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Wideband GNSS signals suffer signal distortions such as waveform deformations
and correlation peak reduction when traverse the ionosphere. Basing on the
standard model of the ionosphere, we first demonstrate a modified ionosphere
model to capture the ionosphere dispersion effects on wideband signals. We
decompose the first-order ionosphere model into Taylor series. By using the first
three terms of Taylor series, it is possible to account for all frequency components
of wideband signals rather than treating them as single tone. We then make an
analysis of the ionosphere dispersion effects on wideband GNSS signal tracking. It
is revealed that the ionosphere dispersion degrades correlation peak results and
shifts carrier-phase in the phase locked loop (PLL) output but dose not cause an
additional delay for code measurements. Furthermore, we carry out a simulation
for evaluating the ionosphere dispersion effects on tracking of various new
generation wideband GNSS signals such as Galileo E5 AltBOC(15, 10) signals
and BDS B3 BOC(15, 2.5) signals during ionosphere quietness and activities.
The results show that the wider the bandwidth and the greater the total
electron content (TEC) values, the more dramatic the ionosphere effects are.
The Galileo E5 AltBOC(15, 10) signals are most affected among various wideband
GNSS signals. For AltBOC(15, 10) signal tracking the correlation power loss is
around 0.1 dB and the carrier-phase change is about 20° caused by the dispersion
in quiet ionosphere case, and increases up to 0.35 dB and 33° during ionosphere
activities, respectively.
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1 Introduction

Wideband signals show promise for GPS modernization and Galileo and BDS
development since they provide sharper correlation peaks and therefore more accuracy.
For example, the Galileo E5 signal occupies the frequency band from 1,164 MHz to
1215 MHz over 25 times the double-sided bandwidth of the GPS L1 C/A code.
However, different frequency components in the wideband spectrum suffer different
signal delay owing to refraction when traveling through the upper atmosphere, since the
ionosphere is dispersive [1].

The ionosphere delay is the major and most variable source of ranging error for global
navigation satellite system (GNSS) positioning, navigation and timing (PNT) services [2].
Generally, single-frequency receivers employ empirical model such as the NeQuick and
Klobuchar models to correct the ionosphere delay [3, 4], while dual-frequency receivers
combine dual-frequency measurements to compensate for the first-order ionosphere delay
[5]. These methods assume each incoming signal to comprise a single-frequency tone
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represented by the center frequency and thus only evaluate the
center frequency ionosphere delay to replace the total group delay.
This assumption is effective for narrowband GNSS signals, e.g., GPS
L1 C/A code, whose double-sided bandwidth is 2 MHz. The
ionosphere delay variations with frequency band become larger
as the band gets wider. Therefore, the simplification that the
incoming signal is a single frequency tone is ineffective for
wideband signals and different ionosphere delay should no
longer be ignored as in the narrowband GNSS signal case [6–8].
This motivates us to upgrade the ionosphere model to take into
consideration all frequency components of wideband signals rather
than regarding them as a single-frequency tone.

The ionosphere dispersion effects on wideband GNSS signals
were first studied by Christie et al. (1996) in [9]. Gao et al. (2007) in
[6] developed a method to calculate the ionosphere delay of
wideband signals and simulated the ionosphere effects on
wideband GNSS signals. It was found that the ionosphere
dispersion leads to time-domain signals distortions and
correlation peak asymmetry. Liu et al. (2011) in [1] derived the
dual sideband model of ideal band-limited BOC modulated signals
and then analzyed the dispersive effect of ionosphere on BOC
signals. Reference [7] and [9–14] provided the methods for
compensation of ionosphere dispersion effects. It was reported
that the ionosphere dispersion effects can be mitigated by the
corresponding design and implementation.

