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Modern technology has brought novel types of wealth. In contrast to hard cash,
digital currency does not have a physical form. It exists in electronic forms only. To
date, it has not been clear what impacts its ongoing growth will have, if any, on
wealth distribution. Here, we propose to identify all forms of contemporary wealth
into two classes: ‘distinguishable’ or ‘identical’. Traditional tangible moneys are all
distinguishable. Financial assets and cryptocurrencies, such as bank deposits and
Bitcoin, are boson-like, while non-fungible tokens are fermion-like. We derived
their ownership-based distributions in a unified manner. Each class follows
essentially the Poisson or the geometric distribution. We contrast their distinct
features such as Gini coefficients. Furthermore, aggregating different kinds of
wealth corresponds to a weighted convolution where the number of banks
matters and Bitcoin follows Bose–Einstein distribution. Our proposal opens a
new avenue to understand the deepened inequality in modern economy, which is
based on the statistical physics property of wealth rather than the individual ability
of owners. We call for verifications with real data.
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Introduction

When two one-dollar banknotes are randomly gifted to two people, there occur total four
possible ways of distributions. While counting so, it has been naturally assumed that both
notes are distinguishable from each other, since they are for sure distinct physical objects, not
to mention the different serial numbers printed on them. In contrast, when two cents are
credited to a pair of savings bank accounts, there are three possibilities because the two cents
as deposits are indistinguishable. Deposits do not have a physical form. They exist in the
form of abstract numbers by ‘claim’ and ‘trust’ between the bank and the account holders.
While one’s can add up to a natural number, say k ∈ N,

1 + 1 +/ + 1 � k, (1)
all the one’s are intrinsically identical and indistinguishable from one another. The notion of
being indistinguishable, or interchangeably identical, is a fundamental property of
elementary particles in physics: bosons can share quantum states but fermions subject to
the Pauli’s exclusion principle cannot. Consequently, their statistical distributions differ
significantly. While the identical property holds certainly for particles at quantum scale,
there appears no clear-cut limit of applicability to larger macroscopic objects. In this paper,
we propose to identify all kinds of wealth into two classes: distinguishable or identical. All the
traditional tangible moneys, i.e., hard cash including minted coins and banknotes, are of
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physical existence and belong to the distinguishable class. In
contrast, financial assets such as bank deposits, stocks, bonds,
and loans belong to the boson-like identical class. Furthermore,
all the electronic forms of wealth share the identical property. At
deep down level of information technology or atomic physics, they
comprise of chain of bits which have finite length. The pieces of
information stored are accordingly limited mostly to the amounts
and, hence, are abstract like the deposit or the natural number (1).
With no restriction on the amount of possession, cryptocurrencies,
e.g., Bitcoin [1], are boson-like. Contrarily, having unique digital
identifiers, non-fungible tokens (NFTs) may be identified as
fermions. Having said so, we shall demonstrate that generic
identical wealth can be universally and effectively described by
Gentile statistics [2] which postulates a cutoff for the maximal
amount of possession. It is an established fact that
distinguishable, bosonic, and fermionic particles follow,
respectively, the Maxwell–Boltzmann, Bose–Einstein, and
Fermi–Dirac statistics, which are all about the number of the
particles themselves for a given energy. On the contrary, our
primary interest in this work is to derive the ownership-based
distributions of wealth, i.e., the number of owners who possess a
certain amount of wealth, while the owners are assumed to be always
distinguishable. Furthermore, it is our working assumption that
wealth is distributed in a ‘random’manner. This should be the case if
ideally the owners were all equal. It goes beyond the scope of the
present paper to test the hypothesis against real data.

Basic scheme through elemental examples: We start with an
elementary example of distributing M number of minted one-cent
coins to N number of people in a random manner. We let nk be the
number of people each of whom owns k number of coins, k = 0, 1, 2,
/. As we focus on ‘private ownership’ meaning no allowance of
sharing, the opposite notion “kn” does not make sense (except kn=1),
which in a way breaks the symmetry between people and coins both
of which are distinguishable. There are two constraints nk’s satisfy.

