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The nonlinear Schrödinger (NLS) equation is an ideal model for describing optical
soliton transmission. This paper first introduces an integer-order generalized
coupled NLS equation describing optical solitons in birefringence fibers.
Secondly, the semi-inverse and fractional variational method is used to extend
the integer-order model to the space–time fractional order. Moreover, various
nonlinear forms of fractional NLS equations are discussed, including the Kerr,
power, parabolic, dual-power, and log law. The exact soliton solutions, such as
bright, dark, and singular solitons, are given. Finally, the behavior of the solution is
shown by three-dimensional figures with different fractional orders, which reveals
the propagation characteristics of optical solitons in birefringence fibers described by
the generalized coupled space–time fractional NLS equation.
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1 Introduction

With the great progress of the information technology and the increase in market demand,
especially with the outbreak of COVID-19 in recent years, modern society relies more andmore
on communication, forcing optical fiber communication to develop to high-speed and large
capacity. Optical fiber communication has become the main transmission mode of
communication network due to its high transmission capacity, low loss, and wide
frequency band. Optical soliton is the most ideal information carriers in fiber optic
communications. From the perspective of physics, optical solitons can keep the waveform
and speed of optical fiber transmission unchanged, which is a special product of non-linear
effects in optics. It is considered one of the most promising transmission modes in the next
generation [1]. From the perspective of mathematics, optical solitons are integrable solutions of
some non-linear partial differential equations. Studying the exact solution of these
mathematical models has become a great significant frontier in this field [2, 3].

In the field of optical fiber communication, NLS-type equations have attracted great
attention from researchers [4–6]. In the 1850s and 1860s, the NLS equation was introduced
to study the two-dimensional self-focusing phenomenon of strong beams in weakly interacting
non-ideal Bose gases and non-linear media. As a general equation to reveal the propagation of
wave packets in weakly non-linear medium, the NLS equation is of great significance to the
study of non-linear physics. With further research, the NLS equation has been extended to the
equations of the variable coefficient, complex coefficient, multi-dimensional, higher order, non-
local, and fractional order, which contain various physical effects [7, 8]. The standard NLS
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equation contains a second-order dispersion term and a third-order
non-linear term [9–11], in the form of

iut + puxx + q|u|2u � 0.

The aforementioned equation describes the picosecond pulse
propagation in a single-mode fiber without ignoring the optical
loss. Here, u = u(x, t) represents the complex function of the real
variables x and t. Both p and q are non-zero real numbers, representing
the group velocity dispersion coefficient and self-phase modulation
coefficient, respectively. The subscripts represent the corresponding
partial derivatives.

Introducing birefringence, a natural phenomenon in fiber optics,
into fiber optics will contribute to improve the research and
development of high-birefringence fibers. The Kerr, power,
parabola, and dual-power non-linearity laws are considered to
study solitons in birefringent fibers. These criteria for the existence
of solitons are also regarded as constraints [12, 13]. In birefringent
fibers, the basic theoretical model of optical pulse transmission is
coupled NLS equations [14, 15]. The classical coupled NLS equations
have the following form:

iu1t + 1
2
u1xx + |u1|2 + |u2|2( )u1 � 0,

iu2t + 1
2
u2xx + |u1|2 + |u2|2( )u2 � 0,

where u1 and u2 represent the slow-varying amplitude of two
interacting fiber modes; the coupled NLS equations include not
only self-similar modulation |u1|

2u1 and |u2|
2u2 but also cross-

phase modulation |u1|
2u2 and |u2|

2u1.
Fractional calculus plays an important role in physics and

engineering. Fractional derivatives have been successfully used to
describe fractal problems in engineering, such as the heat transfer
in fractal medium [16], fractal hydrodynamic equations [17], fractal
electrostatics [18], fractal Fokker–Planck equations [19], fractal
description of stress, and strain in elasticity [20] [21–23].

In 2000, Laskin first proposed fractional quantummechanics [24],
which replaced the traditional NLS equation with a fractional NLS
equation of the generalized second-order partial differential equation
with a fractional order. The fractional NLS equation has attracted
extensive attention in the field of physics [25, 26]. It has important
implications for theoretical research in the field of fraction and
fractional spin particle dynamics [27]. The theory of fractional NLS
equations is difficult to advance due to the influence of its inherent
non-local operators and the connection between fractional derivatives.
Until 2015, Longhi considered the similarity between the Schrodinger
equation and the paraxial wave equation. Then, the fractional NLS
equation is introduced into optics, and the quantum harmonic
oscillator is simulated by optical methods [28]. The field of optics
provides a wealth of possibilities for the realization of the fractional
NLS equation theory and the study of fractional transmission
dynamics of light beams [29–31].

This paper is organized as follows: in Section 2, the generalized
coupled spatiotemporal fractional NLS equations are derived using the
semi-inverse and Agrawal’s method [32, 33]. Kerr, power, parabolic,
dual-power, and log laws of this equations are discussed, and bright,
dark, and singular solitons are obtained by changing the amplitude
components of the function [34–37]; in Section 3, the behaviors of the
obtained solutions are shown by three-dimensional graphics with four

different fractional orders; and in Section 4, we elaborate the
conclusion of this paper.

2 Formulation of coupled fractional NLS
equations

In this section, with a fractional derivative theory, we derive the
two-dimensional coupled fractional NLS equations in the fractal
domain by the Euler–Lagrange equation, and semi-inverse and
Agrawal’s variation methods. The generalized coupled NLS
equations under the rigid-lid assumption are

iut +a1uxx + b1uxt + F c1|u|2 + d1|v|2( )u +i λ1|u|2ux + θ1uxxx{ } � 0,
ivt +a2vxx + b2vxt + F d2|u|2 + c2|v|2( )v +i λ2|v|2vx + θ2vxxx{ } � 0,

(1)
where u(x, t) and v(x, t) are complex valued functions that denote the
soliton profiles for the two components in birefringent fibers, F is a
non-linear function, al(l = 1, 2) denotes the group velocity dispersion
coefficients, bl(l = 1, 2) denotes the space–time dispersion terms, and cl
and dl(l = 1, 2) denote the self-phase and cross-phase modulation
terms, respectively. In the perturbation terms, λl(l = 1, 2) denotes non-
linear dispersion and θl(l = 1, 2) represents the third-order dispersion
which should be considered when the situation of the group velocity
dispersion is small.

