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The implementation of machine learning concepts using optoelectronic and
photonic components is rapidly advancing. Here, we use the recently
introduced notion of optical dendritic structures, which aspires to transfer
neurobiological principles to photonics computation. In real neurons,
plasticity—the modification of the connectivity between neurons due to their
activity—plays a fundamental role in learning. In the current work, we investigate
theoretically and experimentally an artificial dendritic structure that implements a
modified Hebbian learning model, called input correlation (ICO) learning. The
presented optical fiber-based dendritic structure employs the summation of the
different optical intensities propagating along the optical dendritic branches and
uses Gigahertz-bandwidth modulation via semiconductor optical amplifiers to
apply the necessary plasticity rules. In its full deployment, this optoelectronic ICO
learning analog can be an efficient hardware platform for ultra-fast control.
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1 Introduction

One of the important mechanisms of learning and memory with biological evidence in
the brain is synaptic plasticity [1]. Synaptic plasticity can incorporate learning rules based on
locally available information, which are well-suited to support bio-inspired physical systems
for computing [2]. The majority of synapses are found on dendrites, branch-like extensions
of a neuron that receive electrical stimulation from other neurons. Plasticity mechanisms,
together with the processing capabilities of dendrites, are considered to play a crucial role in
the emergence of human intelligence [3]. New insights into the functionalities of dendritic
processing are driving the search for alternative neural network architectures in machine
learning [4]. This highlights the importance of exploring different computational approaches
and platforms based on dendritic structures [5].

In this context, neuromorphic engineering has drawn inspiration from what is currently
known about the functioning of the brain to develop hardware systems with unique
computational capabilities, beyond electrical circuits for conventional computing [6, 7].
Recent developments in neuromorphic computing have resulted in various hardware
platforms that incorporate brain-inspired concepts [8]. Novel nanoscale electronic
devices based on memristive properties [9–14], spintronics [15, 16] or organic
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electronics [17] have emerged as possible candidates for synapses or
neurons in neuromorphic computing systems, enabling ultra-low
power consumption. Photonic platforms have also adopted
neuromorphic approaches for efficient computing over the last
decade [18, 19]. There is a plethora of works that explore diverse
photonic platforms for neuromorphic computing, such as
optoelectronic or fiber-based with temporal encoding [20–24],
free-space optics with spatial encoding [25, 26], or photonic
integrated circuits [19, 27, 28]. Some proposals aimed at
addressing challenges in analog computing [20, 21, 29], while
others aimed at implementing spiking networks with time-
dependent plasticity (STDP) [22, 23, 30, 31]. While some of
these works were mainly based on proof-of-concept photonic
architectures, many works lately focus on the potential of these
designs towards scalable, energy-efficient, and robust computing
accelerators [32–36].

Moreover, some of the previous hardware systems
demonstrate the capability to incorporate the classical
Hebbian learning. However, experimental and theoretical
studies indicate that the computational power of neurons
requires more complex learning rules than the simple
“neurons that fire together, wire together” [37]. New insights in
neuroscience suggest that neighboring synapses interact with
each other and that synaptic plasticity plays a role in
implementing this coordination [38]. Furthermore, there is
evidence that part of these activity-dependent changes of
synaptic strength occurs due to heterosynaptic plasticity,
i.e., at inactive synapses [39, 40]. The Input Correlation (ICO)
learning rule is a variant of the classical Hebbian learning rule
that resembles the dendritic principles of this heterosynaptic
plasticity [41, 42]. It is a correlation learning rule, in which the
strength (usually called weight) of synaptic connections can be
strengthened or weakened based on the correlation between
synapses on the same dendrite.

In this work, we draw inspiration from the fields of
neuromorphic computing, synaptic plasticity, and dendritic
computing to demonstrate for the first time, as a proof-of-
concept, a hardware-based ICO learning rule in a reconfigurable
and flexible optoelectronic setting. We design and build a fiber-
based optoelectronic dendritic unit (ODU), which consists of
multiple single-mode fiber pathways, each with a semiconductor
optical amplifier, that allows the implementation of fast plasticity
rules. These pathways emulate the dendritic branches of biological
neurons. The proposed ODU naturally accommodates adaptive
mechanisms required for the application of the ICO learning
rule. The latter has been demonstrated in the past in hardware
systems using electrical signals [41], in robot control [42, 43], and in
active noise reduction [44]. With our system, we target an ultra-fast
implementation of ICO learning, with information processing and
adaptation times of the nanosecond scale, much faster than previous
electronic approaches. In this way, computations for which a faster
application of ICO learning is required will come into reach.