∑∞
k�0 nk � N, ∑∞

k�0 knk � M. (2)

Irrespective of our notation, an effective upper bound in the
sums exists such as 0 ≤ k ≤ M. Our primary aim is to compute the
total number of all possible or ‘degenerate’ways of distributions for a
given set nk’s. Hereafter, generically for any kinds of wealth, we
denote such a total number by Ω and further factorize it into two
numbers,Ω =ϒ ×Φ, whereϒ is all about the grouping of the owners
into nk’s and, thus, is independent of the sorts of wealth. The
properties of wealth are to be reflected in Φ. Specifically, the
total number of possible cases for the N number of people to be
grouped into n0, n1, n2, / is

ϒ � N!

n0!n1!n2!/
� N!∏∞

k�0nk!
. (3)

So, that for the M coins to be grouped into

1, 1, . . . , 1︸����︷︷����︸
n1

, 2, 2, . . . , 2︸����︷︷����︸
n2

,// k, k, . . . , k︸����︷︷����︸
nk

,/ (4)

is, as the coins are distinguishable,

Φ � M!

1!( )n1 2!( )n2/ � M!∏∞
k�1 k!( )nk . (5)

Crucially, for each case in ϒ, any of Φ can equally occur. Thus,
the total number of possible distributions for a given set nk’s is the
product ϒΦ = Ω. The degeneracy Φ as counted in (5) is significant
since it depends on nk’s. Insignificant degeneracies that are
independent of nk’s may be taken into account which will
multiply Φ by an overall constant. For example, extra
distinctions depending on whether the distribution of each coin
occurs in the morning or afternoon will give an overall factor 2M to
Φ. Yet, our primary interest is to obtain the most probable
distribution of nk. Following the standard analysis in statistical
physics at equilibrium, e.g. [3], we shall assume N to be
sufficiently large, apply the variation method induced by δnk to
lnΩ = lnϒ + lnΦ, and acquire the extremal solution. Accordingly,
any insignificant degeneracy is independent of nk’s becomes
irrelevant and ignorable. It merely shifts lnΦ by a constant.

We turn to savings accounts. We consider the M cents to be now
credited to distinguishable N savings accounts. Since deposits are
boson-like identical, the total number of possible distributions Ω is
essentially ϒ (3) itself up to multiplying an insignificant overall
constant. This irrelevant degeneracy can arise when the bank
accounts keep records of all the details of the crediting of the
deposits, e.g. the time of transaction, which would make the
credited M cents to appear seemingly distinguishable. However,
all the information of each credit are recorded in a chain of bits
which has a finite length, say l = l0 + l1 that decomposes into l0 for the
very record of the amount k and l1 reserved for any extra
information. While the former is rigidly fixed, the extra pieces of
information are rather stochastic and, hence, contribute to lnΦ by a
constant shift, l1 ln 2, which is, hence, ignorable.1

Last, fermion-like wealth or NFTs set M = 1 and, thus, fix the
ownership-based distribution rather trivially: nk � (N − 1)δ0k + δ1k.
Below, for each kind of wealth, we shall introduce what we call the
“Gentile” parameter, Λ ∈ N, which sets an upper bound on the
possession number k as 0 ≤ k ≤ Λ and interpolates boson at Λ = ∞
and fermion at Λ = 1. For distinguishable traditional money in a “free’
country, the parameter may be set to coincide with the total number of
each kind, e.g., M in (2), or to be less by law. However, electronic forms of
wealth can transform to one another. For example, the total amount of
deposits at a bank is not fixed due to the external transfers between
accounts at different banks. The total amount of each Bitcoin UTXO
(Unspent Transaction Output) is not fixed either, since they can
“combine” and “split” to other UTXOs [1]. Thus, the total number of
each species of identical wealth is not a constant. For this reason and also
a technical reason later to justify the approximation of lnnk!≃ nk ln(nk/e),
we shall keepΛ as an independent key parameter which characterizes, as
a matter of principle, boson-like or fermion-like identical wealth.