The coupled space–time fractional NLS equations can be
represented by the following equations. We assume the potential
function u(x, t) = f(x, t) + ig(x, t) and v(x, t) = p(x, t) + iq(x, t)
accordingly that Eq. 1 has the following form:

i ft + igt[ ] + a1 fxx + igxx[ ] + b1 fxt + igxt[ ] + F f + ig[ ]
+i λ1|u|2 fx + igx[ ] + θ1 fxxx + igxxx[ ]{ } � 0,

i pt + iqt[ ] + a2 pxx + iqxx[ ] + b2 pxt + iqxt[ ] + F p + iq[ ]
+i λ2|v|2 px + iqx[ ] + θ2 pxxx + iqxxx[ ]{ } � 0,

(2)

where the subscripts represent the partial differential function with
parameters.

The function of the potential Eq. 2 can be expressed as

J f, g, p, q( ) � ∫
R
dx∫

T
dt f c1gt − c2a1fxx − c3b1fxt − c4Ff + c5λ1 |u|2gx + c6θ1gxxx[ ]+{

g d1ft + d2a1gxx + d3b1gxt + d4Fg + d5λ1 |u|2fx + d6θ1fxxx[ ]+
p m1qt −m2a2qxx −m3b2pxt −m4Fp +m5λ2|v|2qx +m6θ2qxxx[ ]+
q n1pt + n2a2qxx + n3b2qxt + n4Fq + n5λ2|v|2px + n6θ2pxxx[ ]}.

(3)

The coefficients ci, di, mi, and ni (i = 1, 2, . . ., 6) are Lagrange
multipliers. The integral shown in Eq. 3 can be calculated by fx|R =
fx|T = 0, gx|R = gx|T = 0, px|R = px|T = 0, and qx|R = qx|T = 0, respectively. |
u|2 and |v|2 and the function F is treated as a fixed function.

On the basis of the function conversion, we get the following
relationship by using variational optimization conditions and δJ(f, g, p,
q) = 0 for piecewise integration:

2c1gt − 2c2a1fxx − 2c3b1fxt − 2c4Ff + 2c5λ1|u|2gx + 2c6θ1gxxx[ ] + 2d1ft + 2d2a1gxx[
+2d3b1gxt + 2d4Fg + 2d5λ1 |u|2fx + 2d6θ1fxxx] + 2m1qt − 2m2a2pxx − 2m3b2pxt[
−2m4Fp+2m5λ2 |v|2qx + 2m6θ2qxxx] + 2n1qt + 2n2a2qxx + 2n3b2qxt + 2n4Fq + 2n5λ2|v|2px[
+2n6θ2pxxx] � 0.

(4)

Compared with Eq. 3, in the aforementioned Eq. 4, we get
ci � di � mi � ni � 1

2 (i � 1, . . . , 6). We substitute the ci, di, mi, and
ni into Eq. 3. The Lagrangian form of the NLS equations is
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L f, fx, ft, fxx, g, gx, gt, gxx, p, px, pt, pxx, q, qx, qt, qxx( )
� −1

2
ftg + 1

2
a1f

2
x +

1
2
b1ftfx − 1

2
Ff2[ −1

2
λ1 |u|2fxg − 1

2
θ1fxgxx]

+ 1
2
gtf − 1

2
a1g

2
x −

1
2
b1gtgx + 1

2
Fg2 − 1

2
λ1|u|2gxf − 1

2
θ1gxfxx[ ]

+ −1
2
ptq + 1

2
a2p

2
x +

1
2
b2ptpx − 1

2
Fp2 + 1

2
qtp − 1

2
λ2|v|2pxq − 1

2
θ2pxqxx[ ][

−1
2
a2q

2
x −

1
2
b2qtqx + 1

2
Fq2 − 1

2
λ2|v|2qxp − 1

2
θ2qxpxx]. (5)

Similarly, the Lagrangian form of the coupled space–time
fractional NLS equations can be converted as

F � −1
2
gDα

t f + 1
2
a1 Dβ

xf( )2 + 1
2
b1D

α
t fD

β
xf − 1

2
Ff2 − 1

2
λ1|u|2gDβ

xf − 1
2
θ1D

β
xfD

2β
x[ ]+

1
2
fDα

t g − 1
2
a1 Dβ

xg( )2 − 1
2
b1D

α
t gD

β
xg + 1

2
Fg2 − 1

2
λ1|u|2fDβ

xg − 1
2
θ1D

β
xgD

2β
x f[ ]+

1
2
a2 Dβ

xp( )2 − 1
2
qDα

t p − 1
2
λ2|v|2qDβ

xp − 1
2
θ2D

β
xpD

2β
x q + 1

2
b2D

α
t pD

β
xp − 1

2
Fp2[ ]+

1
2
pDα

t q −
1
2
a2 Dβ

xq( )2 + 1
2
Fq2 − 1

2
b2D

α
t qD

β
xq −

1
2
λ2 |v|2pDβ

xq −
1
2
θ2D

β
xqD

2β
x p[ ],

(6)

where D2β
x f � Dβ

x[Dβ
xf] and Dβ

xf(x) represent the mRL fractional
derivative [39].

Dβ
xf x( ) � 1

Γ 1 − β( ) d

dx
∫x

a
dζ

f ζ( ) − f a( )[ ]
x − ζ( )β{ },

0≤ β< 1.
(7)

Here, Γ(x) is the standard Euler’s gamma function.
The functional form of the coupled fractional NLS equations is

J A, B,M,N( ) � ∫
R
dx( )β∫

T
dt( )αF A,Dβ

xA,D
α
t A, D

2β
x A, B,Dβ

xB,D
α
t B, D

2β
x B,M,Dβ

xM,(
Dα

t M,D2β
x M,N,Dβ

xN,Dα
t N,D2β

x N), (8)

in which

∫t

a
dτ( )γf τ( ) � γ∫t

a
dτ t − τ( )γf τ( ). (9)

The relationship can be obtained by integration by parts [40].

∫b

a
dτ( )γf x( )Dγ

xg x( ) � Γ 1 + γ( ) g x( )f x( )|ba − ∫b

a
dx( )γg x( )Dγ

xf x( )[ ],
f x( ), g x( ) ∈ a, b[ ].

