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Quantum conference key agreement (QCKA) allows multiple users to distribute
secret conference keys over long distances. Measurement-device-independent
QCKA (MDI-QCKA) is an effective QCKA scheme, which closes all detection
loopholes and greatly enhances QCKA’s security in practical application.
However, an eavesdropper (Eve) may compromise the security of practical
systems and acquire conference key information by taking advantage of the weak
randomness from the imperfect quantum devices. In this article, we analyze the
performance of the MDI-QCKA scheme based on the weak randomness model. Our
simulation results show that even a small proportion of weak randomness may lead
to a noticeable fluctuation in the conference key rate. For the case with finite-key
size, we find that the weak randomness damages the performance of MDI-QCKA to
different degrees according to the data size of total pulses transmitted. Furthermore,
we infer that QCKA based on single-photon interference technology may perform
better in resisting weak randomness vulnerabilities. Our work contributes to the
practical security analysis of multiparty quantum communication and takes a further
step in the development of quantum networks.
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1 Introduction

Quantum key distribution (QKD) has become the art of two legitimate parties (Alice and
Bob) distributing secret information by virtue of the laws of physics [1]. It has information-
theoretical security regardless of the unlimited computational power of an eavesdropper (Eve)
[2, 3]. Over the past decades, QKD has developed rapidly and made remarkable progress in
terms of theory and practice.

At present, the two-party scheme is the main direction of most theoretical and experimental
works. In fact, multi-party quantum communication protocols have also been proposed and
studied. The quantum conference key agreement (QCKA) [4–7] is one of the most promising
applications that distributes the conference key among multiple parties over a long distance.
Particularly, combing the MDI [8] technology via post-selected Greenberger–Horne–Zeilinger
(GHZ) entangled states [9, 10], allows measurement-device-independent QCKA (MDI-QCKA)
[11] to eliminate all side-channel attacks in detectors and plays a vital role in the construction
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and development of quantum networks. Furthermore, MDI-QCKA
has been studied under different conditions consisting of finite-key
size [12], continuous variables [13, 14], four users with the W state
[15], and device independence [16, 17]. Recently, based on single-
photon interference technology, some new QCKA protocols have also
been proposed in which the conference key rate and transmission
distance are improved greatly [18–23].

In terms of the practical quantum communication system, Eve
may choose quantum devices of state preparation or measurement as
the target of her (his) attack, which may result in bit encoding and
basis selection being modulated not at random [24–27]. Li et al.
proposed a weak randomness model [28–30] to analyze the quantum
state preparation vulnerability in the BB84 protocol. Recently, this
security analysis technology has been applied in the reference-frame-
independent QKD (RFI-QKD) [31], MDI-QKD [32], and sending-or-
not-sending twin-field QKD (SNS TF-QKD) [33]. Under the
condition of weak randomness, the states prepared consisted of
random and non-random parts [28]. States prepared from the non-
random part may lead to the leakage of secret key information to Eve.
In fact, the weak randomness model is also appropriate for the QCKA
for two reasons. First, three communicators (Alice, Bob, and Charlie)
are required in the QCKA to perform quantum state preparation
operation, which has to be affected by imperfections of quantum
devices. Eve may exploit the weak randomness of imperfect devices to
intervene in bit encoding and the basis selection process. Second,
based on the decoy-state method, signal states or decoy states emitted
by Alice, Bob, and Charlie are transmitted in the optical channel. In
this case, Eve may perform attenuation operation to maximize the
leaked information. Consequently, it is necessary to consider QCKA
protocols’ and the practical security of weak randomness.

In this article, we analyze the performance of the decoy-state MDI-
QCKA [11] based on the weak randomness model. First, we analyze
the potential influence of weak randomness on the conference key rate
in the asymptotic case. Second, we analytically derive the formula of
the length of the conference key with finite-key size by exploiting the
Chernoff bound [34–36]. Utilizing the experimental parameters from
Ref. [11], we numerically simulate the secret conference key rate under
the condition of weak randomness. The results demonstrate that the
performance of MDI-QCKA deteriorates rapidly, even with the
fraction of weak randomness. For the case with finite-key size, we
notice that weak randomness damages the performance of MDI-
QCKA differently for different data sizes of total transmitted
pulses, and the impact of weak randomness on the conference key
rate may be greater than the data size of the total transmitted pulses.
Moreover, we compare the results with our previous work and notice
that utilizing single-photon interference technology in the QCKAmay
enhance resistance to vulnerabilities of weak randomness.