Master formula

For a unifying general analysis, we consider distinguishable and
identical wealth together. We call each unit of wealth an object and

1 In this reason, we prefer to say credits are boson-like rather than (precisely)
bosons. Furthermore, we note that the extra pieces of information are
generically postdictive: they do not preexist before the transactions take
place, or before the ownerships settle down.
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postulate that there areD � d + �d distinct kinds of objects: d of them
are distinguishable and �d of them are identical. We label them by a
capital index, I = 1, 2, . . . , D, which decomposes into small ones,
I � (i, d + �ı), where i = 1, 2, . . . , d for the distinguishable species and
�ı � 1, 2, . . . , �d for the identical species. An Ith kind object has value
wI ∈ N. For example, the present-day euro coin series set d = 8 with
w1 = 1, w2 = 2, /, w8 = 200 in the unit of cent. We then denote a
generic ownership over them by a D-dimensional non-negative
integer-valued vector, �k � (k1, k2, . . . , kD) of which each
component kI denotes the number of owned Ith-kind objects and
is bounded by a cutoff Gentile parameter: 0 ≤ kI ≤ ΛI. In particular,
we set ΛI =∞ for bosonic I and ΛI = 1 for fermionic I. We let n �k be
the number of the owners with such a ownership �k. The total
number of owners is then

N � ∑
�k

n �k ≡ ∑Λ1

k1�0
∑Λ2

k2�0
/ ∑ΛD

kD�0
n �k, (6)

and the total number of the Ith-kind objects is

MI � ∑
�k

kIn �k ≡ NmI. (7)

Hereafter, ∑ �k and ∏ �k are our shorthand notations for the sum
and the product of all kI’s from zero to ΛI’s, as in (6) and (8).

On one hand, as the owners are distinguishable, the number of
partitions or groupings of the N owners into the different
ownerships of n �k’s (6) is, generalizing (3),

ϒ � N!∏ �kn �k!
≡

N!∏Λ1
k1�0∏Λ2

k2�0/∏ΛD
kD�0n �k!

. (8)

On the other hand for the partitions of the objects, only the
distinguishable class of objects contributes, as in (5).

Φ � ∏d
i�1

Mi!∏ �k ki!( )n �k
[ ]. (9)

For each partition of owners in ϒ, any of the partitions of
distinguishable objects in Φ can equally occur. Therefore, the final,
total number of possible outputs for a given set n �k’s is the product,
Ω = ϒ ×Φ.

We proceed to apply the variation method to lnΩ and aim to
acquire the extremal solution of n �k. While doing so, there are
constraints to impose:

δN � ∑ �k δn �k � 0,
δMi � ∑ �k kiδn �k � 0,

δ �Mw � ∑ �k ∑�d

�ı�1 w�ık�ı( )δn �k � 0.
(10)

Namely, the total number of owners and those of distinguishable
objects of each kind are all conserved, as we assume them to be
indestructible. For the identical class of objects, since they may
transform to other species, we impose that only their total value

�Mw � ∑
�k

∑�d

�ı�1 w�ık�ı( )n �k ≡ N �mw (11)

is conserved. To proceed, we employ a well-known approximation
for the factorial, ln n �k! ≃ n �k ln(n �k/e), which is valid for large n �k only.
Our Gentile cutoff parameter ΛI then effectively prevents n �k from

getting too small, by setting the upper bound on kI. It follows then,
from δ ln n �k! � δn �k ln n �k, that the variation of lnΩ reads

δ lnΩ � −∑
�k

δn �k ln n �k +∑d
i�1

ln ki!( )⎡⎣ ⎤⎦ � 0. (12)

Around the extremal distribution, this variation should vanish,
while δn �k’s must meet the constraints (10), otherwise they are
arbitrary. Therefore, only up to some constants α, βi,

�β, putting

αδN + ∑d
i�1

βiδMi
⎛⎝ ⎞⎠ + �βδ �Mw − δ lnΩ � 0, (13)

we should have for every �k without sum,

ln n �k + α +∑d
i�1

ln ki!( ) + βiki[ ] + �β∑�d
�ı�1

w�ık�ı � 0. (14)

This gives the desired extremal solution.

n �k � NP �k, P �k � ∏d

i�1 Pi ki( )[ ] ∏�d

�ı�1
�P�ı k�ı( )[ ], (15)

where P �k is our master probability distribution given by the products
of Λ-truncated Poisson and geometric distributions.