(10)

With δJ(A, B,M, N) = 0, we obtain the Euler–Lagrangian equations of
coupled NLS equations in the form

zF

zA
( )A + zF

zDβ
xA

( )Dβ
xA + zF

zDα
t A

( )Dα
t A + zF

zD2β
x A

( )D2β
x A + zF

zDβ
xB

( )Dβ
xB+

zF

zDα
t B

( )Dα
t B + zF

zD2β
x B

( )D2β
x B + zF

zB
( )B + zF

zM
( )M + zF

zDβ
xM

( )Dβ
xM+

zF

zN
( ) + zF

zDα
t M

( )Dα
t M + zF

zD2β
x M

( )D2β
x M + zF

zDβ
xN

( )Dβ
xN+

zF

zDα
t N

( )Dα
t N + zF

zD2β
x N

( )D2β
x N � 0.

(11)

Substituting the Lagrange form of the NLS equations (Eq. 6) into
the Euler–Lagrange formula (Eq. 11) and defining u(x, t) = A(x, t) +
iB(x, t) and v(x, t) =M(x, t) + iN(x, t) according to the definition of the
fractional potential function yields

iDα
t u + a1D

2β
x u + b1D

β
xD

α
t u + F c1|u|2 + d1|v|2( )u + i λ1|u|2Dβ

xu + θ1D
3β
x u{ } � 0,

iDα
t v + a2D

2β
x v + b2D

β
xD

α
t v + F d2|u|2 + c2|v|2( )v + i λ2|v|2Dβ

xv + θ2D
3β
x v{ } � 0,

(12)

where α and β are fractal dimensions and u(x, t) and v(x, t) denote the
fractal wave functions for space x and time t. Equation 12 is the
generalized coupled space–time fractional NLS equations.

3 Mathematical analysis

We obtain the soliton solution of the equation by using the solitary
wave ansatz to perform the integration of the coupled fractional NLS
equations (Eq. 12) in this section. It is considered that the four types of
non-linear conditions of the equation are the Kerr, power, parabolic,
dual-power, and log power non-linearity laws.

Introducing the fractional transforms yields

T � m1tα

Γ 1 + α( ), X � m2xβ

Γ 1 + β( ), (13)

wherem1 andm2 are constants.With the aforementioned conversions,
the fractional derivatives are transformed into the classic derivatives
[41] as

zαu

ztα
� m1

zu

zT
,

zβu

zxβ
� m2

zu

zX
. (14)

According to Eqs 12–14, it becomes

iuT + a1uXX + b1uXT + F c1|u|2 + d1|v|2( )u + i λ1|u|2uX + θ1uXXX{ } � 0,
ivT + a2vXX + b2vXT + F d2|u|2 + c2|v|2( )v + i λ2|v|2vX + θ2vXXX{ } � 0.

(15)

3.1 Kerr law

The Kerr law non-linearity is also called cubic non-linear. This
non-linearity occurs when the light wave in the fiber is subjected to a
non-linear response. According to the Kerr law non-linearity F(s) = s,
Eq. 15 describes the propagation of dispersive solitons and can be
rewritten as

iuT + a1uXX + b1uXT + c1|u|2 + d1|v|2( )u + i λ1|u|2uX + θ1uXXX{ } � 0,
ivT + a2vXX + b2vXT + d2|u|2 + c2|v|2( )v + i λ2|v|2vX + θ2vXXX{ } � 0.

(16)

We obtain the exact bright, dark, and singular 1-soliton solutions
of the coupling equations by the ansatz method, respectively. To set
the starting point, we write the solitons as the phase-amplitude form,
similar to [38].

u X, T( ) � P1 X,T( )eiϕ X,T( ),
v X, T( ) � P2 X,T( )eiϕ X,T( ),

(17)

where Pl(X, T)(l = 1, 2) denotes the amplitude components of the
soliton solution. The phase component ϕ(X, T) is

ϕ X,T( ) � −κX + ωT + σ, (18)
where κ represents the frequency, and ω and σ denote the wave
number and phase constant, respectively. Substituting Eq. 17 into
Eq. 16 and decomposing this equation into real and imaginary parts
yield

ω + alk
2 − blκω + θlk

3( )Pl − dlPlP
2
�l − λκ + cl( )P3

l − al + 3θlκ( )PlXX

− blPlXT � 0

(19)
and

1 − blκ( )PlT − 2alκ − blω + 3θlκ
2( )Plx + λlP

2
l PlX + θlPlXXX � 0, (20)

Frontiers in Physics frontiersin.org03

Fu et al. 10.3389/fphy.2023.1108505

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1108505


respectively, with l = 1, 2 and�l � 3 − l, and the profile function Pl(X, T)
is converted to f(X − vT). According to Eq. 20, the soliton velocity v is
calculated as

v � blω − 2alκ
1 − blκ

, (21)

provided

θl � λl � 0. (22)
It is important to note a special situation where θl = λl = 0. One study

on recovering from a non-dispersive situation was reported in 2014 [22].
The coefficients of the linear components in Eq. 16 can be

calculated by comparing the two result values of the soliton
velocities as follows:

a1 � a2, b1 � b2. (23)
Eq. 21 becomes

v � bω − 2aκ
1 − bκ

. (24)

Without considering the non-linearity, Eqs 19, 20 take the
following new form as

ω + ak2 − bκω( )Pl − dlPlP
2
�l − clP

3
l − aPlXX − bPlXT � 0 (25)

and

1 − bκ( )PlT − 2aκ − bω( )PlX � 0. (26)

3.1.1 Bright solitons
To solve the bright solitons, the starting assumption is [42]

Pl X, T( ) � Alsech
plτ, (27)

with l = 1, 2 and

τ � B X − vT( ), (28)
where Al and B represent the amplitude and inverse width of the
solitons, respectively; v is the soliton velocity, which is considered to be
the same along the two components. Substituting Eq. 27 into Eq. 25
yields

Alsech
plτ ω bκ − 1( ) − aκ2 + p2

l a − vb( )B2[ ]
− pl pl + 1( )B2 a − bv( )Alsech

2+plτ + dlA
2
�l Alsech

2p�l+plτ

+ clA
3
l sech

3plτ � 0.

