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We present direct numerical simulations (DNS) study of confined buoyancy-driven
bubbly flows in a Hele-Shaw setup. We investigate the spectral properties of the
flow and make comparisons with experiments. The energy spectrum obtained
from the gap-averaged velocity field shows E(k) ~ k for k < kd, E(k) ~ k−5 for k > kd,
and an intermediate scaling range with E(k) ~ k−3 around k ~ kd. We perform an
energy budget analysis to understand the dominant balances and explain the
observed scaling behavior. For k < kd, energy injection balances dissipation due to
drag, whereas for k > kd, the net injection balances net dissipation. We also show
that the Navier-Stokes equation with a linear drag can be used to approximate
large scale flow properties of bubbly Hele-Shaw flow.
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1 Introduction

Flows generated by dilute bubble suspensions (bubbly flows) are relevant in many natural
and industrial processes [1]. As the bubbles rise due to buoyancy and stir the fluid, they generate
complex spatiotemporal flow structures “pseudo-turbulence” [2–6]. The underlying physical
mechanisms responsible for the flow are the interaction between wakes caused by individual
bubbles and the interaction of bubbles with the flow generated by their neighbors [3,5].

Early experiments characterized pseudo-turbulence in bubbly flows at a low-volume
fraction by measuring the energy spectrum E(k) ~ k−3 (where k is the wave number). They
argued that the power-law scaling appears due to a balance of energy production with viscous
dissipation [2]. Subsequent experimental studies have verified the power-law scaling in the
energy spectrum [5,7–9].

Only recent numerical studies have started investigating pseudo-turbulence at
experimentally relevant parameter ranges [6,10,11]. A scale-by-scale energy budget
analysis has unraveled the details of the energy transfer mechanism. Buoyancy injects
energy at scales comparable to the bubble diameter; it is then transferred to smaller scales by
non-linear fluxes due to surface tension and kinetic energy, where it gets dissipated by
viscosity. Quite remarkably, these studies also reveal that the statistics of the velocity
fluctuations do not depend either on the viscosity or density contrast [6,11,12].

How does the physics of bubbly flows altered in the presence of confinement? Earlier
studies have investigated this question in a Hele-Shaw setup with bubbles whose unconfined
diameter is larger than the confinement width [13–15]. Numerical simulations and
experiments [1,16–18] on an isolated rising bubble show that, compared to an unconfined
bubble, the wake flow of the confined bubble is severely attenuated. Nevertheless, the
experiments on bubbly flows in the Hele-Shaw setup still observe the power-law scaling of
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pseudo-turbulence between scales comparable to the bubble diameter
and twenty times the bubble diameter.

In this paper, we perform a numerical investigation of buoyancy-
driven bubbly flow in a Hele-Shaw setup. Tomake a comparison with
experiments, we choose moderate volume fractions ϕ = 5–10%. We
investigate the energy spectrum of the gap-averaged velocity field and,
consistent with experiments, observe an interediate power-law scaling
in the energy spectrum E(k) ~ k−3. Using a scale-by-scale energy
budget analysis, we show that confinement dramatically alters the
energy budget compared to the unbounded bubbly flows. The
viscous drag due to the confining walls balances energy injected by
buoyancy at large scales. Non-linear transfer mechanisms due to
surface tension and kinetic energy are negligible. Finally, we show that
two-dimensional Navier-Stokes equations with an added drag term
can be used as a model to study large scale flow properties.

The rest of the paper is organised as follows. In Section 2, we
discuss the governing equations and the details of the numerical
method used. In Section 3, we present results for bubbly flows in the
Hele-Shaw setup and study the energy budget. We then show that
the two-dimensional Navier-Stokes equations with a linear drag is a
good model to study large scale properties of bubbly flows under
confinement. Finally, in Section 4, we present our conclusion.

2 Equations and numerical methods

We study the dynamics of bubbly flows in a vertical Hele-Shaw
cell (see Figure 1) by solving the Navier-Stokes equations with
surface tension force acting at the interface,

ztC + U · ∇*C � 0, ∇* · U � 0, and
ϱ C( ) zt + U · ∇*( )U � ∇* · μ C( ) ∇*U + ∇*UT( )[ ] − ∇*P + Fg + Fσ.