Pi ki( ) � N i
e−βiki

ki!
, N i � 1∑Λi

ki�0 e
−βiki /ki!

,

�P�ı k�ı( ) � N �ı e
−�βw�ık�ı , N �ı � 1 − e−�βw�ı

1 − e− Λ�ı+1( )�βw�ı
.

(16)

To write this, we have solved α in terms of N and the
normalization constants, N I’s, such that ∑ �kP �k � 1 and

∑
�k

kiP �k � 1 −N i
e−βiΛi

Λi!
( )e−βi � mi,

∑
�k

k�ıP �k �
1 − Λ�ı + 1( )e−Λ�ı

�βw�ı + Λ�ıe
− Λ�ı+1( )�βw�ı

e
�βw�ı − 1( ) 1 − e− Λ�ı+1( )�βw�ı[ ] .

(17)

It remains to determine βi,
�β from (17) and (11). In particular,

when Λi = ∞, we get e−βi � mi and a precise Poisson distribution
holds withN i � e−mi . On the other hand, when �d � 1 andΛ�ı � ∞ or
Λ�ı � 1, we obtain e−�βw�ı � m�ı

1 ± m�ı
and recover the Bose–Einstein or

Fermi–Dirac distributions having an exponential tail,

m�ı � ∑
�k

k�ıP �k �
1

e�βw�ı ∓ 1
, (18)

which quantify the ‘popularity’ (or inverse ‘rarity’ c.f. [4]) of the
digital wealth. As the geometric distribution is essentially the
exponential Boltzmann–Gibbs law, we may identify �β as the
inverse “temperature,” see also [5].

The distribution of the total value follows

P v( ) � ∑
�k

δv�w· �k P �k, (19)

where δv�w· �k is the Kronecker-delta with
�w · �k � ∑D

I�1wIkI amounting
to a total value v. Essentially (19) is a weighted convolution whose
generating function reads for Λi = ∞,
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Z q( ) � ∑∞
v�0

P v( )qv � ∑
�k

P �kq
�w· �k

� ∏d
i�1

emi qwi −1( )⎡⎣ ⎤⎦ × ∏�d
�ı�1

e
�βw�ı − 1

e
�βw�ı − qw�ı

( ) e Λ�ı+1( )�βw�ı − q Λ�ı+1( )w�ı

e Λ�ı+1( )�βw�ı − 1
( )⎡⎢⎣ ⎤⎥⎦. (20)

while the truncated Poisson distribution Pi(ki) (16) with a finite
cutoff Λi can be applicable to rare valuable items that are not
necessarily hard cash; henceforth, for simplicity, we set Λi = ∞
(distinguishable) and Λ�ı � ∞ (bosonic) or Λ�ı � 1 (fermionic).2 The
Poisson and the bosonic/fermionic geometric distributions

Pp m, k( ) � e−m
mk

k!
, �Pb m, k( ) � 1

1 +m

m

1 +m
( )k

,

�Pf m, k( ) � 1 −m( )δ0k +mδ1k � 1 −m( ) m

1 −m
( )k

, (21)

are then the elemental ‘atomic’ distributions in (16). Here, m > 0 is
the mean value in each distribution. For the fermionic distribution, it
should be less than one, such as m = 1/N. Furthermore, the variance
is m or m(1 ± m) for the distinguishable or bosonic/fermionic cases.
In the vanishing limit m → 0, they all reduce to a Kronecker-delta
distribution: Pp(0, k) � �Pb/f(0, k) � δ0k.

Poisson versus Geometric: As relevant to both financial assets
and cryptocurrencies, here we make various comparisons between
Pp(m, k) and �Pb(m, k) allowing arbitrary m > 0 and unrestricted k =
0, 1, 2, . . . , ∞.