The manuscript is organized as follows. In Section 2, we present
the ICO learning model and the experimental implementation of the
ODU. In Section 3, we present the numerical and experimental
results of the demonstrated ICO rule. Finally, we discuss the main
features of the optoelectronic implementation and the perspectives
for this dendritic computing approach.

2 Materials and methods

2.1 Input correlation (ICO) learning rule

The ICO learning rule was first proposed in [41] as a
modification of Hebbian differential learning rules, which are
variations of the classical Hebbian rule and use derivatives to
account for the temporal ordering of neural events. In the ICO
rule, the instantaneous change of the presynaptic connection i (Δwi)
is driven by the cross-correlation of two types of presynaptic events
rather than between presynaptic and postsynaptic events. In the ICO
rule, there are two types of input signals: a “reference” signal u0, with
a synaptic weight (w0) that is a constant positive value representing a
synapse strength that does not change over time, and the “stimulus”
signals ui>0 with their corresponding weights being updated
according to the following rule:

Δwi � ηuiu0′, (1)
where 0 < η < 1 is the learning rate, ui is the activation of the
presynaptic neuron corresponding to the stimulus signal ui and u0′ is
the derivative of the activation of the presynaptic neuron
corresponding to the reference signal u0. The ICO learning rule
is an unsupervised neural algorithm that learns temporal separations
between individual inputs. Here, synaptic weight wi increases if the
stimulus input ui activates before the reference input u0, and
decreases if it activates after u0. This is reminiscent of the
principles of heterosynaptic plasticity, where changes in synapse
strength are triggered by activity in another pathway. The output of
the ICO learning rule is a linear combination of the reference input
and the N predictive inputs:

v � w0u0 +∑N
i�1

wiui (2)

In the simplest form of the ICO learning rule (Figure 1) we have
two raw input signals, the reference x0 and the stimulus x1, with a
certain delay between them. In this work we consider only one
stimulus signal x1, but the ICO learning rule can be extended and
include multiple stimulus inputs. We consider for illustration
purposes the sequences of such two neuron spikes, modulated as

FIGURE 1
Illustration of the ICO learning model. The raw stimulus input x1
can trigger many different activation signals ui, which depend on the
filters’ properties. The signal x0 acts as a reference that changes the
synaptic weights wi in an unsupervised manner.
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delta-like functions, x0(t) = δ(t − T) and x1(t) = δ(t), which are
periodically inserted into the system every 600 time steps (see
Figure 2A). If the stimulus signal (x1) is injected earlier than the
reference signal (x0), T is positive, otherwise, T is negative. In the
ICO learning rule, the weight changes only during the temporal
overlap between the reference and the stimuli signals, and this
change is based on the derivative calculation. Therefore, raw
inputs with sharp temporal profiles (e.g., delta-like functions)
need to be temporally extended to increase the temporal overlap
region. This can be easily implemented by filtering the raw signals
and converting them into activation signals ui. In our case, we use a
filter function with a discrete-time response for each input, given by:

h n( ) � 1
dc

ean sin dn( ), (3)

where n is the index of the time steps, a = −πf /Q,d �
����������
(2πf)2 − a2

√
and c > 0 is a parameter to tune the amplitude of the filtered signal. The
parameter 0 ≤ f < 0.5 is the frequency of the filter normalized to a unit
sampling rate. The parameter Q > 0.5 of the filter defines its decay rate.

When using only one filter for each raw input, x0 and x1, these
are transformed by the filtering process into the activation signals u0
and u1 respectively (Figure 2B). We use the same filter for both
signals, withQ = 0.51, c = 1, and f = 0.01. Then we apply the ICO rule
in Eq. 1 to update the weight associated with the stimulus signal u1
(Figure 2D). Weight values change only during the time overlap
between the increasing and decreasing parts of the filtered activation
signals. The increasing part of the reference signal, captured by the
first-order derivative, marks also the increasing part of the weight. In
general, when the reference signal comes later than the stimulus
signal, the weight increases. For example in Figure 2D, the weight
goes from an initial value of 1 to eventually a value around 1.1. There
is a short region of decrease, around the time steps 70–90, and this is

due to the overlap between the final part of the stimulus signal and
the decreasing part of the reference signal. The weight w1 then
remains constant in the absence of overlap between u0 and u1.