(1)

Here, ∇* ≡ (zx, zy, zz), C is an indicator function whose value is 0 inside
the bubble phase and 1 in the fluid phase, Fg ≡ [ρa − ϱ(C)]gêz is the
buoyancy force, ρa = [∫ϱdx]/(L2H) is the average density, U = (Ux, Uy,
Uz) is the hydrodynamic velocity, P is the pressure, the local density
ϱ(C) ≡ ρ1C + ρ2(1 −C), the local viscosity μ(C) ≡ μ1C + μ2(1 −C), ρ2 (ρ1)
is the bubble (fluid) density, μ2 (μ1) is the bubble (fluid) viscosity,
and Fσ ≡ σκ∇+C is the surface tension force at the interface [19] with σ

as the coefficient of surface tension and κ the interface curvature.
The bubble volume fraction ϕ ≡ [∫(1 − C)dx]/(L2H), where L is the
length along the x − and z − directions, andH is the gap width between
the two parallel plates of the Hele-Shaw cell. In what follows, ρ1 (μ1)
denotes the density (viscosity) of the liquid phase, and ρ2 (μ2) denotes
the density (viscosity) of the bubble phase.

The non-dimensional numbers that characterize the flow are the
Galilei number Ga ≡

������
ρ1δρgd

√
d/μ1

1, the Bond number Bo ≡ δρgd2/
σ, and the Atwood number At ≡ δρ/(ρ1 + ρ2) with δρ = (ρ1 − ρ2). For
brevity, in the following sections, we will refer to (1) as NSHS.

2.1 Gap width averaged equations

Experiments often use gap width averaged velocities to study
statistical properties of the flow. Following the procedure outlined in
[20,21] and assuming density ϱ to be constant along wall-normal
direction, and starting from the NSHS equations, we get the
following equations for the gap averaged indicator function c and
horizontal components of the velocity2:

FIGURE 1
(A) Representative plot showing bubbles of diameter d in a Hele-Shaw setup. The length along x −and z −directions is L, and the gap width in
y −direction is H; (B) Top view of a bubble (zoomed view); (C) Front view of the bubble (zoomed view).

1 Alternatively referred to as the Archimedes number.

2 See Supplementary Material for a detailed derivation.
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zt + u · ∇( )c � 0, ∇ · u � 0, and
ρ zt + u · ∇( )u � −∇ · ρU′U′ + ∇ · 2�μS( ) + �Fd − ∇�P + �Fg + �Fσ .

(2)

Here, (.) ≡ (1/H)∫H

0
(.)dy denotes gap averaging, ∇ ≡ (zx, zz), u ≡

(ux(x, z), uz(x, z)) is the gap averaged velocity field with ux � �Ux and
uz � �Uz, U′(x) = (Ux − ux, Uz − uz) are the three-dimensional residual
velocity fluctuations, �P(x, z) is the gap-averaged pressure field, S �
∇u + ∇uT is the gap averaged strain-rate tensor, ρ ≡ �ϱ is the gap
averaged density field, �Fg � [ρa − ρ]gẑ is the buoyancy force, and �Fσ is
the surface tension force. The viscous dissipation contributes in two
parts: (a) small-scale dissipation ∇ · (2�μS), and (b) viscous drag due to
walls �Fd � [μ(∇U + ∇UT) · ŷ]H0 . Previous studies [13,17,18] have
argued that the gap-averaged fields appropriately describe the
dynamics of bubbly Hele-Shaw flows provided H/d ≤ 1/2. In
particular, they model the dynamics of an isolated bubble using
two-dimensional Navier-Stokes equations with a linear drag which
has similar structure to (2).Wewill revisit this point later in Section 3.3.

2.2 Numerical method

We use a second-order finite-volume solver PARIS [22] to simulate
NSHS (1). For bubble tracking and updating the indicator function
PARIS employs a front-tracking method, and the time marching is
performed using the first order Euler method.

2.3 Initial conditions and parameters

We consider a cuboid of breadth Ly =H, and with equal length and
height (Lx = Lz = L) [see Figure 1]. The simulation domain (Lx, Ly, Lz) is
discretized with (Nx, Ny, Nz) equispaced collocation points. We use
periodic boundary conditions in the x and z directions, and impose no-
slip velocity boundaryU= 0 at thewalls (y= 0 and y=H) [23].We place
Nb bubbles in random positions and initialize each one as an ellipsoid of
volume V = 4.73 × 103 (mono-disperse suspension). The front tracking
module of the PARIS solver [22] employs a symmetry boundary
condition for the surface tension force at the walls such that the net
force at thewall would be tangent to thewall. This ensures a thin layer of
fluid (approximately O(0.13)δy, where δy = H/Ny) between the bubble
and the wall. Our grid resolution is comparable (or higher) to a previous
numerical study on Hele-Shaw with bubbles [23]. The bubbles are
allowed to relax in the absence of gravity until they achieve the
equilibrium pan-cake-like configuration [23] with diameter d = 2H.