While �Pb(m, k) is a monotonically decreasing function in k,
from Stirling’s formula, ln k! ≃ k ln k − k + ln

%%%%
2πk

√
, Pp(m, k)

assumes the maximal value.

Max Pp m, k( )[ ] ≃ 1/ %%%%
2πm

√
at k ≃ m. (22)

That is to say, the Poisson distribution is on-peak for the owners
of the averaged wealth m = M/N, namely, the ‘middle class’.
Furthermore, the ratio of the two distributions

�Pb m, k( )/Pp m, k( ) � emk!/ m + 1( )k+1 (23)
shows that the geometric distribution has a thicker tail than Poisson
one for k ≫ m. Yet, complementary to this, an inequality holds:

∑
k>m

�Pb m, k( ) < ∑
k>m

Pp m, k( ), (24)

which implies that the probability for k > m is larger in the Poisson
distribution compared to the geometric one, see Figure 1. In fact, in
the large m limit, we have [7]

lim
m→∞ ∑∞

k�m+1
Pp m, k( ) � 1

2
, lim

m→∞ ∑∞
k�m+1

�Pb m, k( ) � e−1. (25)

Thus, 50% or about 37% of the holders have more than the mean
value in the Poisson or geometric distribution.

We compare Shannon entropy, S =∑k − P(k) ln P(k). Since, both
P(k) and −lnP(k) are non-negative, the entropy is bounded S ≥ 0.
The saturation occurs when everyone has the equal amount of
wealth i.e. the average value m implying P(k) � δmk , i.e., either P(k) =
0 or ln P(k) = 0. For the Poisson and geometric distributions, this
happens only in the vanishing limit m → 0. For a given arbitrary
value of m, it is famously the geometric distribution �Pb(m, k) that
sets the entropy maximal,

�Sb m( ) � m + 1( )ln m + 1( ) −m lnm. (26)
The entropy of the Poisson distribution Pp(m, k) [8],

Sp m( ) � 1
2
ln 2πem( ) − 1

12m
+ O m−2( ), (27)

is then roughly half of the maximum (26) for large m.
We draw the Lorenz curves of Pp(m, k) and �Pb(m, k) as Figures

2, 3, by setting x � ∑k
j�0P(j) and y � 1

m∑k
j�0jP(j). Since P(0) ≠ 0 in

both cases, the curves should include an interval 0 ≤ x ≤ P(0) for
trivial y = 0. While, we depict the Lorenz curve of Pp(m, k)
numerically, for the geometric distribution �Pb(m, k), we solve for
k in terms of x,

FIGURE 1
The probability to own more than mean value m: ∑k>mPp(m, k)
(Poisson for distinguishable wealth, red) vs. ∑k>m

�Pb(m, k) (geometric
for identical wealth, blue), with varying mean value m (horizontal axis).
The former is always larger than the latter. They converge to 1/2
and e−1 ≃ 0.367879 in the large m limit (25).

FIGURE 2
Lorenz curves of the Poisson distribution Pp(m, k) for
distinguishable wealth. i) m = ∞, Gp � 0 (45-degree line of perfect
equality), ii) m = 100, Gp ≃ 0.056, iii) m = 1, Gp ≃ 0.52, iv) m = 0.1,
Gp ≃ 0.91, and v)m = 0, Gp � 1 as y � δ0x . Each curve includes y =
0 for an interval 0 ≤ x ≤ e−m. Only when m ≈ 0.35, “80/20 rule” holds.

