added to the detected community
(Lines 11–12), and Line 13 adds the neighboring nodes that are
outside the detected community to the list of suspicious nodes. The
program stops when there is no suspicious node meeting the
condition, which means that the community does not change
anymore (Line 16).

Input: Graph G = {V, E}, link set E, node set V, node v.

Output: Potential communities Ps.

Process:

1: Calculate neighboring nodes N(v) of v based on

Definition.1;

2: for all vi ∈ N(v) do

3: Initialize P = ø

4: Initialize list = vi
5: do

6: Initialize vtemp = pull out the first node from list

7: Calculate neighboring nodes N (vtemp) of vtemp based on

Definition.1;

8: P = P ∪ (N(v) ∩ N (vtemp))

9: list = list ∪ (N(v) ∩ N (vtemp))

10: while list = = ø

11: Add P to Ps

12: end for

13: return Ps

Algorithm 1. Potential communities exploration.

Input: Graph G = {V, E}, link set E, node set V, seed node

vseed.

Output: candidate seed vseed.

Process:

1: Initialize a community C, C = ø;

2: Calculate the degree dvi of each node vi ∈ V;

3: Set vtemp = vseed;

4: Set max_similarity = 0;

5: do

6: vseed = vtemp;

7: Calculate neighboring nodes N (vtemp) of vtemp based on

Definition.1;

8: for all vi ∈ N (vtemp) do

9: if dvi > dvtemp then

10: Calculate the node similarity NS(vi, vtemp) between

vi and

11: vtemp based on Definition.6;

12: if NS(vi, vtemp) > max_similarity then

13: vtemp = vi;

14: max_similarity = NS(vi, vtemp);

15: end if

16: end if

17: end for

18: while vtemp ≠ vseed
19: return vseed

Algorithm 2. Seed selection.

Input: Graph G = {V, E}, link set E, node set V, seed node

vseed.

Output: Initial Community Cinitial.

Process:

1: Set similarity_max = 0;

2: Calculate the neighboring community N (vseed) of vseed
based on Definition.2;

3: Calculate the potential community set P (vseed) based

on Definition.5;

4: for all P(vseed)i ∈ P(vseed) do
5: Calculate the node community similarity

NCS(vseed, P(vseed)i) between P(vseed)i and vseed based on

Definition.6;

6: if NCS(vseed, P(vseed)i)> similarity_max then

7: Cinitial � P(vseed)i) ∪ vseed;

8: similarity_max � NCS(vseed, P(vseed)i);
9: end if

10: end for

11: return Cinitial

Algorithm 3. Community initialization.

Input: Graph G = {V, E}, link set E, node set V, Initial

Community Cinitial.

Output: Community C.

Process:

1: Set Ctemp = Cinitial;

2: Set suspicious_list = ø;

3: do

4: C = Ctemp;

5: Get the community neighbors N(Ctemp) of community

Ctemp based on Definition.3

6: suspicious_list = N(Ctemp);

7: while suspicious_list ≠ ø do

8: Pull vi from suspicious_list;

9: Get the potential community set P(vi) based on

Definition.5

10: Calculate the fittest community FC(vi) of vi based on

Definition.8

11: if FC(vi) = Ctemp then

12: Add node vi to Ctemp;

13: update suspicious_list = N(vi) − Ctemp;

14: end if

15: end while

16: while C ≠ Ctemp
17: return C

Algorithm 4. Community expansion.
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3.4.1 Time complexity analysis
We analyze the time complexity of LCDPC on a networkGwith an

average degree of �d in the following. The analysis is performed in three
steps of our algorithm.

The first step is to execute the Algorithm 2 to find candidate core
members of the seed node; this step requiresO(�d4) [18]. In the second
step, we initialize the detected community based on the output of
Algorithm 2, as shown in the first phase of Algorithm 3. Detecting all
suspicious nodes requires O(�s) where �s is the mean size of the
potential community. Then Algorithm 4 is executed to identify
each suspicious node; this algorithm takes O(�d3). Accordingly, the
time complexity of step 2 is O(�s�d3). The last step is to expand the
community from the initial community. This requires O(r�s�d3) where
r is the maximum length of the path from the seed node to the
community fringe. Finally, the overall time complexity of our method
is O(�d4 + r�s�d

3).