The ICO learning rule can include multiple filtered versions of
the original stimulus signal x1 to increase its range of operation and
improve its input resolution. Each new filter is usually designed to
expand in time the stimulus signal in a different manner. For
instance, a reference signal x0 appearing at the 200th time step
would not interact with activation filtered function u1 in Figure 2B.
We numerically study the case with a bank of 3 filters that are
applied to the raw input x1 (u1, u2, u3) (see Figure 2C). The filter
bank increases the temporal range of ICO learning rule operation.
Reference inputs appearing up to the 400th time step now interact
with at least one filtered version of the stimulus signal. The filter
parameters for the stimuli signal are Q = 0.51, c = 1/(1 + 0.5 (i − 1)),
and fi = 0.1/i, where i > 0 is the increment number of the filter bank.
In this particular case, the weights (w1, w2, w3) associated with the
output of each filter (u1, u2, u3) follow the same trend as in the case of
a single filter for the raw stimulus signal (Figure 2E). The filter bank
adds expressive power to the ICO rule in resemblance with the way
dendritic plasticity adds computational power to a single neuron.
Dendrites do not just receive the input information (stimuli) and act
as passive receivers; each dendritic branch can apply a different filter
to the stimulus signal and then adapt the strength of the contribution
of the dendritic branch (for a review see [45]).

2.2 Optoelectronic implementation of the
ICO learning rule

In this work, we consider an optoelectronic dendritic unit
(ODU) to implement the ICO learning rule. The ODU is an

FIGURE 2
(A) Two delta-function raw inputs x1 and x0 with a time difference of T = 45 steps. (B) Their corresponding filtered activation signals (u1 and u0). (C)
The corresponding filtered activation signals when considering three different filters for the stimulus signal x1. The filter parameters are:Q=0.51 and c=1/
(1+0.5 (i −1)), f =0.01/i for the three activation inputs u1, u2 and u3, and c =1, f =0.01 for u0. (D) The weights for the filtered activation signal of case (B). (E)
The weights for the filtered activation signal of case (C).
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optoelectronic system with individual single-mode fiber optical
paths (dendritic branches—DB) that can carry different
information. In the context of the ICO learning topology, one
DB is assigned to the transmission of the reference information,
while the rest of the branches are assigned to the information from
the sensory stimuli.

2.2.1 Experimental setup of an optoelectronic
dendritic unit

The experimental design of a single-mode fiber (SMF)
optoelectronic dendritic unit (ODU) with four dendritic
branches, in a coincidence detection architecture, is shown in
Figure 3. A 40 mW superluminescent diode (SLD) at 1,550 nm,
followed by an optical isolator and a tunable-bandwidth optical
filter, provides an incoherent optical carrier to the input of the ODU.
The bandwidth of the filter is set to 1.5 nm so that the fiber lengths of
the ODU do not introduce considerable chromatic dispersion that
distorts the initial pulse shapes. The input information is encoded
via a 10 GHz Mach-Zehnder modulator (MZM) biased at its
quadrature operating point, using a time-multiplexing approach.
Four independent data streams that correspond to the individual
filtered stimuli (u3, u2, u1) and reference signals (u0) are combined
into a single data stream in sequential order, with some time
separation between them. Time-multiplexing allows the data
stream to be electrically generated by a single channel (CH1) of a
9.6 GHz 24 GSa/s arbitrary waveform generator (AWG) and applied
in the optical domain using only one MZM element. After encoding,
the optical signal is split into four optical paths, via a 1 × 4 optical
splitter, representing the four optical dendritic branches. Each path
includes a semiconductor optical amplifier (SOA), which can
amplify or attenuate the strength gi of the optical signal. The
three DBs (#2, #3, and #4) that carry the experimental stimuli
signals, need to be dynamically weighted, following the plasticity
rules that apply at any given time. Thus, in these three dendritic