2 The geometric distribution �P�ı(k�ı) with other finite values of Λ�ı appears
applicable to some Ethereum’s flexible token standard (ERC-1155) [6].
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k + 1 � − ln 1 − x( )
ln 1 + 1/m( ), (28)

and obtain an analytic expression of the Lorenz curve:

y x( ) �
x + 1 − x( )ln 1 − x( )

m ln 1 + 1/m( ) for
1

m + 1
≤ x< 1

0 for 0≤ x≤
1

m + 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (29)

of which the large m limit is known [9].
At last, we compute the Gini coefficient defined by

G[m] ≔ ∑Λ
k�0∑Λ

k′�0
k − k′
∣∣∣∣ ∣∣∣∣
2m

P k( )P k′( )
� 1 + 1

m
∑Λ

k�0P k( ) kP k( ) − 2∑k

k′�0k′P k′( )[ ]. (30)

For Pp(m, k), from 1
(k!)2 � 1

π(2k)!∫π

0
dθ(2 cos θ)2k, we get [10]

Gp m[ ] � 1
π
∫ π

0
dθ e−2m 1−cos θ( ) 1 + cos θ( ). (31)

For �Pb(m, k) and additionally �Pf(m, k), we have3

Gb m[ ] � 1 +m

1 + 2m
, Gf m[ ] � 1 −m. (32)

We note then

Gp m[ ]<Gb m[ ] for arbitrary m> 0 and
Gf m[ ]<Gp m[ ]<Gb m[ ] for 0<m< 1. . (33)

Especially in the large m limit, we get Gp[∞] � 0 (the
perfect equality) and Gb[∞] � 1

2. In the opposite vanishing
limit, the Gini coefficients are all unity, Gp,b,f [0] � 1, hence
economically most unequal. Though the fermionic Gini
coefficient Gf [m] � 1 −m can be close to unity as m = 1/N ≪ 1,
due to the severe restriction of the possession, i.e. k = 0, 1, it is the
smallest among the three.

More than one bank: we now consider the deposits of savings
accounts at more than one bank which allow external transfers and
adopt the same minimal unit of currency. That corresponds to the
equal-weighted convolution (19) of the geometric distributions:
with w�ı ≡ 1,

�P�d m, k( ) �
�d + k − 1( )!
�d − 1( )!k! �d

m + �d
( )�d

m

m + �d
( )k

,

�Z�d m, q( ) � ∑∞
k�0

�P�d m, k( )qk �
�d

�d −m q − 1( )[ ]�d

,

(34)

where �d is the number of the banks. Remarkably,4 for �d≥ 2, �P�d(m, k)
is no longer a monotonically decreasing function in k. It assumes the
maximal value,

Max P�d m, k( )[ ] ≃ 1%%%%%%%%%%%%%%%%
2πm 1 − 1

�d( ) 1 + m
�d( )√ at k+ ≃ 1 − 1

�d
( )m. (35)

The fact k+ < m implies that �P�d(m, k) is a more unequal
distribution compared to the Poisson one Pp(m, k) (22).
Nonetheless, in the large �d limit, �P�d(m, k), �Z�d(m, q), and the
maximum (35) all reduce to those of the Poisson distribution
or (22),

lim
�d→∞

�P�d m, k( ) � e−m
mk

k!
, lim

�d→∞
�Z�d m, q( ) � em q−1( ). (36)

An intuitive explanation is as follows. When the number of the
banks is infinite, each bank has most likely zero or only one unit of the
deposits. The identical wealth then effectively becomes distinguishable
by the distinct banks. In this way, �P�d(m, k) interpolates the geometric
and the Poisson distributions, or Figures 2, 3. The more the banks are,
the smaller the Gini coefficient is.

Boson-like Bitcoin: As a cryptocurrency, Bitcoin [1] belongs
to the identical class of wealth. Although, each UTXO has its
unique cryptographic hash, it generates insignificant ignorable
pieces of information. UTXOs of a common value are identical,
while those of different values are distinguishable, c.f. [11, 12].
The value of every UTXO is discretized in a minimal unit called
‘satoshi’. In this unit, we have w�ı ≡ �ı where �ı runs from one to
�d � 2.1 × 1015 which is the hard cap encoded in Bitcoin’s source
code. For each UTXO worthy of �ı satoshi, the ownership-based
distribution and the expected number are from (16) given by
geometric and Bose–Einstein distribution, respectively.