It is the asymmetry and non-linear phase response to the
dispersive ionosphere which causes wideband signal deformations
[7]. This work will focus on analyzing the impacts of ionosphere
dispersion on wideband GNSS signal tracking. We first develop a
model to modify the first-order ionosphere total group delay of
wideband signals. Secondly, we provide the formula for analyzing
the influences of ionosphere dispersion on power loss of the
correlation peak, code tracking bias and carrier-phase shifts in
the phase locked loop (PLL) output. It is demonstrated from the
theoretical analysis that the ionosphere dispersion does not cause
any additional delay for code measurements but shifts the carrier-
phase and brings correlation power loss. Furthermore, we evaluate
the dispersion effects on the correlation peak and carrier-phase
offset for wideband GNSS signal tracking such as Galileo
E5 AltBOC(15, 10) and BDS B3 BOC(15, 2,5) signals during
normal ionosphere conditions and ionosphere storms through
computer simulation, and give the analytical results from the
simulation.

2 Ionosphere model for wideband
signals

The ionosphere is dispersive; the refractive index of the
ionosphere depends on signal frequency. Higher frequency
elements of signals propagate faster than lower frequency ones.
Different frequency elements thus suffer different delay due to the
refraction through the ionosphere. That is, low frequency elements
suffer greater delay than high frequency ones. The ionospher’s
frequency-dependent group delay are expressed as follows [15].

Δτ f( ) � k2
f2

+ k3
f3

+ k4
f4

(1)

where f is the frequency of traversing signals; k2, k3 and k4 are
constants independent of signal frequencies, among which k2 is
directly proportional to the total number of free electrons along the
ray’s path, and k3 and k4 are the line integrals that include the local
magnetic field in the integrations.

Because the high-order terms are relatively small and hence can
be ignored, this equation can be simplified by focusing on the first
term.

Δτ f( ) � 40.3TEC
c · f2

(2)

where c is the velocity of light in m/s and TEC is the total electron
content along the ray’s path in electrons/m2. The time delay can be
expressed as a change in phase by multiplying the frequency in
radians/sec.

Δϕ f( ) � −2πf · Δτ f( ) � −80.6πTEC
c · f (3)

The propagation characteristics of the dispersive ionosphere can
be described using linear system, in which Δτ(f) and Δϕ(f) can be
regarded as the group delay response and phase advance response to
the ionosphere, respectively. In order to apply variable ionosphere
delay to all frequency components of wideband signals, we
decompose the model in Eq. 3 into Taylor series at the center
frequency f0, as written in the compact sigma notation.

Δϕ f( ) � ∑∞
n�0

Δϕ n( ) f0( )
n!

f − f0( )n (4)

The n th order coefficient can be given by

qn � Δϕ n( ) f0( )
n!

� −1( )n+180.6πTEC
c · fn+1

0

(5)

Because the center frequency of GNSS signals is very high, the
coefficient is small enough when n≥ 3. Consequently, the high-order
terms can be neglected and thus the phase advance response to the
ionosphere dispersion is simply modeled as

Δϕ f( ) � −80.6πTEC
c

1
f0

− f

f2
0

+ f − f0( )2
f3

0
[ ] (6)

Accordingly, the low-pass equivalent model for the phase response is
written as

Δϕ0 f( ) � −80.6πTEC
c

1
f0

− f

f2
0

+ f2

f3
0

[ ] (7)

The group delay response to the ionosphere dispersion and
corresponding low-pass equivalent model can be derived from the
definitions of the group delay as follows respectively.

Δτ f( ) � − 1
2π

δΔϕ f( )
δf

� 40.3TEC
c · f2

1
f2

0

+ 2 f − f0( )
f3
0

[ ] (8)

and

Δτ0 f( ) � 40.3TEC
c

1
f2
0

− 2f
f3
0

( ) (9)

Figure 1 depicts how the group delay and phase advance vary
within the band around the center frequency 1,191.795 MHz of
Galileo E5 AltBOC(15, 10) signals calculated from the first-order
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ionosphere model. We take TEC = 100 TECU (TEC unit) for the
simulation. This is a typical mid-latitude daytime and corresponds
to an about 13 m delay for GPS L1 frequency users. It is shown that
the ionosphere delay is neither symmetric nor linear within the
frequency band. The varying ionosphere delay results in signal
distortions characterized by correlation peak asymmetry and
waveform deformations. In addition, the ionosphere delay
variations calculated from the second-order Taylor series
approximation model is displayed in Figure 1 together with the
approximation error. It can be seen from Figure 1 that the delay
calculated from the first-order ionosphere model and that from the
approximation are close to each other and the approximation error
is small enough, demonstrating the efficiency of the second-order
Taylor series approximation model for calculating ionosphere delay
of wideband signals.