In Table 1 we summarize the parameters used in our simulations.
We choose parameters such that the dimensionless numbers (Ga, Bo,
H/d, and ϕ) are comparable to experiments [15,17,18]. We simulate
low At = 0.08 and high At = 0.9, and verify that the spectral properties
are insensitive to density contrast [6,11,12].

3 Results

In this section, we present the results of our numerical investigations.
We obtain the density ϱ and the velocityU fields by performing the DNS
of NSHS Eq. 1, and from them, we get the corresponding gap averaged
fields. We monitor the time evolution of the gap averaged energy andTA
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investigate the flow properties in a statistically steady state. The plot in
Figure 2 shows a typical snapshot of the bubble configuration along with
the flow streamlines in the steady-state. Similar to the experiments [15],
we observe that the flow disturbances are mostly localized in the bubble
vicinity. Furthermore, the horizontal alignment of bubbles is also
observed in experiments [15] as well as numerical simulation of
stratified bubbly flows in a Hele-Shaw setup [23]. As is conventional

in the experiments [14,15], we investigate the spectral properties of the
gap-averaged velocity field (2).

3.1 Time evolution

From (2), we obtain the following balance equation for the gap-
averaged kinetic energy E

zt 〈
ρ u2

2
〉︸

︷︷

︸

E

� − 2〈�μS : S〉︸



︷︷



︸
ϵμ

+ 〈 ρa − ρ[ ]uzg〉︸





︷︷





︸
ϵinj

+ 〈�Fσ · u〉︸


︷︷


︸
ϵσ

+ 〈�Fd · u〉︸


︷︷


︸
ϵd

, (3)

where ϵμ is the gap-averaged viscous energy dissipation, ϵd is the
dissipation due to drag, ϵinj is the gap-averaged energy injected due
to buoyancy, ϵσ is the contribution due to the surface tension, and
the angular brackets denote spatial averaging.

In Figure 3, we plot the time-evolution of the kinetic energy E
and observe that a statistically steady state is achieved for t > 0.8τs.
Furthermore, in Table 2 we show that the energy injected by

FIGURE 2
Instantaneous bubble configuration superimposed with flow streamlines in the steady-state (run H1). The streamlines are colored according to the
z-component of the velocity.

FIGURE 3
Time evolution of the kinetic energy E. A steady-state is attained
for t ≥0.8τs, where τs � L/

���
gd

√
.

TABLE 2 Time-averaged values of the energy injection inj, viscous dissipation
μ, and dissipation due to drag d in the statistically steady state.

# ϵμ × 10–3 −ϵd × 10–3 ϵinj × 10–3

H1 0.8 5.6 6.5

H2 1.1 11.6 11.6

H3 0.8 8.8 9.1
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buoyancy is primarily balanced by the dissipation due to drag in the
steady state (ztE ≈ 0).

3.2 Energy spectra and scale-by-scale
energy budget

The energy spectrum and co-spectra for the gap-averaged
velocity field are defined as:

E k( ) ≡ ∑
k−1/2<m<k+1/2

|û m( )|2,

Eρu k( ) ≡ ∑
k−1/2<m<k+1/2

R ρ̂u( ) −m( )û m( )[ ].

Here, (̂·) denotes the Fourier transformed fields.

In Figure 4, we plot the energy spectra E(k) and cospectra Eρu(k)
for our simulations H1 −H33. From the plots, we can identify
different scaling regimes: (a) For k ≪ kd we observe E(k) ~ k,
where kd is the wavenumber corresponding to the bubble diameter;
(b) Around k ~ kd, we find a short E(k) ~ k−3 scaling regime followed
by a steeper decay of the spectrum E(k) ~ k−5.

The k−3 scaling range observed in our simulaiton is consistent with
earlier experiments that also observe an intermediate k−3 scaling
subrange for 0.2)k/kd)1 [15]. We verify this by overlaying the
energy spectrum obtained in [15] over our data in Figure 4.

