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Origin identification of the earliest cases during the pandemic is crucial in
containing the transmission of the disease. The high infectiousness of the
disease during its incubation period (no symptom yet) and underlying human
interaction pattern make it difficult to capture the entire line of the spread. The
hidden spreading period is when the disease is silently spreading, for the “silent
spreaders” showing no symptoms yet can transmit the infection. Being uncertain
of the hidden spreading period would bring a severe challenge to the contact
tracing mission. To find the possible hidden spreading period span, we utilized the
SEITR (susceptible–exposed–infected–tested positive–recovered) model on
networks where the relation between E state and T state can implicitly model
the hidden spreading mechanism. We calibrated the model with real local
resurgence epidemic data. Through our study, we found that the hidden
spreading period span of the possible earliest case of local resurgence could
vary according to the people interaction networks. Our modeling results showed
the clustering and shortcuts that exist in the human interaction network
significantly affect the results in finding the hidden spreading period span. Our
study can be a guide for understanding the pandemic and for contact tracing the
origin of local resurgence.
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1 Introduction

Since December 2019, the newly recognized coronavirus known as severe acute
respiratory syndrome–coronavirus 2 (SARS-CoV-2) has affected every individual.
Globally, it has caused more than 623,000,396 confirmed cases, including
6,550,033 deaths, according to the WHO [1]. While the coronavirus has affected the
healthcare system significantly, it is a greater challenge for the government to help
people coordinate their daily lives living with the virus. One of the most used strategies,
contact tracing, along with robust testing and isolation, is a key strategy for interrupting
chains of transmission of SARS-CoV-2 and reducing COVID-19-associated mortality [1].
The virus was first reported in Wuhan, China, in late 2019. The doubt still unresolved as to
when the virus actually started its spreading.

COVID-19 displays peculiar epidemiological traits when compared with previous
coronavirus outbreaks [2]. A large number of transmissions occurred through human-
to-human contact with individuals showing no or mild symptoms. High viral loads of SARS-
CoV-2 were found in the upper respiratory samples of patients showing little or no
symptoms, with a viral shedding pattern akin to that of influenza viruses [3]; hence, the
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inapparent transmission, that is, the disease’s hidden spread may
play a major and underestimated role in sustaining the outbreak.

Origin identification requires detailed contact history records,
which are not easily accessible [4]. Even now under the implemented
mandatory COVID test that requires frequent detection, there is still
unexpected local resurgence occurring with no clear sign. High cost
and exhausted human labor are obvious problems in terms of
tedious contact tracing missions, especially when the virus is
rapidly evolving and there is no clear guidance on how many
contacts should be isolated. The Omicron variant BA.5 remains
dominant in the United States, people infected with COVID-19 can
show symptoms as early as 2 days or as late as 14 days after infection,
and people are generally contagious between 3 and 4 days before
appearance of symptoms [5]. The BA.5 variant also causes long
COVID-19 symptoms, and some can experience health problems for
4 or more weeks after first being infected [6].

To understand the complicated factors in predicting the spread
of disease, stochastic mathematical epidemic modeling has been one
of the main approaches in understanding the spreading dynamics of
the virus. Commonly used models are SIR-inspired models, which
describe the flow of individuals through three or more mutually
exclusive stages of infection: susceptible, infected, and recovered.
More complex models such as SEITR and SEIQR have been carried
out to portray the dynamic spread of specific epidemics [7–11]. The
SEITR model is a more complex and detailed infectious disease
modeling framework than the SIR model [12, 13]. The SEITR model
includes a more accurate representation of disease progression and
allows for a better understanding of the transmission dynamics of
the disease. It accounts for the latency period between exposure and
onset of symptoms and can help in modeling diseases where
individuals can spread the infection before showing symptoms [14].