(29)

On account of the equilibrium principle [38] and applying it to the real
part, Eq. 29 can be transformed into

3pl � 2 + pl. (30)
Thus,

pl � 1, (31)
with l = 1, 2. Considering the linearly independent functions sechjτ
with zero coefficients, when j = 1, 3, the velocity and wave numbers of
the resulting bright solitons are

v � 2aB2 − clA
2
l − dlA

2
�l

2bB2
, (32)

ω � 2aκ2 − dlA
2
�l − clA

2
l

2 bκ − 1( ) . (33)

When bB ≠ 0 and bκ ≠ 1, it is noted that the two replacement
expressions of the soliton velocity v are equal to l = 1, 2 in Eq. 32; the
relationship between Al and A2 is

A1

A2
�

������
c2 − d1

c1 − d2

√
, (34)

constrained by

c2 − d1( ) c1 − d2( )> 0. (35)
With Eq. 34, comparing Eqs 24–33 yields

Al �
����������������������
2 aκ2 − bκ − 1( )ω[ ] dl − c�l( )

dld�l − clc�l

√
. (36)

With l = 1, 2 and �l � 3 − l, the following formula holds

aκ2 − bκ − 1( )ω[ ] dl − c�l( ) × dld�l − clc�l[ ]> 0. (37)
Therefore, the bright soliton solutions for the Kerr law non-

linearity of the generalized coupled fractional NLS equations are

uk1 x, t( ) � A1sech B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ[ ]

,

vk1 x, t( ) � A2sech B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.

(38)
The parameters and corresponding constraints in the formula are
consistent with the aforementioned discussion.

Figure 1 shows the 3D plots of bright soliton solutions for the Kerr
law non-linearity with the four different fractional values: 0.15, 0.45,
0.75, and 1. Bright solitons depict solitary waves with peak intensities
higher than those on the ground.Moreover, it can be clearly found that
when changing the values of the fractional orders α and β, the contours
and widths of the soliton solutions all change. With the increase of α
and β, the widths of the solitons change irregularly and the plots
gradually become smooth.

3.1.2 Dark solitons
To solve the dark solitons, from the assumption [36],

Pl X, T( ) � Al tanh
pl τ, (39)

where the argument τ is given in Eq. 28. The substitution of Eq. 39 into
Eq. 16 leads to

ω bκ − 1( ) − aκ2 − 2p2
l a − bv( )B2[ ]Al tanh

pl τ + dlA
2
�l Al tanh

2p�l+pl τ + clA
3
l tanh

3pl τ+
pl pl + 1( )B2 a − bv( )[ ]Al tanh

pl+2 τ + pl pl − 1( ) a − bv( )B2[ ]Al tanh
pl−2 τ � 0.

(40)

The equilibrium principle reveals the same values of pl with l =
1, 2 as Eq. 31. Analogously, as to bright solitons, considering the
coefficients of the linearly independent functions of Eq. 40 yields

v � 2aB2 − clA
2
l − dlA

2
�l

2bB2
, (41)

ω � aκ2 − dlA
2
�l − clA

2
l

bκ − 1( ) . (42)

It should be noted that in Eq. 41, the specific value between
amplitudes shows the same relationship given in Eqs 34, 35 by
contrasting the wave velocity v with l = 1, 2.
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Considering Eq. 34, two possible expressions of the velocity in Eqs
24, 42 are jointly evaluated for either value of l, and we get

Al �
���������������������
aκ2 − bκ − 1( )ω[ ] dl − c�l( )

dld�l − clc�l

√
, (43)

as long as

aκ2 − bκ − 1( )ω[ ] dl − c�l( ) × dld�l − clc�l[ ]> 0. (44)
Therefore, the dark soliton solutions for Kerr law non-linearity are

uk2 x, t( ) � A1 tanh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vk2 x, t( ) � A2 tanh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

(45)
where Eq. 43 describes the soliton amplitudes, Eqs 41, 42 describe the
velocity and the wave numbers, and Eq. 34 describes the frequency
accompanied by corresponding constraints.

Figure 2 shows dark soliton solutions for Kerr law non-linearity with
the four different fractional values. Dark solitons depict solitary waves
whose intensity is lower than that of the background. As can be seen from
Figures 2A–D, with the increase of α and β, the amplitudes of solitons
increase, while their widths change irregularly.When α= β= 1, the soliton
has the largest amplitude.

3.1.3 Singular solitons
To solve the singular solitons, the assumption is [36]

Pl X, T( ) � Alcsch
plτ, (46)

where Al denotes the pulse amplitude and pl is a free parameter to be
evaluated by the equilibrium non-linearity and will be revealed in the
following. Substituting Eq. 46 into Eq. 16 leads to

Alcsch
pl τ ω bκ − 1( ) − aκ2 + p2

l a − bv( )B2[ ] + pl pl + 1( )B2 a − bv( )Alcsch
2+pl τ

+dlAlA
2
�l csch

2p�l+pl τ + clA
3
l csch

3pl τ � 0. (47)

After the equilibrium program, we get the values of the parameter
pl in Eq. 31. It can also be evaluated in coefficients of independent
elements cschpl−2τ. Substituting pl = 1 with l = 1, 2 into Eq. 47, the
linearly independent function cschjτ, j = 1, 3 with zero coefficients to
recover the soliton velocity in the dark soliton (Eq. 41) and the wave
numbers translate to

ω � clA
2
l + 2aκ2 + dlA

2
�l

2 bk − 1( ) . (48)

Considering Eq. 34 and equalizing the two possible velocity
expressions Eqs. 24, 48, we obtain

Al �
����������������������
2 bκ − 1( )ω − aκ2[ ] dl − c�l( )

dld�l − clc�l

√
, (49)

with l = 1, 2 and �l � 3 − l. When the following formula holds

bκ − 1( )ω − aκ2[ ] dl − c�l( ) × dld�l − clc�l[ ]> 0. (50)
The singular 1-soliton solutions for Kerr law non-linearity are

FIGURE 1
3D plots of bright soliton solutions for the Kerr law non-linearity with the four different fractional values by considering the values A1 = 1, B = −1, v = 1,
κ = −1, ω = 3, and δ = 1. (A) α = β = 1.5. (B) α = β = 4.5. (C) α = β = 7.5. (D) α = β = 1.
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uk3 x, t( ) � A1csch B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vk3 x, t( ) � A2csch B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( ).

(51)
If the corresponding constraints, as described previously are

satisfied, the singular soliton solution will persist.

3.2 Power law

In physics research, various materials exhibit power law non-
linearities, such as semiconductors. This non-linear law occurs in
non-linear plasmas and can solve the small K-condensation
problem theory in weak turbulence. The general form of a non-
linear function is F(s) = sn, where n denotes a parameter of power
law non-linear. We restrict 0 < n < 2 to ensure the wave stability and
n ≠ 2 to avoid self-focusing singularities, the initial system Eq. 15
can be rewritten as

iuT + a1uXX + b1uXT + c1|u|2n + d1|v|2n( )u + i λ1|u|2uX + θ1uXXX{ } � 0,
ivT + a2vXX + b2vXT + c2|v|2n + d2|u|2n( )v + i λ2|v|2vX + θ2vXXX{ } � 0.