FIGURE 4
(A) Log-log of the energy spectra [E(k) versus k] for low At runs H1 and H2. (B) Log-log plot of the energy spectra (E(k)) and cospectra (Eρu(k)) for high
At =0.9 run H3 (Ga =274, ϕ =0.05). We overlay the data extracted from Bouche et al. [15] in both the plots for comparison. The experimental data is scaled
vertically for clarity. The data is extracted using the Enguage digitizer [25].

FIGURE 5
(A) Lin-log plot of the different contributions to the spectral energy budget (4) obtained from run H1. (B) Log-log plot showing comparison of the
scaled energy spectrum αE(k) and the dissipation due to drag D(k) for k/kd <2.

3 As the density contrast is negligible for the low At, we do not plot the co-
spectra for H1,H2.

Frontiers in Physics frontiersin.org05

Ramadugu et al. 10.3389/fphy.2023.1112304

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1112304


Risso [24] argues that the k−3 scaling could be modelled as a signal
consisting of a sum of localized random bursts. Although this
explanation is consistent with Figure 2, it does not highlight the
underlying mechanisms that generate the observed scaling. Lance
and Bataille [2] take an alternate viewpoint and argue that the
balance of energy production and viscous dissipation leads to the k−3

scaling.
The scaling of the energy spectrum we observe differs from

earlier studies on two-dimensional unbounded flows [10,12] at
comparable Ga. They find an inverse energy cascade with E(k) ~
k−5/3 for k < kd and a E(k) ~ k−3 scaling for k > kd due to the balance of
energy injected by surface tension with viscous dissipation.

In what follows, we present an energy budget analysis to explain
the observed scaling of the energy spectrum.

3.2.1 Energy budget
Since the scaling behaviour observed in our simulations H1 −H3

is identical, we perform the energy budget analysis using our highest
horizontal grid-resolution simulation H1. Ignoring inertia and
assuming a statistically steady state, from (2) we get the following
energy budget equation [26,27]:

F k( ) + Tσ k( ) � ]k2E k( )︸


︷︷


︸
D k( )

+D k( ), (4)

where D(k) is the viscous dissipation, Tσ(k) � ∑′R[F̂σ(m) ·
û(−m)] is the non-linear transfer due to surface tension, D (k) �
−∑′R[F̂d(m) · û(−m)] is the viscous dissipation due to drag,
F (k) � ∑′R[F̂g(m)ûz(−m)] is the energy injection due to
buoyancy. Here, ∑′ ≡ ∑k+1/2

|m|<k−1/2 indicates summation over all
wave-numbers in a circular shell around wavenumber k.

The plot in Figure 5A shows the different contributions to the
budget. Clearly for k < kd, the energy injected by buoyancy is
balanced by the drag (Fg(k) ~ D (k)) and other contributions are
subdominant. This justifies our assumption of ignoring the
inertial terms. In Figure 5B, we show that a linear drag
approximation Fd(k) ~ αE(k) (with α = 0.04) is in excellent
agreement with D (k). Next we approximate the energy
injected by buoyancy as Fg(k) ~

���������
E(k)Eρ(k)

√
, where

Eρ(k) � ∑′|ρ̂(m)|2. Noting that for k ≪ kd, i.e., for scales much

larger than bubble size, the density field can be approximated by
white noise Eρ(k) ~ k and by balancing the energy injected by
buoyancy with drag, we obtain E(k) ~ k. This explains the scaling
observed in our simulations for k < kd.

The situation is more complicated for k > kd. The zoomed-in
plot of the energy balance (see Figure 6A) reveals that both buoyancy
and the surface tension inject energy that gets dissipated by the
viscous forces (D +D ), and there is no dominant balance
(F + Tσ ~ D +D ). In Figure 6B, we show that the net
dissipation D +D ~ kE(k). Similarly, the net production F +
Tσ ~ k−4 for k > kd (see Figure 6C). Therefore, by balancing the
net injection with dissipation we get E(k) ~ k−5 scaling for k > kd.
Note that the oscillations in Tσ appear with period kd. Similar
oscillations have been also observed in the energy spectrum of
confined [23] bubbly flows.

Given the limited cross-over scaling range E(k) ~ k−3 in Figure 4,
we are unable to argue about the underlying mechanisms. Thus the
plausible explanation for the −3 scaling is the argument by Risso [24]
that we have discussed in the previous section.

3.3 Two-dimensional Navier-Stokes
equations with a linear drag (NSD)

In this section we investigate whether two-dimensional
Navier-Stokes equations with a linear drag coefficient (5)
are able to model the confined bubbly flows In the following,
we assume all the fields are two-dimensional and for
comparison with the gap-averaged quantities, we choose the
same symbols.