In order to understand the local resurgence and find the
possible hidden spreading period, we utilized a modified
SEITR (susceptible–exposed–infected–tested positive–recovered)
compartmental mathematical model for predictions of COVID-19
epidemic dynamics. Our main goal is to use the modified SEITR
model to trace back the origin time of the spreading process, given
a certain number of confirmed cases. In the following article, real
local resurgence data from Xi’an, China, is used to calibrate the
model to find the possible hidden spreading period of local
resurgence. While homogeneous contact is not applicable in
real life, we compared our model on different people
interaction networks to observe the impact of clustering and
shortcuts created by mobility. Our results showed that the
existence of clustering and shortcuts does affect the speed of
disease transmission, hence affecting our decision in finding the
possible hidden spreading period span. Although local resurgence
seems unpredictable, our model provides guidance for time spans
of contact tracing and suggestions on modifications of control
measures and testing abilities.

2 Methods

2.1 SEITR model

The SEITR model is a variation of the basic SIR
(susceptible–infectious–recovered) model used for modeling the

spread of infectious diseases in a population [14]. The SEITR
model includes additional compartments to account for more
complex disease transmission dynamics. Considering one
population, as shown in Figure 1, the model subdivides the total
human population size at time t denoted asN(t) into susceptible S(t),
exposed E(t), infected I(t), tested positive T(t), and the recovered
R(t). Hence, for the population, we have N(t) = S(t) + E(t) + I(t) +
T(t) + R(t).

Since the beginning of the COVID-19 epidemic, SARS-CoV-
2 has evolved and mutated continuously, producing variants with
different transmissibility and virulence. Real data indicate that
asymptomatic and symptomatic infected individuals can spread
the virus to susceptible persons through close contact. Mwalili
identified the difference between asymptomatic and symptomatic
infected individuals by dividing the infected I(t) into these two
subpopulations. Ottaviano provides analytical results for SAIRS
(susceptible–asymptomatic infected–symptomatic
infected–recovered–susceptible) model where asymptomatic
infected is considered one compartment [15, 16]. While different
approaches have been taken in considering the “silent
spreaders”—those showing no symptoms and able to transmit
the infection—here in our study, we included both the concept of
incubation period along with the asymptomatic infected individuals
into the compartment exposed E(t). The hidden spreading period Φ
is when the disease is silently spreading, for the “silent spreaders”
showing no symptoms yet able to transmit the infection, and the
uncertainty of the hidden spreading period would bring a severe
challenge to the contact tracing mission. We define the hidden
spreading period Φ as the time since the initial infectious individual
[exposed individual E(t) or infected individual I(t)] in the
population until the time since the first confirmed case T(t). In
the process of disease spread, the susceptible individual first moves
to the exposed population E(t) when making contact with exposed
or infected individuals since they both are infectious. During the
incubation period, the exposed population may develop severe
symptoms like shortness of breath, chest pain, or confusion

FIGURE 1
SEITR model transmission graph.
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[these would move to the infected population I(t)], some may be
self-immune to the virus [move to recovered R(t)], and some people
may only have very mild or non-specific symptoms [some can be
tested as confirmed cases T(t)]. T(t) is the number of confirmed
cases detected through the ordinary COVID tests at time t; this
number can be significantly affected by the testing ability. Some
infected individuals would be detected positive through ordinary
screening, and some infected individuals would self-recover and
move to the recovered human population R(t).

The SEITR model is, thus, governed by the reactions:

S + E →cβE E + E

S + I →cβI E + I
E →σα I
E →σωp T
E →σ 1−α( )

R
I →ωp T
I →γ R

where parameters used in the transmission model are given in
Table 1.

The contagion process involves contact interaction. In this mean
field approach, the effect of contact on susceptible individuals with
exposed and infected individuals is considered in a homogeneously
mixed population. So, the model culminates in the following systems
of mean field equations:

S t + 1( ) � S t( ) − cβEE t( )S t( ) − cβII t( )S t( )
E t + 1( ) � E t( ) + cβEE t( )S t( ) + cβII t( )S t( ) − σαE t( )

− σ 1 − α( )E t( ) − σpE t( )
I t + 1( ) � I t( ) + σαE t( ) − γI t( ) − ωpI t( )
T t + 1( ) � T t( ) + ωpI t( ) + σpE t( ).
R t + 1( ) � R t( ) + σ 1 − α( )E t( ) + γI t( ).

The basic reproduction number defines the average number of
secondary infections caused by an individual in an entirely
susceptible population. The derivation of R0 in our model can be
approximated by R0 = βI/γ. There is no death or birth in the process,
and an individual would attain immunity after recovery and cannot
be infected again.