The remainder of the article is organized as follows: in Section 2,
we describe a decoy-state MDI-QCKA protocol. In Section 3, we
analyze the security of the decoy-state MDI-QCKA protocol based on
the weak randomness model in both asymptotic and non-asymptotic
cases. In Section 4, we present the numerical simulation results and a
discussion. Finally, the conclusion is drawn in Section 5.

2 Protocol description

Here, let us review the three-intensity decoy-state MDI-QCKA
protocol; the description of the protocol is as follows:

(1) State preparation. Alice, Bob, and Charlie randomly modulate the
intensities αa ∈ A � μa, va, wa{ }, βb ∈ B � μb, vb, wb{ }, and
γc ∈ C � μc, vc, wc{ } with the probability of
pμa, pva, pwa � 1 − pμa − pva, pμb, pvb, pwb � 1 − pμb − pvb, and
pμc, pvc, pwc � 1 − pμc − pvc, respectively. Here, μa(b,c) denotes
the signal state, va(b,c) denotes the decoy state, 0 denotes the
vacuum state, and μa(b,c) > va(b,c) > wa(b,c) > 0. For bit encoding and
basis selection, Alice, Bob, and Charlie randomly choose a bit
value from K ∈ 0, 1{ } and select a basis from W ∈ Z,X{ } with the
probability of PZ and PX, respectively. Then, they send phase-
randomized coherent states to an untrusted fourth party David via
the quantum channel.

(2) Measurement. David performs a GHZ-state measurement of
pulses sent by Alice, Bob, and Charlie and projects the received
pulses into a GHZ state. Here, David only identifies two of the
eight GHZ states: |Φ+

0〉 � 1/
�
2

√ (|HHH〉 + |VVV〉) and
|Φ−

0〉 � 1/
�
2

√ (|HHH〉 − |VVV〉). Meanwhile, David announces
the measurement results to Alice, Bob, and Charlie via an
authenticated channel. Three legitimate members only retain
the raw data of the correct GHZ-state measurement results and
discard the mismatched measurement results. Here, three
legitimate members employ information on the Z basis to
generate the secret conference key and the X basis to estimate
parameters.

(3) Sifting. Three legitimate members publish their basis and intensity
choices via an authenticated channel. Once they choose the same
basis with Alice’s intensity αa, Bob’s intensity βb, and Charlie’s
intensity γc, David announces a successful measurement event,
and three legitimate members record the number of detected
pulses.

(4) Parameter estimation. First, Alice, Bob, and Charlie calculate the
single-photon counting rate of successful measurement events on
the Z or X basis. Second, they calculate the bit error rate on the X
basis for the intensity combination αaβbγc (αa ∈ A, βb ∈ B, γc ∈ C).
Finally, they verify the bit error rate of the X basis.

(5) Error correction. Here, we assume that the raw conference key of
Alice refers to the reference raw key. Bob and Charlie perform an
error correction step so that their raw keys match the raw key of
Alice. This error correction operation consumes information at
most LeakEC bits. In order to ensure that three legitimate members
possess the same conference keys, they conduct an error
verification operation.

(6) Private amplification. In order to decrease Eve’s information on
three legitimate members’ conference keys, three legitimate
members also use a random two-universal hash function to
obtain the final conference key pairs (SA, SB, SC).

3 Security analysis with weak
randomness

For the security analysis of decoy-state MDI-QCKA under the
condition of weak randomness, hidden variables ξ, ζ, and ς from Eve
are assumed to determine the states which are prepared by three
legitimate members, and Eve should take responsibility for all
abovementioned weak randomness imperfections. The probabilities
of non-random part states prepared by three legitimate members are
p1, p2, and p3. If p1(2,3) = 1, all conference key information may be
leaked to Eve, that is, R = 0. If p1 = p2 = p3 = 0, Eve cannot obtain
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information theoretically. If 0 < p1(2,3) < 1, we can apply the weak
randomness model to estimate the maximum quantity of information
stolen by Eve.