FIGURE 3
Lorenz curves of the geometric distribution �Pb(m, k) for identical
wealth. i)m =∞,Gb � 1

2 as saturated by y= x+ (1 − x) ln(1 − x) [9], ii)m =
1,Gb ≃ 0.68, iii)m= 0.1,Gb ≃ 0.93, and iv)m= 0,Gb � 1 as y � δ0x . Each
curve includes y = 0 for an interval 0≤ x ≤ 1

m+1. From (29), only
when m ≈ 0.47, “80/20 rule (aka Pareto principle)” holds.

3 Alternative to (30), we may compute the Gini coefficient through an
integral of the Lorenz curve (29),

Gb′ m[ ] � m

m + 1
( )2 1

2m ln 1 + 1/m( ) +
1
m

+ 1
m2

( ),
which differs from Gb[m] in (32) by at most 2.4% at m ≃ 0.53.

4 In contrast, rather natural from the very distinguishability, the equal-
weighted convolution of the Poisson distributions is closed:

∑k
l�0

Pp m1, l( )Pp m2, k − l( ) � Pp m1 +m2, k( ).
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�P�ı k�ı( ) � 1 − e−�ı�β( )e−�ı�βk�ı , ∑∞
k�ı�0

k�ı �P�ı k�ı( ) � 1

e�ı
�β − 1

. (37)

The generating function of the total value (20) is then

Z q( ) � ∏�d
�ı�1

1 − e−�ı�β

1 − e−�βq( )�ı � ∑∞
v�0

P v( )qv, (38)

and thus, for v≤ �d, the total-value-based distribution is

P v( ) � P 0( )P v( )e−v�β, P 0( ) � ∏�d
�ı�1

1 − e−�ı�β( ), (39)

where P(v) is the number-theory partition of the non-negative
integer v, which appears here since the UTXO values are equally
spaced i.e. w�ı � �ı, as is the case with a simple harmonic quantum
oscillator.

We need to determine �β in terms of the mean total value,
i.e., �mw � �Mw/N (11).

∑∞
s�0

sP s( ) � qzqZ q( )∣∣∣∣q�1 � ∑�d
�ı�1

�ı

e�ı�β − 1
� �mw. (40)

Practically putting �d � ∞, we approximate the above sum by a
semi-infinite integral,

∑�d
�ı�1

�ı

e�ı�β − 1
≃ �β

−2∫ ∞

0
dx

x

ex − 1
� π2

6�β
2, (41)

and fix �β,

�β ≃
π%%%%
6 �mw

√ . (42)

Furthermore, from the Hardy–Ramanujan formula of the
partition, we obtain for large enough v,

P v( )
P 0( ) ≃

1
4v

%
3

√ eπ
%%%
2v/3

√ −v�β (43)

such that its maximum

Max
P v( )
P 0( )[ ] ≃

%
3

√
�β
2

2π2
e π2/6( )�β−1 (44)

is positioned at v+ which is smaller than the mean value,

v+ ≃
π2

6�β
2

1 +
%%%%%%%%%%
1 − 24�β/π2

√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

< �mw � π2

6�β
2. (45)

This inequality implies that, despite the large �d limit which we
have tactically assumed, in contrast to the many bank limit (36), the
Bitcoin distribution withw�ı � �ı is still more unequal than the Poisson
one (22): P(v) (43) has thicker tail than Pp(m, k) ~ (me/k)k.

According to [13], as of 2022, the total number of addresses reads
N ~ 109, and the total value of all the UTXOs is roughly �Mw ~ 1015

satoshi. We then estimate �mw ~ 106 and, from (42), �β ~ 10−3, the
smallness of which justifies our integral approximation (41).5

Discussion: To conclude, traditional tangible moneys are
distinguishable; yet financial assets and cryptocurrencies are
all identical. The usage of the boson-like wealth results in
more unequal geometric-type distribution compared to the
Poisson-type distribution of the distinguishable wealth. While
so aggregating different kinds of wealth leads to a weighted
convolution. In particular, the existence of more than one
bank softens the economic inequality of the geometric
distribution by a monopolistic bank. Similar to (36) which is
for bosonic geometric distributions, the equal-weighted-
convolution of fermionic geometric distributions (21) also
converges to a Poisson distribution in the large limit of total
amount �M with fixed mean value m � �M/N: the (binomial)
convolution