4 Experiments and analyses

All the proposed algorithms and the comparison algorithms in this
paper are written in JAVA and run on a computer with Intel (R) Core
(TM) i5-4590 CPU, 3.3 GHz, and 16 GB RAM.

4.1 Evaluation criteria

To verify the performance of the proposed algorithms, we use
the following two common evaluation criteria of community
detection: NMI [44] (the normalized mutual information) and the
F-measure [45].

4.1.1 Normalized mutual information
Danon et al. proposed normal mutual information (NMI) measure

[44] based on information entropy to measure the similarity between
real-world communities and detected communities. This measure
defines a confusion matrix N with the rows denoting real-world
communities and the columns denoting detected communities.
Element Nij in matrix N represent the numbers of nodes that exist
in both community i and community j [44]. The formula of NMI is:

NMI A, B( ) � −2∑cA
i�1∑

cB
j�1Nij log NijN/Ni.N.j( )

∑cA
i�1Ni. log Ni./N( ) +∑cB

j�1N.j log N.j/N( )
(7)

where cA denotes the number of real-world communities and cB
denotes the number of detected communities. Ni. and N.j denote
the sum of elements in row i and column j respectively [44].

NMI is used to assess the performance of algorithms in dividing
communities. A good partition means a great NMI value. The extreme
case is NMI value is one when the partition is correct absolutely.

4.1.2 F-measure
F-Measure is a widely used evaluation criterion to assess the

performance of community detection algorithms. F-Measure is defined as:

F � 2 ×
Precision × Recall
Precision + Recall

(8)

The recall and precision are as follows:

Recall � CG ∩ CD| |
|CG

(9)

Precision � CG ∩ CD| |
|CD

(10)

where CG denotes the real-world community and CD denotes the
detected community,

F − Measure is the weighted harmonic average of Recall and
Precision.

4.2 Datasets

4.2.1 Artificial networks
We used a set of artificial networks generated by LFR [46]

(Lancichinetti Fortunato Radicchi) benchmark networks to test the
performance of the proposed algorithms. LFR is a common method to
generate artificial networks that have the properties of real-world
networks. The topology of the generated artificial networks is
controlled by the following parameters: μ is a mixing parameter
that is used to control the difficulty of revealing the community
structure; |C|min is the minimum size of the community, and |C|max

is the maximum size of the community; �d is the mean node degree and
dmax is the maximum node degree On is the number of overlapping
nodes and Om is the average number of node overlaps. The parameter
settings of LFR benchmark networks are listed in Table 2, where the
expression [a: b: c] means the value of the parameter ranges from a to c
with a span of b. As displayed in Table 2, we generate three groups of
benchmark networks: LFR-μ, LFR-αsize, LFR-αdegree. LFR-μ aims to
examine the performance of the algorithm with the change in
community identifiability. LFR-αsize aims to examine the
performance of the algorithm with the change of community size.
LFR-αdegree aims to examine the performance of the algorithm with the
change in node degree. To ensure the accuracy of the experiments, we
generated 10 artificial networks for each group of parameters and took
the average value as the result.

The symbols mentioned in this section and their descriptions are
displayed in Table 3.

4.2.2 Real-world networks
Table 4 displays the characteristics of six widely used real-

world networks involved in this paper. Karate is a network of a
karate club [42]. The nodes of the network represent members of
the club and the links between two nodes denote a friendship
between the two members. Dolphins is a network of bottlenose
dolphins living in New Zealand [47]. Each node represents a
bottlenose dolphin and if two dolphins are in frequent contact,
there will be a link between the nodes representing them. Books is a
network of political books [48]. The nodes represent political books
on the Amazon website, and there is a link between the nodes
representing two books if they are often bought together. Football is a
network of college football teams in America [6]. Each node of the
network represents a college and the links indicate that two football
teams which have played against each other. Amazon is a network of
products on the Amazon website [33]. LastFM is a social network of
music website users, where the nodes of the network denote users of
LastFM and links denote mutual follower relationships between
them [49].
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4.3 Experimental settings

We name the proposed algorithm that performs the process of
potential community exploration to be LCDPC1 and the one that does
not perform the process as LCDPC2. To verify the performance of the
proposed algorithm, we compared it to eight state-of-the-art local
community detection algorithms: RTLCD (a Robust Two-stage Local
Community Detection algorithm) [18], Clauset [50], LWP (Luo,
Wang, and Promislow) [51], Chen [52], LS (Link Similarity) [53],
VI (Vertex Influence) [54], LCD (Local Community Detection based
on Maximum Cliques) [55] and LCDDCE (Local Community
Detection method on line graph through Degree Centrality and
Expansion) [56].