Here, we suppose that the binary set of bits S, T, andG prepared by
Alice, Bob, and Charlie, respectively, decide bit encoding and basis
selection. |S|, |T|, and |G| represent the order of sets S, T, and G,
respectively. Because of the weak randomness imperfection in the
practical system, the random number cannot be perfectly prepared,
which shows that partial bits belonging to sets S, T, andG are mastered
by Eve. S is made up of a non-random part S1 and a random part S2. T
is made up of a non-random part T1 and a random part T2. G is made
up of a non-random part G1 and a random part G2. This is rational to
assume by considering two scenarios. First, Eve may attack the
random number generator and obtain partial random number
information. Second, the state may be modulated by different laser
diodes from three legitimate members, and Eve may distinguish them
by observing characteristics such as the spectrum and timing
sequence. Here, we define the weak randomness parameter p1 � |S1 |

|S|
at Alice, p2 � |T1 |

|T| at Bob, and p3 � |G1 |
|G| at Charlie. However, we cannot

ensure that the capability of Eve attacking Alice is identical to her
(him) attacking Bob or Charlie. That is, p1 = p2 = p3 is not necessarily
satisfied.

Under the condition of weak randomness, Eve attenuates the
quantum states from random parts S2, T2, and G2 with a certain
probability in the channel. For this case, the non-random part
quantum states reach David without attenuation. Here, we assume
that bit errors only come from random parts, and that the states of
non-random part do not generate bit errors. If Eve performs
attenuation and keeps the error rate within a rational range, her
(his) presence cannot be detected by three legitimate members.
Considering signal loss, the non-random probability in David’s side
may be amplified. Consequently, the maximum transmission distance
may compromise, the gain of single-photon on the Z basis may
decrease, and the bit error rate may increase.

3.1 Decoy-state MDI-QCKA with weak
randomness

Based on the weak randomness model, Alice, Bob, and Charlie
prepare quantum states as follows:

ρAlice′ � p1

2
∑

ka�0,1
ka| 〉〈ka|Alice ⊗ ka| 〉〈ka|Eve + 1 − p1( )ρAlice ⊗ 2| 〉〈2|Eve,

(1)
ρBob′ � p2

2
∑

kb�0,1
kb| 〉〈kb|Bob ⊗ kb| 〉〈kb|Eve + 1 − p2( )ρBob ⊗ 2| 〉〈2|Eve,

(2)
ρCharlie′ � p3

2
∑

kc�0,1
kc| 〉〈kc|Charlie ⊗ kc| 〉〈kc|Eve

+ 1 − p3( )ρCharlie ⊗ 2| 〉〈2|Eve, (3)
where Eve can obtain information about Alice’s (Bob’s and Charlie’s)
system according to the auxiliary quantum state. For Alice’s (Bob’s
and Charlie’s) system, if Eve’s auxiliary quantum state is
|ka〉〈ka|Eve(|kb〉〈kb|Eve, |kc〉〈kc|Eve), Eve may acquire the
conference key information ka (kb, kc). If Eve’s auxiliary quantum
state is |2〉〈2|Eve, three legitimate members prepare perfect GHZ states

ρAlice, ρBob, and ρCharlie, and Eve cannot distinguish between different
quantum states in this case. Compared with MDI-BB84 QKD, the
quantum state prepared and transmitted in the MDI-QCKA is a GHZ
state. The raw key of Alice needs to be determined as the reference raw
key, and the other two parties need to compare and sift their keys. In
addition, the definition of successful gain in the MDI-QCKA is similar
to that of the MDI-BB84 QKD, and the final bit error rate of the MDI-
QCKA is one of the bit error rates calculated by Bob or Charlie.

In the decoy-state MDI-QCKA protocol, three legitimate
members may prepare signal and decoy states using the same laser
diodes with the same random probabilities p1, p2, p3. Furthermore,
signal and decoy states can also be prepared using different laser
diodes. For this case, signal and decoy states prepared by three
legitimate members can be distinguished with the probabilities p1,
p2, p3. If signal states are distinguished, Eve can perform PNS attack
[37] without being detected, and Eve performs an attenuate operation
in the quantum channel when signal states are not distinguished.