branches, the SOAs are operated as modulators (SOAMOD) by
using the appropriate circuitry and by modulating their bias current.
The supporting modulation rates range from 1.5 MHz up to 2 GHz.
The plasticity rules are introduced by the weight data streams (w3,
w2, and w1), which are again combined into a single data stream in
sequential order via time-multiplexing. Using a second AWG
channel (CH2) and after electrical splitting (RFS), these weighted
sequences are electrically amplified (RFA) and applied to the
SOAMOD devices. In addition, each dendritic branch of the
ODU incorporates an SMF spool (SMF-S) of increasing length
(1, 1.5, 2, and 2.5 km), so that the time-multiplexed signals
encoded at the input are temporally aligned at the coupling stage
(4 × 1 optical coupler). By construction, the summation of the
optical signals from the different paths is incoherent. An optical
filter reduces the amplified spontaneous emission noise–introduced
by both the SOA and SOAMOD devices—of the summed optical
signal. Finally, the optical signal power is detected by an optical
power meter (PM) and its temporal evolution is detected by a
20 GHz AC-coupled photoreceiver with a trans-impedance
amplifier (PD). The converted electrical signal is monitored and
recorded by a real-time 16 GHz analog bandwidth 40 GSa/s
oscilloscope (OSC). The type and operating conditions of the
components and instruments are provided in Table 1.

2.2.2 Time-multiplexing for data encoding
By applying time-multiplexing, we significantly reduce the

components that are needed to introduce independent sequences
into the different optical dendritic branches. The time-multiplexing
of the encoded data, the weighting, and the temporal compensation
of the different dendritic branches work as follows. In CH1 of the
AWG, we encode sequentially the following input data sets: u3, u2,
u1, and finally u0 (Figure 4). Only when the temporal distance
between these sequences matches the physical temporal delay
introduced by the length of the ODU’s different DBs, the

FIGURE 3
Optoelectronic dendritic unit (ODU) with four dendritic branches (DB), in a coincidence detection architecture. SLD, Superluminescent diode, OI,
Optical isolator, TB-OF, Tunable-bandwidth optical filter, MZM, Mach-Zehnder modulator, 1/4, One-to-four optical splitter, SOA, Semiconductor optical
amplifier, SOAMOD, Semiconductor optical amplifier operating as modulator, SMF-S, Single-mode fiber spool, 4/1, Four-to-one optical coupler, OF,
Tunable optical filter, 10/90, Optical splitter, PM, Powermeter, PD, Photodetector, OSC, Real-time oscilloscope, AWG, Arbitrary waveform
generator, RFA, RF amplifier, RFS, RF splitter.
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coincidence of the data sets will happen in predetermined dendritic
branches. Specifically, the u3 sequence, which is encoded first, is
assigned in DB #4 which has the longest delay (SMF-S of 2.5 km). u2
that is encoded second is assigned in DB #3 with the second longest
delay (SMF-S of 2 km). u1 that is encoded third is assigned in DB #2
with the third longest delay (SMF-S of 1.5 km). Finally, u0 is encoded
last and is assigned in DB #1 with the shortest delay (SMF-S of
1 km). As the physical propagation length of the DBs is fixed, the
temporal matching is performed at the AWG encoding by setting
the appropriate temporal spacing ΔTuij between the input data sets.
The temporal resolution we use for this matching is 100 ps and is
defined by the AWG. The length difference of ~ 500 m between
adjacent DBs introduces delays among the optical signals of ~
2.45 μs. This delay defines the maximum length of the data sets
ui that can be encoded with time-multiplexing, without overlapping

with each other. Eventually, at the summation point - the 4 ×
1 optical coupler’s output - the experimental signals (uEi ) that
correspond to the four encoded data sets (ui, i = 0–3) are
temporally aligned. In absence of weighting adaptation and for
various optical strengths gi of the DBs, the corresponding optical
signals are summed in the photodetected ODU output vE:

vE t( ) � ∑3
i�0

uE
i t( ) � ∑3

i�0
gi · ui. (4)

In Eq. 4, we consider that the encoded signals ui undergo a linear
transformation through the physical ODU system, thus their
measured values uEi are approximated by a simple multiplication
with a gain value. When introducing adaptive weighting in three out
of the four dendritic branches, another temporal alignment is
required. The time-multiplexed sequences that carry the weight

TABLE 1 Components, instrumentation and operational parameters used in the ODU experiment. I: Bias current, T: Temperature, λ: Wavelength, Δλ: Wavelength
bandwidth, S: Sampling rate.