Dtc � 0, and ∇ · u � 0,
ρ c( )Dtu � ∇ · 2μ c( )S[ ] − ∇P + Fg + Fσ − αu.

(5)

Earlier studies [13,17,18,28] have used NSD Eq. 5 to investigate the
dynamics of an isolated bubble in a Hele-Shaw setup with H/d ≤ 0.5
and found the results to be consistent with the experiments. In the
following, we use NSD equations to study bubbly flows.

We perform direct numerical simulation of NSD equations on a
square domain of area L2 and discretize it with 20482 equi-spaced

FIGURE 6
(A) Zoomed in plot showing contributions to the spectral energy budget for k > kd. (B) Log-log plot showing comparison of the scaled dissipation
spectrum ~ kE(K) and the net dissipationD(k) +D(k) for k > kd. (C) Log-log plot showing different scaling regimes in the net energy injectionF(k) + Tσ(k)
for k > kd.
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points. The bubbles are initialized as circles of diameter d = 24 and
all the parameters of the simulation are identical to our run H1 and
we fix the drag coefficient α = 0.04. Our choice for the value of α is
motivated by Figure 5. We use a front-tracking-pseudo-spectral
method to evolve (5). For details of the numerical scheme, we refer
the reader to Ramadugu et al. [12]. Below we discuss the statistical
properties of the flow in the steady state.

In Figure 7A, we plot the bubble configuration and the flow
streamlines. Clearly the large scale flow properties resemble those
observed for the NSHS simulation. The flow disturbances are
localized in the vicinity of the bubbles and we also observe
horizontal alignment of bubbles.

The plot in Figure 7B shows a comparison of the gap-
averaged energy spectrum E(k) obtained from the NSHS
equation with that obtained from NSD Eq. 5. We find
that the energy spectrum are nearly identical for k < kd,

E(k) ~ k. However, discrepancies are observed for k > kd,
in contrast to E(k) ~ k−5 for the NSHS simulations we find
E(k) ~ k−3 for the NSD simulations. As pointed out in earlier
section, the oscillation in the energy spectrum appear with a
period kd.

Using (5), and ignoring the inertial contributions, we obtain the
following energy balance

F k( ) + Tσ k( ) � ]k2E k( )︸


︷︷


︸
D

+ αE k( )︸

︷︷

︸
D

. (6)

In Figure 8, we plot the contribution of different terms in (6)
towards energy balance. For k < kd, similar to NSHS, we observe that
energy injected by buoyancy is balanced by the linear drag. However,
a different balance appears for k > kd. In contrast to NSHS, a
dominant balance is observed in the NSD equations. The energy
transfer by surface tension to small scales balances viscous

FIGURE 7
(A) Snapshot of the bubble positions overlaid with flow streamlines. (B)Comparison of the gap-averaged energy spectra for our NSHS run H1with the
energy spectra obtained using simulation of the NSD Eq. 5. (Inset) The compensated spectra k3E(k) is drawn to highlight the −3 scaling range observed for
H1 and NSD simulation.

FIGURE 8
Different contributions towards the energy budget for (A) k < kd and (B) k > kd obtained from NSD simulation.
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dissipation leading to the observed E(k) ~ k−3 scaling in the energy
spectrum. Similar small-scale balance has also been reported in
earlier two-dimensional unbounded bubbly flow simulations [12].
Therefore, we conclude that although the NSD model captures the
large scale dynamics of the Hele-Shaw flow (NSHS), it is unable to
correctly capture the small scale physics.

4 Conclusion

We have investigated the spectral properties of the two-
dimensional bubbly flows under confinement in a Hele-Shaw
setup for experimentally relevant Ga and ϕ. The flow
visualization in the steady state is similar to earlier experimental
observations [15]. The energy spectrum obtained from the gap-
averaged velocity field shows E(k) ~ k for k < kd and E(k) ~ k−5 for k >
kd. We also observe an intermediate scaling range with E(k) ~ k−3

around k ~ kd. A scale-by-scale energy budget analysis reveals the
dominant balances. For k < kd, energy injection balances dissipation
due to drag, whereas for k > kd, the net injection balances net
dissipation. Finally, we show that the Navier-Stokes equation with a
linear drag can be used to approximate large scale flow properties of
bubbly Hele-Shaw flow but it fails to correctly capture energy
balance at scales smaller than the bubble diameter.
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