During the hidden spreading period, the exposed population
spread the virus “silently,” wherein some would self-recover, some
would transfer to infected individuals, and some would be detected

as test positives. Real data showed that the transmission rate from
asymptomatic to infected individuals during local resurgence in
Shanghai in April is 1995/15284 = 13.05% [17]. In the model, βI and
βE are generated from R0pγ, which is around 0.88. 1/σ is the average
latency period of the exposed individuals and 1/γ captures the
average recovery time of the infected population.

In the model, two aspects of non-pharmaceutical intervention
practices are introduced to model the effect of intervention policies.
In facing a local resurgence of the disease, the hardness of control
measures c ∈ (0, 1) would be tightened to scale down the ability of
transmission. This act could be explained by reduced contact
interaction during city lockdown or suspended travel activities.
For other non-pharmaceutical intervention practices, the testing
ability would affect the number of tested positive T(t) individuals,
which consist of two latent parameters: rate of successful COVID
testing p ∈ (0, 1) and testing frequency ω. Depending on the quality
of each throat swab, the rate of successful COVID testing p would
vary and rely highly on those third-party organizations
corresponding to the testing. The testing frequency ω describes
how frequently the COVID test is implemented. The current
standard in major cities for testing frequency is a COVID test in
3 days and one test per day during lockdowns.

Considering the aforementioned interaction measures, our
model can capture the dynamics of the spreading process when
restrictions are implemented during a local resurgence.

2.2 Model calibration and time tracing the
earliest case

The data used to calibrate the model were real local resurgence
data from Xi’an, China, from 09 August 2022 to 18 September
2022 [18]. The first BA.5 confirmed case was detected on August 9 in
Xi’an, which then caused rapid increase in daily new cases,
consisting daily new infected cases and daily new asymptomatic
cases. In our simulation, we implemented the lockdown once the
number of tested positive T(t) exceeds 18 by minimizing the control
measure c to 0 and pushing the testing ability p to the highest
0.99 with a daily COVID test, as what really happened in July at
Xi’an. The source of this local resurgence was still not clear.

The methodology of locating the earliest case in local resurgence
is as follows: first, real data are used to calibrate the SEITR model,

TABLE 1 Model parameters.

Parameter Symbol Value References

Rate of transmission from S to E due to contact with E βE R0γ [6]

Rate of transmission from S to I due to contact with I βI R0γ [6]

Hardness of control measures c (0,1) None

Rate of incubation period σ 1/3.5 days [6]

Rate of transmission from E to I α 0.13 [17]

Proportion of successful COVID testing p (0,1) None

Rate of COVID testing ω 1/3 days [18]

Rate of recovery of the infected population γ 1/21 days [5]
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and then the control policies are added. This can be done by
adjusting only control measures (c), rate of successful COVID
testing (p), and testing frequency (w), while the remaining
parameters are determined by real clinical report data. Since
these parameters act directly on the transmission of the disease,
different combinations of the aforementioned policy measures can
simulate different control scenarios such as city lockdowns and
restrictions on human travel. Normally in real life scenarios, control
policies would be strengthened once the newly confirmed cases
exceed a certain number. However, it is certain that the disease has
been spreading hidden for a period, and this is why finding the
possible hidden spreading period Φ span is crucial for the following
contact tracing work.

A total population of N = 13, 000, 000 is considered to
approximate the population of Xi’an city. As shown in Figure 2,
initially, we added one infected (I) individual into the population,
while the remaining population are susceptible (S) individuals. We
can clearly see that even days before disease detection, a certain
number of exposed (E) individuals in the population have been
“silently” spreading the virus. During this hidden spreading period
Φ, some exposed individuals are already infectious, yet due to the
virus being still in its incubation period, they may escape from
detection. The rapid increase in the number of either tested positive
(T) or recovered (R) would occur once it is detectable or recovered,
respectively. With the implementation of the lockdown, restrictions
in control measures such as less travel or visiting (c = 0.4) and
increasing the testing ability and the frequency (p = 0.99, w = 1), the
increase in the confirmed case would soon reduce as what happened
in Xi’an.