Component Provider Model Operating parameters

SLD Thorlabs SLD1550-A40 I = 500 mA, T = 20 °C

TB-OF Santec OTF-350 λ = 1,550 nm, Δλ = 1.5 nm

MZM EOSpace AZ-1K1-12 Quadrature point

SOA Thorlabs SOA1117S I = 170–230 mA, T = 20 °C

SOAMOD circuitry Nanotech BTY-T1SOA-XHS -

SMF-S j-fiber SSMF-G652D-Ultra -

PM Thorlabs PM100D -

OF Agiltron FOTF-025121333 λ = 1,550 nm

PD Miteq SCMR-100K20G -

OSC Lecroy WaveMaster 816Zi-B S = 10 GSa/s

AWG Tektronix AWG7122B S = 10 GSa/s

RFA iXblue DR-VE-10-MO Analog operation

RFS RF-Lambda RFLT2WDC27GA -

FIGURE 4
Schematic diagram of the time-multiplexing encoding and the coincidence detection at the ODU output. The temporal distances between the
encoded input ui (CH1) and weight wi (CH2) data sets are defined so that there is a predefined time window for the ODU summation stage in which the
different, individual signals that propagate along the dendritic branches DB are temporally aligned and summed.
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information are uploaded at the encoding stage, in CH2 of the
AWG. The weight data sets (w3, w2, and w1) are encoded
sequentially. Here, the physical path of the electrical lines and
the optical paths are again fixed. Thus, temporal matching is
performed via the AWG encoding, by setting the appropriate
temporal spacing ΔTwij between the weight data sets, but also the
appropriate temporal shift ΔTuw with respect to the input signal
sequence u (Figure 4). In this way, there is a pre-defined time
window in which the optical signals that carry the weighted data sets
are temporally aligned and summed at the summation stage (the 4 ×
1 optical coupler’s output, Figure 4, red dashed box). Also, in this
case, the experimentally applied weights (wE

i ) to the optoelectronic
system are approximated by a linear transformation of the encoded
weight data sets (wi). The photodetected ODU output vE with
weighting adaptation is given by:

vE t( ) � uE
0 t( ) +∑3

i�1
wE

i t( ) · uE
i t( ) ≈ g0 · u0 t( ) +∑3

i�1
wi t( ) · gi · ui t( ).

(5)

3 Results

3.1 Performance of the ICO learning
rule—Numerical results

We show in Figure 5 two cases with different parameter sets for
the numerical implementation of the ICO rule. These results
illustrate the impact of the time difference between the activation
signals of the stimulus (u1) and the reference (u0) to the change of
the weight w1 associated to the stimulus branch, and the
corresponding output v. In Figure 5A, four pulses are repeated
every 600 time steps, under the condition that u1 comes T = 55 time
steps before u0. For the next three pulses, u0 is zero, while the last
4 pulses of u1 come after u0 with a time difference of T = −55 steps.

For this case, a learning rate of η = 0.05 in Eq. 1 is considered. In the
case of Figure 5B, the four pulses are repeated every 600 time steps,
under the condition that u1 comes now at T = 20 time steps before
u0. For the next three pulses, u0 is zero, while the last four u1 pulses
come after u0 with a shorter time difference of T = −20 time steps.
For this case, a slower learning rate η = 0.01 in Eq. 1 is considered. In
both cases, the initial plastic weight (w1) increases when the interval
T between the two inputs is positive and decreases when it is
negative; the weight remains constant if one of the inputs is zero
(Figures 5A, B, middle graphs). The weight increase is linear and
depends on the learning rate (η) and the time interval between
inputs (T). The output of the ICO learning rule v is given in (Figures
5A, B, lower graphs), for the two cases.