Ding et al. [18] proposed a robust community detection algorithm
RTLCD that consists of two stages: seed selection stage and community
expansion stage. RTLCD searches the core member of the community

where the given node is located in the seed selection stage, which solves
the seed-dependent problem. RTLCD expands from the coremember to
the local community based on the relationship strength between nodes
and communities in the community expansion stage, which solves the
seed-invalid problem.

Based on the concept of Newman’s [57] modularity, Clauset et al.
[50] introduced a local community quality function ΔR, which can be
expressed as the ratio of the links within the community to the links
with one or more endpoints outside the community. The Clauset
algorithm adds nodes that cause the maximum increment of the
quality function ΔR to the community.

Based on the Clauset algorithm, LWP et al. [51] proposed an
improved quality function M, which can be expressed as the edges
within the community divided by the number of edges between
communities. The LWP algorithm expands the community by
adding nodes that cause the maximum increment of M to the
community and deletes nodes that cause the maximum increment
of M but are separated from the community. Different from Clauset,
LWP has definite termination criteria.

Chen et al. [52] introduced a novel quality function L, which takes
the connection among nodes in the community and the connection
between communities into consideration. To solve the outliers
problem, the Chen algorithm checks for the changes in the quality
function of the community after removing nodes.

Wu et al. [53] proposed a link similarity algorithm (LS) that can be
defined as the intersection of a node’s neighbors and the nodes and
neighborhoods of the community. First, greedy optimization of link
similarity is performed, which adds nodes with the largest similarity to
the community. Second, whether the nodes on the boundary should
continue to remain in the community is checked. Third, nodes that have
more neighbors in the boundary than in the community are removed.

Fanrong et al. [55] took advantage of the maximum clique
expansion and proposed the LCD algorithm, which takes the
maximum clique as the seeds. LCD detects all the maximum
cliques in the network as seeds and expands the community from
these seeds according to greedy optimization until all the maximum
cliques are assigned to communities.

TABLE 2 The parameter settings of LFR benchmark networks.

Networks n �d dmax |C|min |C|max μ On Om

LFR-μ 1,000 5 25 10 100 [0.1:0.1:0.8] 20 2

LFR-αsize 1,000 5 25 5 × [1 : 1: 8] 50 × [1 : 1: 8] 0.1 20 2

LFR-αdegree 1,000 [4:1:11] 5 × [4 : 1: 11] 10 100 0.1 20 2

TABLE 3 Symbols and descriptions.

Symbols Descriptions (for network G)

n The number of nodes

m The number of links

�d The mean degree

dmax The maximum degree of node

|C|min The minimum size of the community

|C|max The maximum size of the community

|C| The average size of the community

μ The mixing parameter

On The number of overlapping nodes

Om The average number of node overlaps

nC The number of communities

TABLE 4 The characteristics of real-world networks.

Network n m �d nC |C| μ On Om References

Karate 34 156 4.58 2 17.00 0.128 0 —– [42]

Dolphins 62 318 5.12 2 31.00 0.038 0 —– [47]

Football 115 1,226 10.66 12 9.58 0.357 0 —– [6]

Books 105 440 8.38 3 35.0 0.159 0 —– [48]

LastFM 7,624 27806 7.29 18 423.56 0.126 0 —– [49]

Amazon 16716 97478 5.83 1,163 15.16 0.005 867 2.06 [33]
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Yao et al. [54] proposed a variable influence local community
detection algorithm (VI) based on a mechanism of influence
attenuation, which is capable of detecting communities with
variable scale according to the demands.

Wang et al. [56] introduced a line graphmodel to local community
detection, and proposed an algorithm based on node centrality and
PageRank. First, edges are transferred into nodes based on the line
graph model. Second, nodes are ranked by a novel node similarity and
PageRank and seeds are determined by this ranking. Third, the
community is expanded by a fitness function.