�P �M m, k( ) � �M!
�M − k( )!k! 1 − 1

N
( ) �M−k 1

N
( )k

(46)

converges to a Poisson distribution,

lim
�M→∞

�P �M m, k( ) � e−m
mk

k!
. (47)

This provides an alternative derivation of the Poisson
distribution of distinguishable objects. Even though hard cash is
distinguishable, each of them is unique and thus its distribution
should coincide with that of NFT, i.e. the fermionic geometric
distribution (21). After considering multiple of them of the same
value, through the equal-weighted-convolution, the Poisson
distribution emerges consistently out of the bosonic as well as
fermionic geometric distributions, (36) and (47).

The distribution of Bitcoin is given by the number-theory
partition. For completeness, the convolution of a geometric and
a Poisson distribution, as for hard cash and savings account,
reads

P̂ m, �m, k( ) ≔ ∑k
j�0

P m, j( )�P �m, k − j( )
� e−m

�m + 1

�m

�m + 1
( )k ∑k

j�0

1
j!

m +m/ �m( )j

, (48)

which carries a power-law tail em/ �m

�m+1 ( �m
�m+1)k for large k.

Putting w�ı � 1 and w�ı � −1 separately for a pair of �P�d(m, k)’s
(34), we can further aggregate deposit and debt: for net balance
a ∈ Z, we have

P �d m1, m2, a( ) ≔ ∑∞
k1�0

∑∞
k2�0

δak1−k2P �d m1, k1( )P �d m2, k2( ), (49)

where m1 ≥ 0 and m2 ≥ 0 are the mean values of deposit and debt
respectively. In particular, for �d � 1, we get

P �d�1 m1, m2, a( ) �

1
m1 +m2 + 1

m1

m1 + 1
( )a

for a≥ 0

1
m1 +m2 + 1

m2

m2 + 1
( ) a| |

for a< 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (50)

A priori, the Poisson and geometric distributions (21) depend on
the mean ‘number’ m = M/N (dimensionless), rather than any
‘value’ (“dimensionful”). Therefore, any adjustment of the minimal5 For �β � 10−3 and �d≥ 104, the error of (41) is less than 0.1%.
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unit, e.g., demolishing cents and keeping euros only, can change the
number M and affect the distributions.

It would be of interest to investigate any phase transition for the
master distribution (15) through the changes of variables, even if N
is finite [14]. As Bitcoin is boson-like, one may wonder about
Bose–Einstein condensation especially to the minimal �ı � 1
UTXO. For this, we consider its popularity normalized by the
mean total value (40), or the ratio 1

e�β−1/[∑∞
�ı�1

�ı
e�ı�β−1]. This quantity

increases monotonically from zero at �β � 0 and converges to one as
�β grows. In particular, when �β≥ 3, it becomes greater than 0.9. This
“low temperature”might be attainable if Bitcoin gets ever extremely
popular: (somewhat unrealistically) large N with �Mw bounded by
the hard cap.

We have restricted our work to be theoretical. Yet, the
resulting distributions including Figure 2, 3 appear consistent
with real data, for example [15–17]. In addition, the (truncated)
Poisson-type distribution (16) can be applied not only to tangible
moneys, but also to various objects, including citations of
research papers [18].

Taking into account the individual differences of owners, or
other extra factors, may weaken the assumed ‘randomness’. Even
so, we expect that the difference of inequality in distributions
persists depending on the class of wealth, distinguishable or
identical. We call for thorough verifications with wide
applications.

Last, while we have borrowed the notion of
indistinguishability from particle and statistical physics for
the description of financial wealth, namely, econophysics
[19–21], our results such as (36) may help to understand
how macroscopic objects formed by many identical particles
appear distinguishable, i.e., through the generation of large
degeneracy of quantum states.
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