The values of the stimulus activation inputs play a decisive role
in the calculation of their weights. Until now, we have considered
input sequences in which the pulse amplitude returns to zero.
However, if the input sequences have a DC bias (b), the ICO
learning rule implies different weight updates according to Eq. 1.
A stimulus input signal with bias (u1 + b) leads to a different weight
update, with respect to an input signal without bias. In contrast, a
bias value in the reference input only affects the output signal but not
the weight update. This is shown in Figure 6, by considering two
cases with minimum amplitude (or DC bias) of b = 2.5 and b = 5.
When comparing the above behavior with the case of b = 0 (dashed
red line in Figure 6), we conclude that the bias increases the average
value of the ICO learning output v and the plastic weight w1, but the
behavior regarding the time difference steps between the inputs
remains the same. The reason for which we consider this DC bias is
to take into account the characteristics of our experimental
demonstration. On the one hand, the light source that we use in
our experiment (SLD) is non-monochromatic, with an optical
bandwidth set to 1.5 nm, leading to incoherent positive
summations only. On the other hand, external optical
modulation is performed via an optical MZM, an interferometric
device that is designed for coherent light. Thus, when a given
wavelength condition matches the maximum extinction ratio

FIGURE 5
(A) Top panel: A sequence of two activation inputs u0 and u1, with u0 obeying different conditions: it appears after u1 with T =55 time steps, it is zero,
or it appears before u1 with T =−55 time steps. Middle panel: The plastic weightw1. Bottom panel: The ICO learning output v. The learning rate is η =0.05
and w0=1. (B) Same as A, but with a reduced temporal separation between u1 and u0 (T =20 or T =−20 time steps) and smaller learning rate η =0.01.
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obtained at the optical output of the MZM, the neighboring
wavelengths do not comply with this interferometric condition.
Thus, there will always be significant optical power at the lowest
modulation level of our optical input signal, i.e. a DC bias in the
optical input.

Next, we numerically study the case with a bank of 3 filters that
are applied to the raw input x1 leading to three different activation
signals u1, u2 and u3, following the general ICO learning concept of
Figure 1. Here, we consider a total of twenty input time frames, in
which raw stimuli and reference pulses are repeated every 600 time
steps, with different time distances between them. In the first eight

input time frames, x0 is delayed by T = 45 time steps with respect to
x1; in the next four time frames the reference signal x0 is zero; in the
last eight frames, x0 is 45 time steps ahead of x1 (T = −45). The
filtered raw inputs result in the activation input sequences ui of
Figure 7A. These filtered inputs are applied to the ICO learning rule
with a learning rate of η = 0.01 and a weight for the reference signal
equal to w0 = 1. The ICO learning output v signal is shown in
Figure 7B, while the update of the adaptive weights wi (i > 0) is
shown in Figure 7C. The differences among the plastic weightswi are
given by the different input activation amplitudes ui and the time
overlap between the stimuli filtered signals and the reference one.

FIGURE 6
(A) The plastic weightsw1, and (B) the ICO learning outputs v, for different DC amplitude bias values b of the activation inputs presented in Figure 5B.
The learning rate is η =0.01 and w0=1.

FIGURE 7
Numerical simulations of the ICO rule with one stimulus signal x1 that feeds three different activation filters (u1− u3). (A) Input activation signals
(reference and stimuli). (B) Output of the ICO rule. (C) Plastic weights that correspond to the stimuli activation inputs.
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3.2 Performance of the ICO learning
rule—Experimental results

The filtered inputs (u0, u1, u2, u3) and weights (w1, w2, w3, are
applied in the experimental realization of the ODU, using the time-
multiplexing approach explained in Section 2.2.2. We apply the
two corresponding sequences u and w to the two channels of the
AWG (Figure 3). Appropriate scaling of the electrical modulating
sequences is applied. This scaling defines the modulation depth of
the optical carriers for each dendritic branch. However, as
discussed in the previous section, the incoherent nature of the
incoming optical signal sets a non-zero optical signal for the lowest
modulation values, introducing a DC bias to the overall
experimentally recorded sequence. The SOA and SOAMOD
bias currents are tuned to equalize the average optical power of

each dendritic branch. As the different DBs experience slightly
different optical losses, the provided gain gi in each path may be
slightly different for this optical power equalization. In Figure 8A,
we show the experimentally measured filtered input signals uEi , as
they are detected at the output of the ODU, in the absence of the
rest of the inputs and plastic weight application. The detected
amplitudes of the uEi signals become consistent with the
numerically computed ones (Figure 7A) by adjusting the gain gi
of each DB, which is incorporated in the amplitude uEi . The DC
bias of each input is not depicted here, as the optoelectronic
detection of the ODU is performed with an AC-coupled
photoreceiver. In Figure 9, we show a zoom of the measured
signals uEi for the four DBs, and for the three different u0
conditions studied in the corresponding encoded sequence.
Specifically, in Figure 9A, the measured signal uE0 (black line)