In our experiments, all the algorithms were run in six real-world
networks and three groups of LFR artificial networks, and the average of
the experimental results was recorded. α in LCDDCE is set to 1.5. Note
that all the algorithms that ran for more than 24 h were terminated. We
take each node in the network as a given node and execute the algorithm
with this given node. Finally, the results of all nodes are averaged as the
performance of the algorithm on this network.

4.4 Experimental results on artificial networks

4.4.1 Experimental results on LFR-μ
The purpose of LFR-μ is to examine the performance of algorithms

with the change in community identifiability. Figures 6A, B display the
NMI and F-Measure metrics for the proposed algorithms and the
comparison algorithms on LFR-μ. From the pictures, we can observe
that the trend of all results is downward with the increase of mix
parameter μ. The reason for this phenomenon is as follows. The
definition of parameter μ is the sharing ratio between the node and
nodes in other communities; in other words, the parameter μ

represents the ratio between links outside the community and all
links of the node. Therefore, as the parameter μ increases, the
community structure becomes more difficult to detect.

5As shown in Figures 6A, B, when μ ≤ 0.5, except for Chen and
LS, the results show a significant downward trend, and the
performance of LCDPC has always been at a high
level. Although the NMI and F-Measure metrics of Chen and LS
are stable, they are always at a low level. When μ > 0.5, the results of
all algorithms are stable at a low level, because the mixed
parameter μ is so great that the community structure is very
complex, and all algorithms cannot effectively detect the
community structure.

In addition, the performance of LCDPC1 is better than that of
LCDPC2 on each value of parameter μ. As the parameter μ increases,
the difference between LCDPC1 and LCDPC2 in performance
decreases. The reason for this outcome is as follows. With the
increase in the parameter μ, the links between the node and the
other communities increase. In this condition, it is easy for external
adjacent nodes of the node to form the potential community. The scale
of the external community formed by LCDPC1 and LCDPC2 is almost
the same, which leads to a decrease in the gain effect of the application
of potential community exploration. Therefore, the exploration of
potential communities plays a better role in community detection in
simple networks than in complex networks.

Figure 6C shows the time cost index of all the algorithms. We can
observe that the majority of results remain stable at a low. RTLCD
shows a significant upward trend with the growth of μ. VI reaches a
peak at μ = 0.1 and decreases gradually. LCDPC1 increases slightly and
remains stable at μ = 0.4.

4.4.2 Experimental results on LFR-αsize
The purpose of LFR-αsize is to examine the performance of

algorithms with the change of community size. Figures 7A, B
display the NMI and F-Measure metrics for the proposed
algorithms and the comparison algorithms on LFR-αsize. The top
and bottom x − label in the graph represent the maximum and
minimum community sizes, respectively. As seen from the figures
above, the results of algorithms on LFR-αsize decrease with the increase
in αsize. This is because communities in the network become more
diverse with the increase of parameter αsize, which makes the
boundaries of the community more difficult to identify.

From Figures 6A, B, we can observe that LCDPC1 outperforms
the other algorithms on LFR-αsize and shows a smooth declining
trend. When minc = 5, LCDPC2, VI and LCD perform as well as
LCDPC1. However, when minc > 5, the performance of LCDPC2,
VI and LCD decrease sharply. The reason for this result is as
follows. As mentioned above, the community of the network
becomes more diverse with the increase in the parameter αsize.
Therefore, the similarity between a neighboring community to a
node becomes diverse. The application of potential community
exploration helps LCDPC1 subdivide the similarity from a
neighboring community to a node. The detailed similarity
division makes LCDPC1 have a better effect than other
algorithms. This explanation is confirmed in Figures 7A, B,

FIGURE 6
The performance of algorithms on LFR-μ. (A) NMI on LFR-μ. (B) F-measure on LFR-μ. (C) Time cost on LFR-μ.

Frontiers in Physics frontiersin.org11

Wang et al. 10.3389/fphy.2023.1114296

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1114296


where the results gap between LCDPC1 and LCDPC2 becomes
wider with the increase of the parameter αsize.