Then, we may estimate the parameters under the condition of
weak randomness. The final conference key rate of the decoy-state
MDI-QCKA can be given by [11]:

R � QZ
0 + QZ

111 1 −H ePZ111( )[ ] −H max EZAB
αaβbγc

, EZAC
αaβbγc

{ }( )fQZ
μaμbμc

, (4)

where QZ
0 denotes the gain when Alice sends vacuum states while

David gets a successful GHZ state measurement event on the Z basis.
QZ

111 is the gain of single-photon states on the Z basis. H(x) = −log2x −
(1 − x) log2(1 − x) is the binary entropy function. Here, the raw
conference key of Alice is assumed as the reference raw key. For the
case of asymptotic data, we can consider that the phase error rate of the
Z basis ePZ111 is equal to the bit error rate of the X basis eBX111.
EZAB
αaβbγc

(EZAC
αaβbγc

) is the overall bit errors between Alice and Bob
(Charlie). f is the error correction efficiency and QZ

μaμbμc
is the

overall gain on the Z basis.
The overall gain and bit error rate can be expressed as

QW
μaμbμc

� ∑
∞

n�0
∑
∞

m�0
∑
∞

k�0

μnaμ
m
b μ

k
c

n!m!k!
e−μa−μb−μcYW

nmk, (5)

EW
μaμbμc

QW
μaμbμc

� ∑
∞

n�0
∑
∞

m�0
∑
∞

k�0

μnaμ
m
b μ

k
c

n!m!k!
e−μa−μb−μc eBWnmkY

W
nmk, (6)

whereW = X, Z. YW
nmk is the yield on the X or Z basis when Alice, Bob,

and Charlie prepare n-photon states, m-photon states, and k-photon
states, respectively, and eWnmk is the bit error rate corresponding to
this case.

The gain of single-photon states on the Z basis can be given by

QZ
111 � μaμbμce

−μa−μb−μcYZ
111, (7)

the gain when Alice sends the vacuum state while David gets a
successful GHZ-state measurement event on the Z basis is given by

QZ
0 � e−μaQZ

0μbμc
. (8)

Considering the condition of weak randomness, the probability of
Alice, Bob, and Charlie preparing non-random part quantum states
are p1, p2, and p3, respectively. Eve not only attenuates the states in
random parts to amplify the non-random proportion at David’s side
but also controls the probability of attenuation to ensure that she (he)
will not be detected by three members. We assume that Eve only
attenuates the random portion of the single photon, and that multi-
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photons are not actually used to generate secret keys. The probability
of signal loss from the random part is given by

pW
loss1 � μaμbμce

−μa−μb−μcY
W
111 − p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( )
1 − p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( ) .

(9)
The non-random proportion of quantum states reaching David’s side
can be expressed as

pW
non− rand1 �

p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3

YW
111

. (10)

The gain of the random part single-photon states which can generate
conference keys on the Z basis can be expressed as

Q111′ ≥QZ
111 − ~Q

Z

111� QZ
111 1 − pZ

non−rand1( ), (11)
where ~Q

Z
111 is the gain of the non-random part single-photon states

which cannot generate conference keys. The gain of the random part
single-photon states when Alice sends the vacuum state while David
gets a successful GHZ state measurement event which can generate
conference keys on the Z basis can be expressed as

Q0′ ≥QZ
0 − ~Q

Z

0 � QZ
0 1 − pZ

non−rand1( ), (12)
where ~Q

Z
0 is the gain of the non-random part single-photon states

when Alice sends the vacuum state while David obtains a successful
GHZ state measurement result which cannot generate
conference keys.

Considering the attenuation operation from Eve, the value of the
bit error rate eBX111 under the condition of weak randomness can be
given by

e111′ � eBX111
1 − pX

non−rand1

� eBX111Y
X
111

YX
111 − p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( ). (13)

With the method mentioned in [38, 39], we can calculate the value
of YX

111 and the value of eBX111. Then, combining Eqs. 11–13, we can
obtain the final conference key rate of the decoy-state MDI-QCKA
under the condition of weak randomness.