FIGURE 8
ICO rule applied to the experimental ODU in an open loop configuration. (A)Measured filtered input signals (uE

i ) that propagate along the four DBs
before weighting, in absence of weighting and the rest of the inputs. The dashed lines separate the three different reference filtered input signal
conditions. (B)Weighted filtered input signals in the three plastic DBs (wE

i u
E
i ) andODUoutput signal (vE). TheweightswE

i are obtained from the SOAMODs
electro-optic response, after feeding the numerically calculated values wi. The experimentally measured signals are obtained at the ODU output.

FIGURE 9
Detail of Figure 8, focusing on the three different timing conditions of the reference filtered signal uE

0 (black line). In (A) uE
0 fires after the stimuli

filtered inputs (uE
1 − uE

3); in (B) uE
0 is zero; in (C) uE

0 fires before the stimuli filtered inputs (uE
1 − uE

3). All filtered input signals are monitored experimentally by
their physical counterpart uE

i .
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fires after the stimuli filtered input signals (uEi , i = 1–3); in
Figure 9B, uE0 is zero; and in Figure 9C, uE0 fires before the
stimuli inputs.

In the next step, we apply the pre-calculated weights in the
dendritic branches that carry the stimuli information (DB#2-DB#4).
In Figure 8B we show the individually measured signals after
weighting (wE

i u
E
i ), as they are detected at the output of the

ODU, in absence of the rest of the inputs. We also show the
output summation detected signal vE, in which three distinct
regimes can be identified, in agreement with the numerically
computed output of the ICO learning rule of Figure 7. The first
eight pulses include a reference signal (uE0 ) that rises in time after the
stimuli signals (uE1 , uE2 , and uE3 ), as seen in Figure 9A. The
experimental ODU output results in an increase of the peak
amplitude for these first eight pulses (Figure 8B), every time a
reference pulse appears and is lagging the stimuli pulses. The first
peak has an amplitude of 103 mV, while the 8th peak’s amplitude is
increased to 169 mV. The next four stimuli pulses are not
accompanied by any reference pulse (Figure 9B) and,
consequently, the output pulses preserve the same amplitude,
with only a very slight decrease. The amplitude values vary
within the range of 148 mV–156 mV. Finally, the last eight
stimuli pulses of uE1 , u

E
2 , and uE3 are accompanied by a leading

reference signal (uE0 ) (Figure 9C). In the latter case, the ICO learning
rule results in a decrease of the peak amplitude at the ODU output,
every time a reference pulse appears. The last peak of the sequence is
obtained with an amplitude of 50 mV.

The deviation that we find between the numerically computed
ICO learning output v (Figure 7) and the corresponding
experimental one vE (Figure 8) is mainly due to the DC bias of
the experimental input signals. As we showed in Figure 6, if the
pulses do not return to zero, the ODU output will also not return to

zero between pulses. This is the case of the experimental
implementation, as a “zero” value encoding at the input, results
always in non-zero optical power for the optical signals that
propagate through the dendritic branches. This DC bias results in
the non-return-to-zero pulse behavior in Figure 8B. This effect was
not considered in the numerical computation of Figure 7, which
were obtained assuming a DC bias b = 0 and no gain (i.e. g = gi = 1).
There, the ODU output exhibits return-to-zero pulses (Figure 7B).
In an updated numerical implementation of the ICO learning rule,
we consider now a DC bias b = 8 and a gain of g = gi = 2 for i = 0–3,
with these values emulating best the corresponding experimental
parameters. By recalculating the ICO learning rule we obtain the
output in Figure 10. Now the numerically computed output
(Figure 10A, black line) shows a non-return-to-zero pulse
behavior, in accordance with the experimentally computed
sequence (Figure 10A, red line). The individually weighted
signals, for each dendritic branch of the stimuli, show also a
non-return-to-zero pulse behavior (Figure 10B) and are also in
agreement with the corresponding experimental signals of Figure 8B.