The hidden spreading period Φ is deduced by comparing the
difference between the first reported case in real resurgence record
and the simulated initial spreader. As shown in Figure 2, the shaded
area Φ = 5 hidden spreading period span was added to the real data

to capture the delay of growth in simulation, indicating the possible
initial infected individual started its hidden spreading period around
5 days ago. We define ErrorΦ as the difference between the
predicted and real data under different hidden spreading periods
Φ since it is possible in real life that the disease has been “silently”
spread in the population for a while until first reported. Different
hidden spreading periodΦ values are added before the first reported
day. ErrorΦ is then calculated for each possible Φ hidden spreading
period to find the best result. As shown in Figure 2, a Φ = 5 hidden
spreading period span was selected as the best-fitted model with
ErrorΦ � 2.218/N.

The mean field numerical results can provide us with the
solution to the systems of equations; however, the real-case
scenario is much more complicated than one system of
equations. Φ = 5 is the most possible hidden spreading period
based on the strong assumption that the population is
homogeneously mixed. However, in real life, social interactions
are much more complicated, and the heterogeneity in human
behavior would significantly affect the speed of transmission. The
key to confronting the pandemic is to lower the rate of transmission
of the disease. Our non-pharmaceutical intervention practice
parameters in the model can provide a vague picture of
modifying the transmission rate. Having c = 0 (city lockdown) is
one of the worst-case scenarios since it bans people from moving.

Therefore, it is necessary to understand the trade-offs between
restrictions and daily activities. Some regulations such as restricting
certain types of transportation would decrease human mobility;
hence, in turn, lowering the transmission rate may also be useful, but
is it really efficient in controlling the spread of the disease? In the
following section, we extended our model on human interaction
networks to discuss the impact of clustering and shortcuts created by
mobility.

2.3 SEITR on networks

Many studies have shown that human daily interactions and
mobility can lead to construction of local communities and shortcuts
in social networks [19]. Clustering is often simply described as the
number of triangles (where the friend of my friend is also my friend)
in a network, but usually also implies that links between nodes tend
to be aggregated in well-connected, groups as shown in Figure 3.
Hebert–Dufresne investigated the impact of contact structure
clustering on the dynamics of multiple diseases interacting
through the coinfection of a single individual and found the
opposite effect of clustering. In addition, they showed that
although clustering slows down the propagation of non-
interacting diseases, it would speed up the propagation of
synergistically interacting diseases [20].

Extensive studies on mobility within the pandemic revealed that
population mobility is among the main drivers of the spatial
spreading of the outbreak [19, 21, 22]. The complex social
network structures created by heterogeneous mobility and
contacts would affect the spread of the disease significantly [21].
At the modeling level, the network consists of a set of communities
(node), connected by edges that capture daily short-range
commuting and long-range mobility. The small-world network is
one of the most basic representations of human interaction patterns

FIGURE 2
Simulation result with real Xi’an local resurgence data fitted. The
blue dotted line shows the real recorded accumulated daily confirmed
cases since Day 0. The green line is the simulated tested positive
number with the implementation of lockdown once the number
of reported confirmed case exceeds 40. βI = βE = 0.88, c = 1, w = 1/3,
p = 0.8. The shaded area Φ = 5 hidden spreading period span was
added to the real data to capture the delay of growth in simulation,
indicating the possible initial infected individual started its hidden
spreading period around 5 days ago.
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in network science, by analogy with the small-world phenomenon
[23]. We run our model on simple small-world networks by
modifying initial rewiring probability to simulate the existence of
shortcuts, an analogy of the shortcuts created by travel behavior.

The community structure network extended the description of
propagation dynamics on a highly clustered network using
overlapping community structures [20]. The arrangement of
nodes leads to clustering of nodes into well-connected groups,
which may represent the notion of a workplace or family. Every
connection in this structure can be decomposed in terms of groups,
where even single links between two individuals can be considered a
group of size 2. Assuming that we know the distribution of group
sizes (number of nodes per group) and of node memberships
(number of groups per node), we can define a maximally
random ensemble of clustered networks with a fixed community
structure by randomly assigning nodes to groups. Hence, the entire
network structure is solely defined by two probability distributions,
pn, and gm, respectively, which are the probabilities that a randomly
selected group will contain n members (size n) or that a randomly
selected individual will participate in m groups (m memberships).
This concept results in a network with highly connected
communities and a sparser density of links between them. To
highlight the effects of community structure (CS), an equivalent
random network (RN) with exactly the same degree distribution but
randomly rewired links is generated. Furthermore, description of the
dynamics of the community structure can be found at [20].