4.4.3 Experimental results on LFR-αdegree
The purpose of LFR-αdegree is to demonstrate the performance of

algorithms with the change of node degrees. Figures 8A, B display the
NMI and F-Measure metrics for the proposed algorithms and the
comparison algorithms on LFR-αdegree. The top and bottom x − label in
the graph represent the maximum and mean values of node degree,
respectively. From the figures above, we find that the efficiency in
community detection of algorithms on LFR-αsize improves with the
increase of parameter αsize. The reason for this outcome is as follows.
In the LFR network, the parameter αdegree represents the node
diversity. As the parameter αdegree increases, the richer node
diversity can bring more node information, which makes it easier
for the algorithm to identify nodes.

From Figures 8A, B, we find that the performance of VI, LCD
improves significantly with increasing αdegree. However, as shown in
Figure 8C, these algorithms consume much more time on node
information processing with the increase of αdegree. Furthermore,
the difference between LCDPC1 and LCDPC2 in terms of the gain
effect of potential community application, decreases with the increase
in the parameter αdegree. As mentioned above, with the increase of
parameter αdegree, nodes are easier to identify, which weakens the gain
effect of potential communities application. Therefore, the application

of potential communities is effective in identifying nodes with poor
degrees.

4.5 Experimental results on real-world
networks

Table 5 displays NMI, Recall, Precision, F-Measure and Time
metrics of the proposed algorithms with other comparison
algorithms on five real-world networks. Table 6 lists the
performance differences between LCDPC1 and LCDPC2 in terms
of NMI, Recall, Precision and F-Measure metrics. From Table 5, we
find that LCDPC1 shows better average performance in detecting
communities of real networks than the other comparison algorithms.
This result shows that the proposed algorithm outperforms state-of-
the-art local community detection algorithms in community
identification.

From Table 6, we can observe that LCDPC1 has improved in
terms of NMI, Recall, Precision and F-Measure metrics compared to
LCDPC2. This outcome verifies the effectiveness of the potential
community application in community identification. Especially for
the Karate and Dolphins networks, LCDPC1 has significant
improvement compared to LCDPC2 in community identification.
The common characteristic of the Karate and Dolphins networks is
that they all have low mean degree values. Furthermore, we find that

FIGURE 7
The performance of algorithms on LFR-αsize. (A) NMI on LFR-αsize. (B) F-measure on LFR-αsize. (C) Time cost on LFR-αsize.

FIGURE 8
The performance of algorithms on LFR-αdegree. (A) NMI on LFR-αdegree. (B) F-measure on LFR-αdegree. (C) Time cost on LFR-αdegree.
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TABLE 5 The algorithm results on real-world networks. The maximum value in a criterion is marked in bold.

Network Criteria LCDPC1 LCDPC2 RTLCD Clauset LWP Chen LS VI LCD LCDDCE

Karate NMI 0.9186 0.6815 1.0000 0.2992 0.5160 0.1552 0.1688 0.4041 0.4093 0.3635

Recall 0.9722 0.8252 1.0000 0.5527 0.6912 0.2071 0.2339 0.6556 0.6182 0.8758

Precision 0.9446 0.9338 1.0000 0.9088 0.8019 0.6345 0.5588 0.9014 0.8449 0.5958

F-Measure 0.9580 0.8717 1.0000 0.6474 0.7179 0.2949 0.3171 0.7317 0.6918 0.7089

Time(ms) 2 0 2 1 2 3 0 4 2 0

Dolphin NMI 0.4553 0.2895 0.4526 0.1857 0.2809 0.0959 0.0709 0.2326 0.2616 0.4175

Recall 0.6352 0.4831 0.6399 0.3013 0.3696 0.1517 0.0980 0.3717 0.3853 0.6497

Precision 0.9846 0.9785 0.9647 0.9694 0.5271 0.7043 0.4032 0.9667 0.9546 0.8537

F-Measure 0.7365 0.6274 0.7376 0.4287 0.4173 0.2364 0.1458 0.4985 0.5086 0.7266

Time(ms) 2 0 9 1 0 2 0 4 1 0

Football NMI 0.6269 0.6226 0.5146 0.5712 0.6023 0.5863 0.5714 0.8389 0.5638 0.0261