3.2 Finite-key analysis with weak randomness

Here, we employ the weak randomness model to analyze the
security of the decoy-state MDI-QCKA and derive formulas for the
lower bound of the successful single-photon gain and the upper bound
of the bit error rate. The final length of the conference keys on the Z
basis can be given by [11, 12]:

l≥ sZ0 + sZ,L111 1 −H eBX,U
111( )[ ] − LeakEC, (14)

where sZ0 denotes the number of measurement results when Alice sends
the vacuum state while David gets a successful GHZ state measurement
event on the Z basis. sZ,L111 is the lower bound of the successful single-
photon counting rate sZ111, and eBX,U111 is the upper bound of the bit error
rate eBX111 on the X basis. LeakEC � H(max {EZAB

αaβbγc
, EZAC

αaβbγc
})fnZ is the

amount of the consumed information in the error correction operation. nZ

is the total number of detection events when Alice, Bob, and Charlie
prepare states on the Z basis.

Let sZnmk be the total number of successful detection events
obtained by David when Alice, Bob, and Charlie prepare n-photon
states, m-photon states, and k-photon states on the Z basis,
respectively. For the intensity combination αaβbγc (αa ∈ A, βb ∈ B,
γc ∈ C), the expected value of nZabc can be expressed as

�nZabc � ∑
∞

n,m,k�0
pZ
abc|nmks

Z
nmk, (15)

where pZ
abc|nmk denotes the conditional probability when Alice, Bob,

and Charlie prepare n-photon states, m-photon states, and k-photon
states on the Z basis, respectively, with the intensity combination
αaβbγc (αa ∈ A, βb ∈ B, γc ∈ C). It can be given by

pZ
abc|nmk �

pZ
abc

τZnmk

pa|npb|mpc|k, (16)

where τZnmk � ∑pZ
abc

e−a−b−canbmck
n!m!k! denotes the probability when Alice,

Bob, and Charlie prepared n-photon states, m-photon states, and k-
photon states on the Z basis, respectively, and pZ

abc is the probability
when Alice, Bob, and Charlie modulate the intensity αa, βb, and γc on
the Z basis. pa|n, pb|m, and pc|k are the photon number distribution
probabilities of Alice, Bob, and Charlie, respectively.

On the basis of Eq. 9, we can also derive the probability of random
part signal loss in the case of finite-key size:

pW
loss2 �

sW111 − τW111 p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( )N
N − p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( )N .

(17)
The non-random proportion of quantum states reaching David’s side
can be expressed as

pW
non−rand2 �

τW111 p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( )N
sW111

,

(18)
where N denotes the total data size of transmitted pulses, W = X, Z.

Taking independent events into account, we exploit the Chernoff
bound [34–36] to calculate the number of practical measurement
events, which can be expressed as

�nZabc − nZabc
∣∣∣∣ ∣∣∣∣≤ δ nZabc, ε1( ) (19)

with the probability at least 1 − 2ε1, where δ(x, y) ∈ [−Δ, Δ̂],
withΔ � �����������

2x ln(16y−4)√
and Δ̂ � ����������

2x ln(y−3/2)√
.

Furthermore, sXnmk denotes the total number of the correct
measurement events observed by David when Alice, Bob, and
Charlie prepared n-photon states, m-photon states, and k-
photon states on the X basis, respectively, and vXnmk denotes the
corresponding number of bit errors. mX

abc denotes the total number
of bit errors when Alice, Bob, and Charlie prepared states on the X
basis and mX

abc � ∑
n,m, k�0

vXnmk. For the intensity combination

αaβbγc (αa ∈ A, βb ∈ B, γc ∈ C), the expected value of mX
abc can

be given by

�mX
abc � ∑

∞

n,m,k�0
pX
abc|nmkv

X
nmk, (20)

where pX
abc|nmk denotes the conditional probability when Alice, Bob,

and Charlie prepare n-photon states, m-photon states, and k-photon
states on the X basis, respectively, with the intensity combination
αaβbγc (αa ∈ A, βb ∈ B, γc ∈ C). It can be given by
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pX
abc|nmk �

pX
abc

τXnmk

pa|npb|mpc|k, (21)

where τXnmk � ∑pX
abc

e−a−b−canbmck
n!m!k! denotes the probability when Alice,

Bob, and Charlie prepared n-photon states, m-photon states, and k-
photon states on the X basis, respectively, and pX

abc is the probability
when Alice, Bob, and Charlie modulate the intensity αa, βb, and γc on
the X basis, respectively.