3 Analytical results

Since it is the asymmetry and non-linear phase response to the
dispersive ionosphere that causes the wideband signal distortions,
the transfer function of the dispersive ionosphere can be expressed
as follows using a non-linear phase model regardless of the constant
and linear terms in Eq. 7.

Hiono � exp −j 80.6πTEC · f2

c · f3
0

( ) (10)

In this section, we will study the ionosphere dispersion effects on
code and carrier-phase tracking of wideband GNSS signals.

Non-coherent early-late processing (NELP) time of arrival
(TOA) estimator is described in [16] and shown in Figure 2. In
NELP, the carrier-phase of the received signal is assumed unknown,

so the processing is independent of carrier-phase. The ionosphere is
moved to signal baseband to facilitate the dispersion effect analysis,
as shown in Figure 2.

The received signal s(ti) at time instant ti is modeled at
baseband as

s ti( ) � x ~t − τ( ) · e−jϕ ti( ) + η ti( ) (11)
with the code signal x(~t − τ), the code delay τ, the received phase
ϕ(ti) and the noise η(ti). The received signals are correlated with a
local copy of the code signals x(~t − τ).

According to Figure 2, the steady-state code delay can be
estimated from an early-minus-late envelope discriminator of the
non-coherent double-sided band receiver as given by Eq. 12 below.

∫ βr/2

−βr/2
Gs f( ) ·Hionoe

j2πf τ̂−d/2( )df
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
� ∫ βr/2

−βr/2
Gs f( ) ·Hionoe

j2πf τ̂+d/2( )df
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (12)

where τ is the estimated code delay, d is the early-minus-late spacing
of a correlator, βr is the double-sided bandwidth, and Gs(f) is
defined as a power spectral density normalized to unit power over
infinite bandwidth. It can be easily found from this equation that τ̂
equals 0, i.e., τ̂ � 0, revealing that the ionosphere dispersion does not
cause any additional delay for code measurements.

The wideband ionosphere, however, degrades the correlation
results that is derived from Figure 2 as

ΔR � 20 · lg Rp τ � 0( )
R0 τ � 0( )[ ] (13)

with the code correlation function free of the ionosphere dispersion
within frequency band

FIGURE 1
Group delay and phase advance of E5 AltBOC(15, 10) signals calculated from the conventional first-second ionosphere model and second-order
Taylor series approximation model.
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R0 τ( ) � ∫ βr/2

−βr/2
Gs f( )ej2πf.τ df (14)

and the output of a prompt correlator

Rp τ( ) � ∫ βr/2

−βr/2
Gs f( ) ·Hionodf (15)

The dispersive ionosphere also shifts the carrier-phase in the
PLL output [16,17], as shown in Figure 3.

Δϕshif t � arctan
imag R τ max( )[ ]
real R τ max( )[ ]{ } (16)

where the code delay τ̂ max is determined such that the real part of the
complex-valued correlation result is maximized, and the complex
correlation function is given by

R τ( ) � ∫ βr/2

−βr/2
Gs f( ) ·Hionoe

j2πf.τdf (17)

4 Simulation results

In this section the computer simulation is carried out to
examine power loss of the correlation peaks and carrier-phase
shifts in the PLL output for wideband GNSS signals after passing
through the ionosphere. The block diagram in Figure 4 reveals the
basic steps undertaken in the simulation. The simulation
parameters (TEC, center frequency and double-sided
bandwidth of signals) are first selected. The signals through the
low-pass ionosphere-equivalent filter are then tracked and
processed.

FIGURE 2
Non-coherent early-late processing (NELP) TOA estimator.

FIGURE 3
Representation of carrier-phase tracking loop.
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New generation GNSS signals, e.g., BDS B3 BOC(15, 2.5), GPS
L1 BOC(10, 5) and Galileo E5 AltBOC(15, 10), are taken as examples
to evaluate the ionosphere dispersion on wideband signals tracking.