We can see in Figure 10A that, after adjusting and including both
parameters of gain and bias in the numerical computation, we obtain an
overall good agreement between the numerical output and the
experimentally obtained results at the ODU output. There is only a
small divergence between the two signals in the last part of the sequence,
due to the faster decay of the experimentally detected output compared
to the numerically calculated one. The reason is that the SOAMOD
circuitry introduces a non-negligible attenuation in the low-frequency
modulation, leading to a stronger decay of the DC-detected signal than
numerically expected. This is because the total duration of the signal we
process is 1.2 μs (as shown in Figure 10A), which corresponds to a
frequency of 833 kHz, slightly below the low cut-off frequency of the
SOAMOD circuitry (1.5 MHz).

FIGURE 10
(A) Comparison between numerical simulations (v, black color) and experimental results (vE, red color) of the ICO rule’s output, with one stimulus
signal x1 that feeds three activation filters (u1− u3). In the numerical model, the gain is g =2 and the bias is b =8. “Det. V” is the abbreviation for “Detected
Voltage.” (B) The numerically computed weighted stimulus input signals, for the previous values of gain g and bias.
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4 Discussion

The presented optoelectronic ODU and the proof-of-concept
implementation of the ICO learning rule, in an open loop
configuration and at the nanosecond scale, open the path for
future control and adaptation in ultra-fast optoelectronic
hardware platforms. Further advances of the presented system
can already be envisaged, toward more compact and energy-
efficient designs, by transferring the proposed ODU design to
photonic integrated platforms, where the fiber-based dendritic
branches are substituted by optical waveguides. Here, we made
use of incoherent optical signals, which hampers signal subtraction.
In a photonic integrated circuit platform, a fully-controllable phase-
dependent ODU approach could be considered, while replacing the
power-expensive SLD with a coherent laser source. Then, the
subtraction of coherent signals would be possible via the
appropriate optical phase-sensitive control of the dendritic
branches, by exploiting the properties of phase-change materials
[46–48]), or graphene ([49]) for phase modulation. A coherent
approach would also eliminate the optical bias that appears now in
the fiber-based ODU, at the input signal modulation stage. This
would allow also an easier parametrization of the system and
convergence between the experimental results and the
numerically calculated ICO learning performance. Additionally,
in the presented ODU, the incorporation of SOAMOD devices
offers the flexibility to amplify individually the optical signals in
the dendritic branches, apart from the application of the weights. In
a photonic integrated platform, the weight adaptation could be
introduced by integrated lithium-niobate [50, 51] or microring
resonator [52, 53] modulators, in absence of any optical
amplification means. Eventually, the optical power budget of the
ODU will determine the number of dendritic branches that could be
considered without amplification, in energy-efficient designs.

The optoelectronic ODU could also be exploited in a closed-loop
configuration for control applications. ICO learning was originally
proposed as a model that describes how an agent can learn an
anticipatory action to react and avoid a reflex event that is preceded
by an earlier alarm signal. As shown by one of the authors [41, 54], the
ICO learning rule in a closed-loop approach can be used in various
control applications, where the reaction to a sensory stimulus x1 can be
adapted by the ICO learning to predict and eventually suppress the
occurrence of a reflex behavior. In such closed-loop feedback control
applications, the reference input is an error signal for the learning while
the stimulus or sensory inputs xi>0 will be an early alarm signal.
Extending the presented ODU implementation to operate in a closed
loop means that the adaptation weights - which in this study were pre-
computed and uploaded in the experimental setup - would need to be
calculated in real-time from the output signal, for each temporal
resolution step and applied to the ODU. Although this approach
would still require some conventional computational processing, it

would demonstrate an autonomous operation of an ODU that
implements the ICO learning rule. Finally, this ODU
implementation will serve as a flexible photonic testbed for other
synaptic plasticity rules beyond the ICO learning and the exploration
of more advanced forms of dendritic computing. This concept could be
transferred for dedicated computing tasks into more compact, energy-
efficient photonic integrated circuits or memristive platforms.
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