(52)

Substituting Eq. 17 into Eq. 52 and transforming the real part Eq.
19 into

blκω − ω − alk
2 − θlk

3( )Pl + clP
2n
l + dlP

2n
�l( )pl + al + 3θlκ( )PlXX

+ blPlXT � 0.

(53)
The imaginary part takes the form as

1 − blκ( )PlT + blω − 2alκ − 3θlκ
2( )PlX + 2n + 1( )λlP2

l PlX + θlPlXXX

� 0.

(54)
The real part of Eq. 53 can be simply written as

ω bκ − 1( ) − ak2[ ]Pl + clp
2n
l + dlp

2n
�l( )pl + aPlXX + bPlXT � 0. (55)

3.2.1 Bright solitons
We use the same starting assumption as the cubic nonlinearity

given by Eqs 27, 28 to conduct research on the bright soliton solutions
on the system (Eq. 52). Substituting Eq. 27 into Eq. 55 yields

Alsech
pl τ ω bκ − 1( ) − aκ2 + p2

l a − vb( )B2[ ] + dlA
2n
�l Alsech

2np�l+pl τ

+ clA
2n+1
l sech 2n+1( )pl τ − pl pl + 1( )B2 a − bv( )Alsech

2+pl τ � 0.
(56)

From the equilibrium between nonlinearity and dispersion,

2n + 1( )pl � pl + 2, (57)
where

FIGURE 2
3D plots of dark soliton solutions for the Kerr law non-linearity with the four different fractional values by considering the values A1 = 1, B= −1, v= 1, κ= −1,
ω = 3, and δ = 1. (A) α = β = 1.5. (B) α = β = 4.5. (C) α = β = 7.5. (D) α = β = 1.
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pl � 1
n
, (58)

with l = 1, 2. Substituting Eq. 58 into Eq. 56 and letting the coefficients
set to zero of the linearly independent functions sechjτ with
j � 1

n,
1
n + 1, we obtain

v � n + 1( )aB2 − n2 clA
2n
l + dlA

2n
�l[ ]

n + 1( )bB2
(59)

and

ω � n + 1( )ak2 − clA
2n
l − dlA

2n
�l

n + 1( ) bκ − 1( ) , (60)

when bB ≠ 0 and bκ ≠ 1; in Eq. 59, by equating the two alternative
expressions for the soliton velocity v with 1 = 1, 2, the relation form
between the amplitudes can be written as

A1

A2
� c2 − d1

c1 − d2
( ) 1

2n

, (61)

with l = 1, 2, �l � 3 − l, and condition Eq. 35. On the basis of Eq. 61,
equating Eqs.24, 60 with l = 1, 2 yields

Al � n + 1( ) aκ2 − ω bκ − 1( )( )[ ] dl − c�l( )
dld�l − clc�l[ ][ ] 1

2n

, (62)

whenever the inequality Eq. 37 holds. Hence, the bright soliton
solutions for power law nonlinearity of the generalized coupled
fractional NLS equations are

upo1 x, t( ) � A1sech
1
n B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vpo1 x, t( ) � A2sech
1
n B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( ).

(63)
The aforementioned conditions determine the perturbation of the

bright soliton solutions.

3.2.2 Dark solitons
Dark solitons are applied to the same ansatz method in Eq. 39; the

real part equation Eq. 55 can be transformed into

ω bκ − 1( ) − aκ2[ ] − 2p2
l a − bv( )B2{ }Al tanh

pl τ

+ pl pl − 1( ) a − bv( )B2Al tanh
pl−2 τ + dlAlA

2n
�l tanhpl+2np�l τ

+ clA
2n+1
l tanh 2n+1( )pl τ + pl pl + 1( ) a − bv( )B2Al tanh

pl+2 τ � 0.

(64)
The equilibrium principle can calculate the value of pl, as shown in

Eq. 58. However, the independent element tanhpl−2 results in pl, as
given in Eq. 31, forcing n = 1. Then, the system (Eq. 52) reduces to Eq.
16, and the dark soliton solutions will exist when the power law non-
linearity folds to Kerr law. Our results are the same as Eqs 40–45,
which is the same for cubic non-linear dark solitons, which means
upo2(x, t) = uk2(x, t) and vpo2(x, t) = vk2(x, t).

3.2.3 Singular solitons
In order to study the first type of the singular soliton solution of

the system (Eq. 52), we readopt the guess function (Eq. 46). The real
part of Eq. 55 is

Alcsch
pl τ ω bκ − 1( ) − aκ2 + p2

l a2 − bv( )B2[ ] + dlAlA
2n
�l csch

2np�l+plτ

+ clA
2n+1
l csch 2n+1( )plτ + pl pl + 1( )B2 a − bv( )Alcsch

2+plτ � 0.

(65)

The proper equilibrium between dispersion and non-linear terms
gives pl in Eq. 58. Based on Eq. 65 and the coefficients of cschjτ with
j � 1

n,
1
n + 1, the soliton velocity and wave numbers are written as

v � n + 1( )aB2 − n2 clA
2n
l + dlA

2n
�l[ ]

n + 1( )bB2
(66)

and

ω � n + 1( )ak2 + clA
2n
l + dlA

2n
�l

n + 1( ) bκ − 1( ) . (67)

Substituting the expressions of v with l = 1, 2 into Eq. 66 yields the
specific value (Eq. 61). A similar processing for ω of Eq. 67 will get the
identical equation:

c1 − d2( )A2n
1 � c2 − d1( )A2n

2 . (68)
As to this variety of soliton and the non-linearity under power law,

Eqs 24, 66 are set as l = 1, 2 and can obtain

Al � n + 1( ) ω bκ − 1( ) − aκ2( )[ ] dl − c�l( )
dld�l − clc�l[ ][ ] 1

2n

. (69)

Considering Eqs 61, 44, the singular soliton solutions for the
power law non-linearity are

upo3 x, t( ) � A1csch
1
n B

xβ

Γ 1 + β( ) − vω
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vpo3 x, t( ) � A2csch
1
n B

xβ

Γ 1 + β( ) − vω
tα

Γ 1 + α( )[ ]{ }ei −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.
(70)

The corresponding constraints parameters have been described in
detail previously.