For the case of finite sample sizes, the relation between the
expected value and observed value of mX

ab under the Chernoff
bound [34–36] can be established as

�mX
abc −mX

abc

∣∣∣∣ ∣∣∣∣≤ δ mX
abc, ε2( ), (22)

with the probability at least 1 − 2ε2, where δ(x, y) ∈ [−Δ, Δ̂],
withΔ � �����������

2x ln(16y−4)√
and Δ̂ � ����������

2x ln(y−3/2)√
.

The number of single-photon detections from a non-random set
which cannot generate conference keys on the Z basis can be
expressed as

~sZ111 � τZ111 1 − p1( ) 1 − p2( ) 1 − p3( )N. (23)
The number of single-photon detections from a random set is
supposed to satisfy

s111′ ≥ sZ,L111 − ~sZ111 � sZ,L111 1 − pZ
non−rand2( ). (24)

The number of detections from the non-random part when Alice
sends a vacuum state while David gets a successful GHZ state
measurement event on the Z basis can be expressed as

~sZ0 � τZ011 1 − p1( ) 1 − p2( ) 1 − p3( )N. (25)
The secure single-photon detection from the random part when Alice
sends a vacuum state while David gets a successful GHZ state
measurement event on the Z basis is supposed to satisfy

s0′ ≥ sZ,L0 − ~sZ0 � sZ,L0 1 − pZ
non−rand2( ). (26)

The lower bound of the single-photon detection on the Z basis can be
given by

sZ111 ≥ s
Z,L
111 � τZ111

p1|μap2|μbp1|μcN
Z
μavbvc

− p1|μap2|vbp1|vcN
Z
μaμbμc

p2
1|μap1|vcp1|μc p1|]bp2|μb − p1|μbp2|vb( ) , (27)

where

NZ
μavbvc

� nZ,Lμavbvc

pvapvbpvcpZ
− p0|van

Z,U
wavbvc

pwapvbpvcpZ
− p0|vbn

Z,U
μawbvc

pμapwb
pvcpZ

− p0|vcn
Z,U
μavbwc

pμapvbpwcpZ

+p0|μap0|vbn
Z,L
wawbvc

pwapwb
pvcpZ

+ p0|μap0|vcn
Z,L
wavbwc

pwapvbpwcpZ
+ p0|vbp0|vcn

Z,L
μawbwc

pμapwb
pwcpZ

+2p0|μap0|vbp0|vcn
Z,L
wawbwc

pwapwb
pwc

, (28)

NZ
μaμbμc

� nZ,Uμaμbμc

pμapμbpμcpZ
− p0|μan

Z,L
waμbμc

pwapμbpμcpZ
− p0|μbn

Z,L
μawbμc

pμapwb
pμcpZ

− p0|μcn
Z,L
μaμbwc

pμapμbpwcpZ

+p0|μap0|μbn
Z,U
wawbμc

pwapwb
pμcpZ

+ p0|μap0|μcn
Z,U
waμbwc

pwapμbpwcpZ
+ p0|μbp0|μcn

Z,U
μawbwc

pμapwb
pwcpZ

+2p0|μap0|μbp0|μcn
Z,U
wawbwc

pwapwb
pwc

. (29)

The number of successful single-photon detection when Alice sends a
vacuum state while David gets a successful GHZ state measurement
event on the Z basis can be given by

sZ0 � nZwaμbμc
+ nZwaμbvc

+ nZwavbμc
+ nZwavbvc

p0|μa + p0|va
, (30)

where nZ,Uabc is the upper bound and nZ,Labc is the lower bound of nZabc,
which can be deduced from Eq. 19 by using the Chernoff bound.

Considering the attenuation operation from Eve, the value of the bit
error rate eBX111 under the condition of weak randomness can be given by

e111′ � eBX111
1 − pX

non−rand2

� eBX111Y
X
111

YX
111 − p1 + p2 + p3 + p1p2p3 − p1p2 − p1p3 − p2p3( ), (31)

where YX
111 denotes the successful single-photon counting rate on the

X basis, and it can be given by

YX
111 ≥YX,L

111 � p1|μap2|μbp1|μcN
X
μavbvc

− p1|μap2|vbp1|vcN
X
μaμbμc

p2
1|μap1|vcp1|μc p1|]bp2|μb − p1|μbp2|vb( ) , (32)

where

NX
μavbvc

� nX,L
μavbvc

pvapvbpvcpX
− p0|van

X,U
wavbvc

pwapvbpvcpX
− p0|vbn

X,U
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pμapwb
pvcpX
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X,L
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pwcpX
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X,L
wawbwc

pwapwb
pwc

, (33)