Recall 0.8058 0.7921 0.9209 0.7133 0.6409 0.6665 0.5956 0.8907 0.7280 0.9506

Precision 0.6896 0.6957 0.5568 0.6466 0.6257 0.6456 0.6461 0.8963 0.6354 0.0922

F-Measure 0.7404 0.7379 0.6639 0.6689 0.6301 0.6479 0.6180 0.8916 0.6708 0.1673

Time(ms) 4 3 15 3 0 5 0 4 3 0

Books NMI 0.4924 0.5029 0.4881 0.2687 0.2925 0.0905 0.0106 0.3862 0.3594 0.4770

Recall 0.8368 0.8044 0.8681 0.4387 0.4710 0.1532 0.0195 0.6256 0.6032 0.8835

Precision 0.7579 0.7774 0.7049 0.7656 0.4643 0.5720 0.1705 0.7778 0.7554 0.7074

F-Measure 0.7851 0.7822 0.7640 0.4982 0.4619 0.2219 0.0307 0.6398 0.6210 0.7766

Time(ms) 4 3 33 8 3 6 0 58 25

LastFM NMI 0.3716 0.3301 0.3480 0.0189 0.0167 0.0079 0.0034 —– —– 0.2176

Recall 0.5621 0.4438 0.6471 0.0164 0.0168 0.0062 0.0026 —– —– 0.4178

Precision 0.5967 0.6366 0.5605 0.8183 0.1949 0.4015 0.2694 —– —– 0.4469

F-Score 0.5466 0.4978 0.5528 0.0279 0.0218 0.0109 0.0049 —– —– 0.3968

Time(ms) 883 563 8,717 19 8 53 0 —– —– 5

Amazon NMI 0.7547 0.7470 0.7254 0.5668 0.6261 0.4235 0.3918 0.6837 0.6888 0.7543

Recall 0.7266 0.7183 0.6966 0.5192 0.5977 0.3772 0.3641 0.6499 0.6551 0.7332

Precision 0.9929 0.9930 0.9914 0.9964 0.8783 0.8307 0.6776 0.9938 0.9958 0.9450

F-Measure 0.7861 0.7784 0.7570 0.6138 0.6531 0.4638 0.4122 0.7157 0.7213 0.7852

Time(ms) 2 2 0 1 0 1 0 10 4 16

TABLE 6 The difference between LCDPC1 and LCDPC2.

Criteria Karate Dolphin Football Books LastFM Amazon

NMI +0.2371 +0.1658 +0.0043 −0.0105 +0.0415 +0.0077

Recall +0.1470 +0.1521 +0.0137 +0.0324 +0.1183 +0.0083

Precision +0.0108 +0.0061 −0.0061 −0.0195 −0.0399 −0.0001

F-Measure +0.0863 +0.1091 +0.0025 +0.0029 +0.0488 +0.0077
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LCDPC1 has limited improvement compared to LCDPC2 in
identifying communities on the Football and Books networks.
Both the Football and Books networks have high mean degree
values. These findings indicate that the potential community
application has a more significant improvement in the efficiency
of community identification on the network with a high mean node
degree than that with a low mean node degree. In addition, LCDPC1
has good improvement on the LastFM network and has limited
improvement on the Amazon network compared to LCDPC2. The
LastFM and Amazon networks have the same low mean node degree,
but the difference is that the LastFM has a great average community
size and the Amazon network is poor. This outcome verifies that the
potential community application has a more significant
improvement in identifying communities on the network with a
greater average community size than those with a lesser average
community size.

5 Conclusion

Local community detection is efficient in detecting local community
structures based on seeds. However, the existing algorithms ignore the
effect of community structure in undetected networks.

This paper introduces the abstract concept of the potential
community into the local community detection algorithm to help
determine the membership of suspicious nodes. We propose a three-
stage algorithm based on potential community exploration, which
performs seed selection, community initialization, and community
expansion in order. First, the seed selection searches for a suitable
seed to replace the given node. Second, the community initialization
process forms the initial community by combining the seed and its
suitable potential community. Finally, the community expansion process
adds eligible nodes to the initial community for community expansion.

The proposed algorithm is compared to eight state-of-the-art local
community detection algorithms on artificial networks and real-world
networks. The experimental results show the following conclusions.
First, the potential community application can improve the efficiency
of community identification. Second, the improvement in potential
community application on community identification is related to the

parameters μ, αsize, and αdegree. The improvement of potential
community application increases with increasing αsize and decreases
with increasing μ and αdegree.

However, the experimental results show that the potential
community application is not obviously better for some networks,
especially networks with a low mean node degree. Therefore, in future
work, we will improve the algorithm to expand the role of potential
community applications.
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