3.3 Parabolic law

Parabolic law, which is derived from the non-linear interaction
between Langmuir waves and electrons, reveals the non-linear
interaction between the high-frequency Langmuir and ionic sound
waves through pondermotive forces [37].

Due to the lack of known analytical solutions and the difficulty of
finding parameters with a significant fifth-order term [42], the
propagation of beams in fifth-order non-linear media has little
attention. However, there have been some recent developments,
and experiments have shown that the optical sensitivity of
CdSxSe1−x-doped glass has a considerable χ(5), that is, fifth-order
sensitivity. In the strong fem pulse of 620 nm, there is an obvious
non-linear effect of χ(5) in the transparent glass. When establishing the
theory of self-trapping beam diameter, knowledge of the
aforementioned third-order non-linearity needs to be considered.
In the 1960s and 1970s, it was recognized that non-linear refractive
index saturation played an important role in self-trapping. By
retaining the higher-order terms in the non-linear polarization
tensor [42], higher order non-linearities can be produced.

For the parabolic law non-linearity, F(s) = s + k1s
2, the equations

(Eq. 15) describing the dispersive soliton propagation are
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iuT +a1uXX + b1uXT + c1|u|2 + d1|v|2( )u + ξ1|u|4 + η1|u|2|v|2 + ζ1|v|4( )u
+i λ1|u|2uX + θ1uXXX{ } � 0,

ivT +a2vXX + b2vXT + c2|v|2 + d2|u|2( )v + ξ2|v|4 + η2|v|2|u|2 + ζ2|u|4( )v
+i λ2|v|2vX + θ2vXXX{ } � 0,

(71)
where terms with ξ, η, and ζ are connected with the quintic of the
cubic-quintic non-linear law. Other terms are interpreted as the Kerr
law non-linearity in the same way.

Substituting Eq. 17 into Eq. 71 and converting to real and
imaginary terms, we can get the same imaginary of Eq. 20;
therefore, the results for this subsection will be the same as Eqs.
21–26 for the Kerr law non-linearity as well. The real part of the
equation is

ω + aκ2 − bκω( )Pl − clP
3
l − dlPlP

2
�l − ξP5

l − ηlP
3
l P

2
�l − ζ lPlP

4
�l − alPlXX

− blPlXT � 0.

(72)

3.3.1 Bright solitons
To solve the bright solitons, starting with the assumption [42]

Pl X, T( ) � Al

Dl + cosh τ( )pl , (73)

where the definition of τ is consistent with Eq. 28, Al denotes the
amplitudes of the solitons, andDl represents the two newly introduced
parameters with l = 1, 2. Substituting Eq. 73 into Eq. 72 yields

ω bk − 1( ) − aκ2 − p2
l bv − a( )B2[ ] + pl 2pl + 1( ) bv − a( )DlB

2

Dl + cosh τ

− pl pl + 1( ) bv − a( )B2 D2
l − 1( )

Dl + cosh τ( )2 + clA
2
l

Dl + cosh τ( )2pl +
dlA

2
�l

Dl + cosh τ( )2p�l

+ ξ lA
4
l

Dl + cosh τ( )4pl +
ηlA

2
l A

2
�l

Dl + cosh τ( )2pl D�l + cosh τ( )2p�l + ξ lA
4
�l

D�l + cosh τ( )4p�l � 0.

(74)

According to the equilibrium principle, equating the exponents
(4pl � 4p�l � 2) or (2pl � 2p�l � 1), we get

pl � p�l � 1
2
. (75)

Setting the coefficients of the linearly independent functions to zero,
we have

ω � 4κ2a + bv − a( )B2

4 bk − 1( ) , (76)

Al � B

���������
Dl a − bv( )

cl

√
, (77)

and

Dl � 1
B

����������������
3B2 a − bv( ) − 4ξ lA

4
l

3 a − bv( )

√
. (78)

When bκ ≠ 1, other constraint conditions are

clDl a − bv( )> 0 (79)
and

a − bv( ) B2 a − bv( ) − ξ lA
4
l[ ]> 0. (80)

Hence, the bright soliton solutions of the parabolic law non-
linearity for the generalized coupled fractional NLS equations are

upa1 x, t( ) � A1�������������������������������
D1 + cosh B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }√ e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vpa1 x, t( ) � A2�������������������������������
D2 + cosh B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }√ e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.

(81)

Figure 3 shows bright soliton solutions for parabolic law non-
linearity with the four different fractional values.

3.3.2 Dark solitons
To solve the dark solitons, starting the hypothesis [43]

Pl X, T( ) � Al + Bl tanh τ( )pl , (82)
where Al and Bl represent the free parameters. Substituting Eq. 82 into
Eq. 26, we obtain

B2
l bκ − 1( )v − 2aκ + bω[ ] Al + Bl tanh τ( )2 � 0. (83)

The linearly independent function requires the third-order
dispersion value to be zero. In addition,

Al � Bl. (84)
Take Al > 0, and the linearly independent function gives

the soliton velocity v, as shown in Eq. 24, and gives the
constraint condition Eq. 22. For l = 1, 2, substituting Eq. 82 into
Eq. 72, we get

B2pl pl + 1( ) a − bv( ) Al + Bl tanh τ( )2 − 2B2Alpl 2pl + 1( ) a − bv( ) Al + Bl tanh τ( )3
+ B2

l ωl bκ − 1( ) − aκ2[ ] + 2p2
l B

2 3A2 − B2( ) a − bv( ){ } Al + Bl tanh τ( )2
+ 2pl 2pl − 1( )B2Al a − bv( ) B2

l − A2
l( ) Al + Bl tanh τ( ) + B2pl pl − 1( )

a − bv( ) B2
l − A2

l( )2 + cl Al + Bl tanh τ( )2pl+2 + dl Al + Bl tanh τ( )2 A�l + B�l tanh τ( )2p�l
+ ξl Al + Bl tanh τ( )4pl+2 + ηl Al + Bl tanh τ( )2pl+2 A�l + B�l tanh τ( )2p�l
+ ζ l Al + Bl tanh τ( )2 A�l + B�l tanh τ( )4p�l � 0.