The network-based SEITR model counts the changes in network
contacts upon the presence of infected (I) and also allows for exposed
(E), which could be used to simulate the likely changes in contact
patterns of an individual in tested positives. The parameters discussed
in previous sections are preserved during theMonte Carlo simulation.
The one seed-infected individual was added randomly into the
network of 2,000 nodes. At each time step, susceptible individuals
Si would be infected and transmit to exposed Ei when contacted with
exposed individual Ej or infected individual Ij neighbors. The
transmission rate could be expressed as β = 1 − ∑j∈[1,N](1 −
βEEj)(1 − βIIj)Aij, while A is the adjacency matrix of the network.
During the incubation period, exposed individuals would transfer to
infected individuals spontaneously, and some would self-recover. In
both exposed and infected individuals, some would be detected as
tested positive Ti. By modifying the control measures and test ability,
we would see how these non-pharmaceutical intervention practices
affect the time tracing of the earliest case.

We tested our model on both the community structure network
and the equivalent random network introduced by Hebert–Dufresne
[20], hoping to find the evidence of clustering speed up the
propagation and hence influence our decision in finding the Φ
hidden spreading period span. In addition, since the networkmodels
described by Hebert–Dufresne mainly focused on the effect of the
existence of clustering, we also discussed the effect of the shortest
path created by human mobility in the network. We addressed this
by running the model on a small-world network, modifying the
probability of rewiring an edge [23].

3 Results and discussion

The existence of community is a common feature of human
interaction networks. The main goal of running the SEITRmodel on
different network structures is to reconstruct the possible human
interaction networks during disease propagation. Figure 4 shows the
phase diagram of running simulation on the community structure
network and the equivalent random network shows the number of
tested positive (T) at its final steady state of each simulation. The
control measures c and frequency of COVID test w are two non-
pharmaceutical intervention practices that can be modified in our
model to simulate real intervention conditions. Lower c means a
lower level of transmission, and higher c means there are no
restrictions to prevent the disease from spreading. The lowest
frequency of COVID testing w means no COVID test is
conducted; hence, all the exposed and infected individuals would
remain in the population and spread the disease silently. Assuming a
100% success in COVID testing p = 1, we compared how the two
intervention policies would affect the propagation. As shown in
Figure 4, w = 0 means no COVID test is conducted; hence, no test
positive exists in the population; w = 1 means any exposed or
infected individuals would be detected once they are positive.
Figure 4A shows the number of tested positive (T) at its final
steady state on the community structure network of the
2,000 nodes. In Figure 4B, the equivalent random network result
is presented. The random network is created from the community
structure network, by randomly rewiring the links within the
community to another node while keeping the same average
degree. The resulting random network in our analysis has a
clustering coefficient of around 0.05, while the coefficient of the
structure community network is around 0.10. In Figure 4, we can see
that although the average degree of both networks is relatively the
same, the changes in the community structure network are smoother
than those of the random network due to the randomness of Monte
Carlo simulations. There are similarities between community
structure and its equivalent random network, and the reason
may be how the community structure network was constructed.
Although the clustering coefficient is doubled for the community
structure network, the relatively same average degree and average
shortest path of the two networks would smooth out the effect of
clustering on disease propagation. However, if we focus on a coarse-
grained level of the heat map, the combined influence of the two
intervention policies on disease transmission is clear and would be
useful as guidance.