The selected center frequency and double-sided bandwidth of these
signals for this simulation are listed in Table 1. Figures 5, 6 show the
power loss of the correlation peaks and carrier-phase offsets for these

FIGURE 4
Schematic of computer simulation.

TABLE 1 Center frequency and double-sided bandwidth of the new generation GNSS signals.

Signals Center Frequency/MHz Double-sided Bandwidth/MHz

BOC(10, 5) 1227.6 32

BOC(15, 2.5) 1268.52 35

BOC(14, 2) 1575.42 32

AltBOC(15, 10) 1191.795 50

FIGURE 5
Power loss of the correlation peaks for different TEC values.

Frontiers in Physics frontiersin.org05

Zhao and Lei 10.3389/fphy.2023.1103159

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1103159


wideband GNSS signal tracking under various ionosphere conditions,
respectively. It can seen from Figure 5 that the correlation power of the
correlation peaks for BOC(10, 5), BOC(15, 2.5) and BOC(14, 2) signal
tracking can be ignorable even in ionosphere activity conditions,
whereas the wideband ionosphere can introduce the relative large
correlation power for AltBOC(15, 10) signal tracking, especially

during ionosphere activity. As for carrier-phase shifts in the PLL
output, the phase changes for these signal tracking are less than 100 in
the quiet ionosphere case (TEC = 100 TECU) as observed in Figure 6,
but increase linearly with TEC, specially up to 10°, 26°, 12° and 33° for
BOC(10, 5), BOC(15, 2.5), BOC(14, 2) and AltBOC(15, 10) signal
tracking, respectively, when ionosphere storms occur, i.e., TEC =
500 TECU. The correlation power loss and phase offsets for
AltBOC(15, 10) signal tracking is shown in Figure 7 for different
signal bandwidths and TEC values. It can be observed that the wider
the bandwidth is, the greater the correlation power loss and phase
change are for same TEC values, demonstrating unique ionosphere
dispersion effects on wideband GNSS signals.

5 Conclusion

This work illustrates the effects of the ionosphere dispersion on
tracking of various wideband GNSS signals such as Galileo
E5 AltBOC(15, 10) signals and BDS B3 BOC(15, 2.5) signals during
quiet ionosphere conditions and ionosphere activities. In addition to the
carrier-phase advance and code delay, the dispersive ionosphere brings
extra effects on wideband signals. The ionosphere dispersion would
cause the correlation power loss and carrier-phase offsets in the PLL
output for wideband GNSS signal tracking, but would not result in an
additional delay in the estimated code delay, if techniques for
ionosphere dispersion compensation in receivers were not

FIGURE 6
Carrier-phase offsets for different TEC values.

FIGURE 7
Correlation power loss and phase offsets for different bandwidths.
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implemented. The greater the TEC values and the wider the bandwidth,
the more dramatic the ionosphere dispersion effects are. The simulation
results show that due to the ionosphere the Galileo E5 AltBOC(15, 10)
signals at the 1,191.795MHz center frequency with the 50MHz
bandwidth suffer about 0.1 dB correlation power loss and about 20°

phase change in quiet ionosphere case, and the correlation peak
reduction and phase change increase dramatically to 0.35 dB and 33°

during ionosphere activities, respectively. For the BDS B3 BOC(15, 2.5)
signals centered at 1,268.52MHz with the 35MHz bandwidth the
correlation peak reduction resulted from the ionosphere dispersion is
ignorable even in ionosphere storm conditions, but typical TEC results
in a phase shift of around 15°. It is suggested that techniques for
compensation of the ionosphere dispersion effects such as all-pass filter
should be utilized before wideband signals are acquired and tracked to
avoid correlation peak reduction and phase change.

It should be noted that we studied on the ionosphere dispersion
effects only through a simulation rather than use of real-world data. Also,
we only considered the first-order ionospheric terms but ignored higher-
order terms. In the future we will study not only on the first-order
ionospheric effects, but also on higher-order effects on wideband GNSS
signals in the case of ionosphere quiet and ionosphere storms using real-
world GNSS signals.
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