(85)

The equilibrium principle gives

pl � 1
2
. (86)

The other parameter values from Eq. 85 are

ω � aκ2 + bv − a( )B2

bκ − 1
, (87)

Al � B

��������
2 a − bv( )

cl

√
, (88)

and

v � a + ξ�l
b

. (89)
The relation is obtained by equalizing the two values of the velocity

ξ l � ξ�l. (90)
Eqs 87–89 introduced the condition bκ ≠ 1 and

cl a − bv( )> 0. (91)
Dark soliton solutions for the parabolic law non-linearity are
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upa2 x, t( ) �
����������������������������������
A1 + A1 tanh B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }√
e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vpa2 x, t( ) �
����������������������������������
A2 + A2 tanh B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }√
e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.

(92)

Figure 4 shows dark soliton solutions for parabolic law non-
linearity with the four different fractional values.

3.3.3 Singular solitons
To solve the singular solitons, starting with the assumption [36]

Pl X, T( ) � Al

Dl + sinh τ( )pl . (93)

Combining Eq. 26 with Eq. 93, we get

v � bω − 2aκ
1 − bk

, (94)

with the constraint relation bκ ≠ 1.
From the real part, substituting Eq. 93 into Eq. 72, we get

ω bκ − 1( ) − aκ2 − p2
l bv − a( )B2[ ] + pl 2pl + 1( ) bv − a( )DlB

2

Dl + sinh τ
−

pl pl + 1( ) bv − a( )B2 D2
l − 1( )

Dl + sinh τ( )2 + clA
2
l

Dl + sinh τ( )2pl +
dlA

2
�l

Dl + sinh τ( )2p�l+
ηlA

2
l A

2
�l

Dl + sinh τ( )2pl D�l + sinh τ( )2p�l + ξlA
4
l

Dl + sinh τ( )4pl +
ζ lA

4
�l

D�l + sinh τ( )4p�l � 0.

(95)

The value of pl with l = 1, 2 is consistent in Eq. 75. According
to Eq. 95, linearly independent functions with zero coefficients
can get ω, B, and Dl consistent with the parameters given by

Eqs 76–78. The corresponding constraints 79, 80 and bκ ≠ 1 still
exist. Thus, the parabolic non-linear singular soliton solutions are
obtained as

upa3 x, t( ) � A1�������������������������������
D1 + sinh B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }√ e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vpa3 x, t( ) � A2�������������������������������
D2 + sinh B

xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )[ ]{ }√ e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.

(96)

3.4 Dual-power law

The dual-power law is applied to reveal the saturation in the non-
linear refractive index. It is a description of the soliton dynamics in
photoelectric photorefractive substances, for example, LiNbO3. For the
dual-power law non-linear F(s) = k1s

n + k2s
2n, Eq. 15 describing the

propagation of dispersive solitons can be rewritten as

iuT + a1uXX + b1uXT + c1|u|2n + d1|v|2n( )u
+ ξ1|u|4n + η1|u|2n|v|2n + ζ1|v|4n( )u + i λ1|u|2nuX + θ1uXXX{ } � 0,

ivT + a2vXX + b2vXT + c2|v|2n + d2|u|2n( )v
+ ξ2|v|4n + η2|v|2n|u|2n + ζ2|u|4n( )v + iλ2|v|2nvX + θ2vXXX{ } � 0.

(97)

FIGURE 3
3D plots of bright soliton solutions for the parabolic law non-linearity with the four different fractional values by considering the values A1 = 1, B= −1, v= 1,
κ = −1, ω = 3, and δ = 1. (A) α = β = 1.5. (B) α = β = 4.5. (C) α = β = 7.5. (D) α = β = 1.
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Substituting the same hypothesis as in Eq. 17 into Eq. 97 and
converting to real and imaginary terms, we can get the same imaginary
part of Eq. 20. Therefore, the results for this subsection will be the same
as Eqs 21–26 for the Kerr law non-linearity as well. The equation for the
real part is

ω + aκ2 − bκω( )Pl − clP
2n+1
l − dlPlP

2n
�l − ξP4n+1

l

−ηlP2n+1
l P2n

�l − ζ lPlP
4n
�l − alPlXX − blPlXT � 0.

(98)

3.4.1 Bright solitons
Substituting Eq. 73 into Eq. 98, we get

ω bk− 1( ) −aκ2 −p2
l bv− a( )B2[ ]+ pl 2pl + 1( ) bv− a( )DlB

2

Dl + cosh τ
− pl pl + 1( ) bv− a( )B2 D2

l − 1( )
Dl + cosh τ( )2 + clA

2n
l

Dl + cosh τ( )2npl
+ ξ lA

4n
l

Dl + coshτ( )4npl

+ ηlA
2n
l A

2n
�l

Dl + coshτ( )2npl D�l + coshτ( )2np�l
+ ξ lA

4n
�l

D�l + coshτ( )4np�l
+ dlA

2n
�l

Dl + coshτ( )2np�l
� 0.

(99)

Similarly, based on the equilibrium principle, equating the
exponents (4npl � 4np�l � 2) or (2npl � 2np�l � 1) gives

pl � p�l � 1
2n
. (100)

From Eq. 99, the coefficients are set to zero, and we get

ω � 4n2κ2a + bv − a( )B2

4n2 bk − 1( ) , (101)

Al � 2B2n2 a − bv( )Dl

cl n + 1( )[ ] 1
2n

, (102)

and

Dl � 1
B

�������������������������
2n + 1( )B2 a − bv( ) − 4n2ξlA

4n
l

2n + 1( ) a − bv( )

√
. (103)

When bκ ≠ 1, other constraint conditions are

clDl a − bv( )> 0 (104)
and

a − bv( ) 2n + 1( )B2 a − bv( ) − 4n2ξ lA
4
l[ ]> 0. (105)

Bright soliton solutions of the dual-power law non-linearity for the
generalized coupled fractional NLS equations (Eq. 97) are

ud1 x, t( ) � A1

D1 + cosh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )( )[ ]{ } 1
2n
e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vd1 x, t( ) � A2

D2 + cosh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )( )[ ]{ } 1
2n
e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.
(106)

3.4.2 Dark solitons
Substituting Eq. 82 into Eq. 98, we get

FIGURE 4
3D plots of dark soliton solutions for the parabolic law non-linearity with the four different fractional values by considering the values A1 = 1, B = −1, v = 1,
κ = −1, ω = 3, and δ = 1. (A) α = β = 1.5. (B) α = β = 4.5. (C) α = β = 7.5. (D) α = β = 1.
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B2pl pl + 1( ) a − bv( ) Al + Bl tanh τ( )2 − 2B2Alpl 2pl + 1( ) a − bv( ) Al + Bl tanh τ( )3
+ B2

l ωl bκ − 1( ) − aκ2[ ] + 2p2
l B

2 3A2 − B2( ) a − bv( ){ } Al + Bl tanh τ( )2
+ 2pl 2pl − 1( )B2Al a − bv( ) B2

l − A2
l( ) Al + Bl tanh τ( ) + B2pl pl − 1( )

a − bv( ) B2
l − A2

l( )2 + cl Al + Bl tanh τ( )2npl+2
+ dl Al + Bl tanh τ( )2 A�l + B�l tanh τ( )2np�l + ξ l Al + Bl tanh τ( )4npl+2
+ ηl Al + Bl tanh τ( )2npl+2 A�l + B�l tanh τ( )2np�l
+ ζ l Al + Bl tanh τ( )2 A�l + B�l tanh τ( )4np�l � 0.