While the phase diagram provides thorough information about
how the combined intervention would affect the results of the

FIGURE 3
Different network structure.
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disease spread, our main task is to locate possible hidden spreading
period span Φ in a local pandemic resurgence. Through each
simulation, we counted the number of days needed for a local
resurgence, and the accumulated tested positive number exceeds
10. As shown in Figure 5, we provided a comparison between
different community structures by varying its clustering
coefficient C. With the increased clustering coefficient, the
hidden spreading period span would shrink significantly,
indicating that a higher clustering network provides a smaller
hidden spreading period span Φ. We can conjecture that the
clustering in the network does affect the speed of the
propagation. As shown in Figure 5A, with a daily COVID test
window, all the positives would be detected immediately. As shown
in Figure 5B, a higher clustering coefficient of 0.6 would still provide
a shorter span than that of a clustering coefficient of 0.2 and 0.4. In
addition, Figure 6A shows the trend of how the average hidden
spreading period span changes along with different clustering

coefficients. The red line represents the result of Φ if the COVID
test is conducted per week; it is obvious that a delayed test would
shade the hidden spreading and, hence would cause more difficulty
in conducting the contact tracing. Especially in the low clustering
region (clustering coefficient of 0.05), a 1-week delayed test would
lead up to 1 month of contact tracing. If the test is not conducted
daily, but with a delay of few days, some exposed and infected
individuals would self-recover, and some would still spread the
disease ‘silently’ and not be tested on time. This is the reason the
hidden spreading period spans are increased, hence increasing the
tracing back time of the origin of disease propagation.

The time span results may vary according to the heterogeneity of
human interaction behaviors. We showed the existence of a
community provides a higher amount of interactions in the
community, and the disease would spread faster, hence reducing
the hidden spreading period span. Another effect of human
interaction networks is the existence of a short path in the

FIGURE 4
Phase diagram of steady state tested positives (T) (A) on the community structure network and (B) the equivalent random network under different
combinations of control measures and testing frequency.

FIGURE 5
Probability density distribution of the hidden spreading period span Φ. Holding a control measure of c = 0.03, two testing frequencies are chosen, a
test per day (A) and a test per 7 days (B). Results under different clustering coefficient community structure networks (CNs) are provided.
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network. In our daily activities, a short journey to another city can
create a short path for the contagious disease. To address the
influence of human travel, we used the small-world network
developed by Watt and Strogatz [23]. The network of
2,000 nodes has an average degree of 50, representing the
number of people that an individual has regular physical contact
with, e.g., family members, co-workers, and friends. We compared
different sets of rewiring probability p, the probability that an edge is
disconnected from one of its nodes and then randomly connected to
another node anywhere in the network (vertex may have a long-
range shortcut connected to a remote vertex).

As shown in Figure 6B, six sets of rewiring probability were
chosen, providing different average shortest paths. Similar to that
shown in Figure 6A, the trend of both lines steadily decreases,
indicating a smaller average shortest path provides a shorter period
of hidden spreading span. In general, the daily COVID test would
capture both exposed and infected individuals immediately, but with
delayed testing, the span of the possible period distribution would be
increased. Through the aforementioned comparison, we conclude
that the structure of how human interaction networks would have a
great influence on how fast disease propagation is, and in turn,
influence the time tracing mission finding the origin of the
propagation.

It should be necessary to point out that rewiring probability p is
meaningful only in a relative sense. For example, choosing a degree
of 50 and p = 0.01 does not imply that each person in society
interacts with 50 people in daily activities and knows only one
person in far-away areas. But rather, the changes from p = 0.01 to p =
0.001 mean that, on average, each person reduces the daily infection-
transmissible interactions by half and/or long-distance travel by
90%. Another point that needs to be made is that in real-world social
networks, different individuals have different ways of interacting
with others, for example, the contact frequency is usually different
between the different contact patterns, and household contact is
significantly more frequent than other scenarios. For example, it is
unknown how individuals with different levels of social interactions
respond to social distancing or lockdown orders. Figure 7 shows that
different choices of the contact frequency distribution do not affect
greatly tracing the possible hidden spreading span. In our study, the

contact frequency is assumed to be the same for all the vertices
because there is no adequate data on the real contact network. So in
order to address the problem of the heterogeneity of contact
frequency, except for the constant control measure c, we also
tested both power-law distributed contact frequency and
uniformly distributed contact frequency. Holding the mean of the
distribution to the same constant number, we see no clear difference
in finding the possible hidden spreading period. Hence, the use of
the constant contact frequency with each individual represented as a
vertex can still provide useful predictions.

4 Conclusion

Till today, SARS-CoV-2 has caused more than
623,000,396 confirmed cases, including 6,550,033 deaths. We
need to understand how and what should we do to live with the
disease. Origin identification of the earliest cases during the
pandemic is crucial in terms of contact tracing. It is a key
strategy for interrupting chains of transmission of SARS-CoV-

FIGURE 6
Hidden spreading period span Φ results. Holding a control measure of c = 0.03, two testing frequencies are chosen, a test per day (blue lines) and a
test per 7 days (red lines). (A) A set of community structure networks has different clustering coefficients. (B) Small-world network with six sets of rewiring
probability were chosen, providing the average shortest path from 20.49, 11.58, 5.58, 3.43, 2.72, and 2.25, respectively.

FIGURE 7
Probability density distribution of the possible hidden spreading
span under the different choice of contact frequency. Holding the
mean of the contact frequency as 0.05, we compared the influence of
contact frequency on the possible hidden spreading span.
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2 and reducing COVID-19-associated mortality. However, high cost
and human labor are a problem in terms of contact tracing,
especially when the virus is rapidly evolving and there is no clear
guidance on how many contacts should be isolated. To help
understand the disease propagation and to trace the earliest case,
we utilized a modified SEITR compartmental mathematical model
for prediction of COVID-19 epidemic dynamics. Our main goal was
to use the data-driven simulation result to find the possible hidden
spreading period span since the beginning of the spreading process.
Real local resurgence data of Xi’an, China (August 2022) were used
to fit the mean field model. Our result indicated the possible initial
infected individual started its hidden spreading period around
5 days ago since the first recorded confirmed case.

Since a homogeneously mixed population is not applicable in
real life, we then tested our model on different network structures to
simulate human interaction patterns. The community structure
network extended the description of propagation dynamics on a
highly clustered network using overlapping community structure
[20], and our results showed that in a local pandemic resurgence,
given a certain amount of test positive cases, a high clustering
network does minimize the possible hidden spreading span. We
then discussed the effect of the short path created by human
mobility. The results showed clear evidence that shorter average
paths provide a shorter period of the hidden spreading results. In
real-case scenarios, these together may infer the different human
interaction patterns between big cities and rural areas. Where
communities are very common and have constant interactions
with remote individuals, a local resurgence in big cities always
appears very suddenly and breaks out. If not with accurate
control restrictions, a larger pandemic seems inevitable. However,
in rural areas, where communities are normally sparse and lack
interactions, the local resurgence is not very often and may not grow
to a larger scale. Hence, in order to capture the “silent” spreaders in a
timely manner, accurate contact tracing should be carried out as
soon as a positive is detected to avoid further costs.

We discussed two aspects of non-pharmaceutical intervention
practice in facing the local resurgence of the disease. The hardness
of control measures scales down the ability of transmission and
testing ability, consisting of the rate of successful COVID testing
and testing frequency. Control measures could be interpreted as
the restrictions policies such as city lockdowns, while the testing
ability represents the detection quality. Based on these, our model
provides insights into how the combination of the interventions
could affect the speed of disease propagation. Our results present
the possible distribution of the hidden spreading period span in
terms of contact tracing.

There is a certain amount of mis-considerations when
building up our SEITR model, for example, the birth and
death rate of the population is not included, as well as the
quarantine factor. The network structures we considered were
all static rather than temporal. In real life, the spontaneous and
temporal movement could modify human interaction networks.
More studies need to be performed to address the real changing
temporal characteristics of human mobility to better understand
the propagation patterns. In addition, our study of disease

propagation could also extend to subjects such as idea
propagation [24–26], culture spreading [27], and signal
propagation [28]. For example, signal propagation patterns on
complex networks may be helpful in understanding the complex
behavior of the contagion, especially how the social system would
respond according to perturbation of the dynamics [28, 29]. Our
work put forward the method to timing the earliest case, given
real local resurgence data. Although local resurgence seems
unpredictable, our model provides a guidance for time spans
of contact tracing as well as suggestions on modifications of
control measures and testing abilities.
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