(107)

Similarly, based on the equilibrium principle, equating the
exponents (2npl + 2 = 3) gives

pl � 1
2n
. (108)

From Eq. 107, letting the coefficients to zero yields

ω � n2aκ2 + bv − a( )B2

n2bκ − 1
, (109)

Al � B

�������������
n + 1( ) a − bv( )

n2cl

√
, (110)

where other constraint conditions are bκ ≠ 1 and Eqs 84–91.
Dark soliton solutions for the dual-power law non-linearity are

ud2 x, t( ) � A1 + A1 tanh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )( )[ ]{ } 1
2n

e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vd2 x, t( ) � A2 + A2 tanh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )( )[ ]{ } 1
2n

e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.

(111)

3.4.3 Singular solitons
Substituting Eq. 93 into Eq. 98 yields

ω bκ − 1( ) − aκ2 − p2
l bv − a( )B2[ ] + pl 2pl + 1( ) bv − a( )DlB

2

Dl + sinh τ
−

pl pl + 1( ) bv − a( )B2 D2
l − 1( )

Dl + sinh τ( )2 + clA
2n
l

Dl + sinh τ( )2npl +
ξlA

4n
l

Dl + sinh τ( )4npl+
ηlA

2n
l A2n

�l

Dl + sinh τ( )2npl D�l + sinh τ( )2np�l + ζ lA
4n
�l

D�l + sinh τ( )4np�l + dlA
2n
�l

Dl + sinh τ( )2np�l � 0.

(112)

Singular soliton solutions for the dual-power law non-linearity of
the coupled fractional NLS equations Eq. 97 are

ud3 x, t( ) � A1

D1 + sinh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )( )[ ]{ } 1
2n
e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

,

vd3 x, t( ) � A2

D2 + sinh B
xβ

Γ 1 + β( ) − v
tα

Γ 1 + α( )( )[ ]{ } 1
2n
e
i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ( )

.

(113)

3.5 Log law

There is no radiation in the case of log law non-linearity, that is to
say, there is no energy loss, so it is the optimal mode of soliton
communication. c is a constant in the log law non-linearity F(s) =
c ln(s). Eq. 12, which describes the propagation of dispersion solitons,
is rewritten as

iuT +auXX +buXT +2 c1 ln |u| +d1 ln |v|( )u+ i λ1|u|2uX +θ1uXXX{ }� 0,
ivT +avXX +bvXT +2 c2 ln |v| +d2 ln |u|( )v+ i λ2|v|2vX +θ2vXXX{ }� 0.

(114)
Substitute the same hypothesis in Eq. 17 into Eq. 114 and convert

it into real and imaginary numbers to obtain the same imaginary

number as Eq. 20. The results of this section are the same as Kerr law
non-linearity (Eqs 24–26). The real equation is

ω + aκ2 − bκω( )Pl − 2Pl cl ln |Pl| + c�l ln |P�l|[ ] − alPlXX − blPlXT � 0.

(115)
Since it is debatable whether the log law non-linearity supports

dark solitons or singular solitons, only bright solitons (or Gaussian)
can be used for log law.

3.5.1 Bright soliton
To solve the bright solitons, form the assumption

Pl X, T( ) � Ale
−τ2 . (116)

Substituting Eq. 116 into Eq. 115 yields

ω + aκ2 − bκω( ) + 2B2 a − bv( ) + 2τ2 2bvB2 − 2aB2 + cl + c�l( ) − 2cl ln Al( )
− 2c�l ln A�l( ) � 0.

(117)

Letting the coefficients of the linearly independent functions τ2j to
zero with j = 0, 1, we get

ω 1 − bκ( ) + aκ2 + 2B2 a − bv( )
−2cl ln Al( ) − 2c�l ln A�l( ) � 0

(118)

and

B �
��������
cl + c�l

2 a − bv( )
√

. (119)

Uncoupling Eqs 24, 118, we get

v � a bκ2 − 2κ − 2bB2( ) + 2b cl ln Al( ) + c�l ln A�l( )( )
bκ − 1( )2 − 2b2B2

(120)

and

ω � a bκ3 − b2 − 2B2 + 2bB2κ( )
1 − bκ( )2 − 2b2B2

+ 2 1 − bκ( ) cl ln Al( ) + c�l ln A�l( )( )
1 − bκ( )2 − 2b2B2

.

(121)
When bκ ≠ 1, constraint conditions are

cl + c�l( ) a − bv( )> 0 (122)
and

1 − bκ( )2 − 2b2B2 ≠ 0. (123)
Hence, the bright soliton solutions of the log law non-linearity for

the generalized coupled fractional NLS equations are

uL x, t( ) � A1e
−B xβ

Γ 1+β( )−v tα
Γ 1+α( )[ ]+i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ[ ]

,

vL x, t( ) � A2e
−B xβ

Γ 1+β( )−v tα
Γ 1+α( )[ ]+i −κ xβ

Γ 1+β( )+ω tα
Γ 1+α( )+σ[ ]

.

(124)

4 Conclusion

In this paper, the generalized coupled space–time fractional
NLS equations are constructed by the semi-inverse method and the
Agrawal’s method. In the presence of spatio-temporal dispersion
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and birefringence, the Kerr, power, parabolic, dual-power, and log
law non-linearity laws are studied. Then, we used the ansatz
method to obtain the bright, dark, and singular soliton solution
of the equations. At the same time, the constraints on the existence
of these solitons are given. They can be further extended to other
non-linear laws, such as the anti-cubic law, quadratic cubic laws,
and cubic power law non-linearity.
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