NX
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� nX,U
μaμbμc
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− p0|μan

X,L
waμbμc

pwapμbpμcpX
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X,L
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− p0|μcn
X,L
μaμbwc

pμapμbpwcpX

+p0|μap0|μbn
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+ p0|μap0|μcn
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X,U
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X,U
wawbwc

pwapwb
pwc

. (34)

Furthermore, the number of bit errors on the X basis is related to
the single-photon detection sX111, and it can be expressed as

vX111 ≤ v
X,U
111 � τX111M

X
vavbvc

p1|vap1|vbp1|vc
, (35)

where

MX
vavbvc

� mX,U
vavbvc

pvapvbpvcpX
− p0|vam

X,L
wavbvc

pwapvbpvcpX
− p0|vbm

X,L
vawbvc

pvapwb
pvcpX

− p0|vcm
X,L
vavbwc

pvapvbpwcpX

−p0|vap0|vbm
X,L
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pvcpX

− p0|vap0|vcm
X,L
wavbwc

pwapvbpwcpX
− p0|vbp0|vcm

X,L
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pwcpX

+2p0|vap0|vbp0|vcn
x,U
wawbwc

pwapwb
pwc

, (36)

where mX,U
abc is the upper bound and mX,L

abc is the lower bound of mX
abc,

which can be deduced from Eq. 22 by using the Chernoff bound.
Adopting the same calculation method of sZ111 from Eq. 27, we can

calculate the number of single-photon detection on the X basis sX111.
Next, we calculate the theoretical value of the bit error rate on the X
basis

eBX111 ≤ eBX,U
111 � vX,U

111

sX,L
111

. (37)

Finally, combining Eqs. 24, 26, 31, we can derive the secret
conference key length of the decoy-state MDI-QCKA under the
condition of weak randomness.
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4 Numerical simulations

In this section, based on the fiber-based channel model and the
experimental parameters in Ref. [11], we simulate the performance of
the decoy-state MDI-QCKA with the effect of weak randomness in
both asymptotic and finite-key size cases.

Here, we define the fiber transmittance of Alice, Bob, and Charlie
as ηa � 10−αLa/10, ηb � 10−αLb/10, and ηc �, respectively, with 10−αLc/10.
α = 0.2(dB/km) is the loss coefficient of the standard fiber link, La,b,c is
the fiber length, and pd = 10−7 is the dark count rate of David’s
detectors. ηd = 90% is the detection efficiency of David. ed is the optical
misalignment-error probability, and the efficiency of error correction
is f = 1.16. R � ℓ/N denotes the conference key rate, and N is the total
data size of transmitted pulses. Here, we fix the security bound when
considering statistical fluctuations analysis ε = ε1 = ε2 = 10−10. The list
of numerical experimental parameters is given in Table 1.

In Figure 1, we simulate the performance of the decoy-state MDI-
QCKA in the asymptotic case. Here, we assume that three legitimate
members are symmetrical in the system. p1, p2, p3 = 0 means that
randomness in the quantum-prepared operation is perfect, and p1, p2,
p3 = 10−x(x = 10, 8, 6) means that Eve can master different randomness
information. As shown in the results, we can deduce that the lack of

randomness on either side will cause information leakage and affect
the generation of the conference key. Although Eve only masters one
party randomness information for p1 = 10−10 and p2, p3 = 0, the
maximum transmission distance dropped evidently from 207 km to
149 km. Particularly, when the parameters of weak randomness p1, p2,
p3 = 10−6, the achievable transmission distance decreases to 132 km.

For the case with finite-key size, we simulate the conference key
rate with the effects of weak randomness as shown in Figure 2. Here,
we fixed the data size of the total transmitted signals N = 1014. The
results show that weak randomness evidently limits the conference key
rate and achievable transmission distance. Although Eve only masters
one party randomness information for p1 = 10−6, 10−5, 10−4, and p2,
p3 = 0, the achievable transmission distance decreases to 26, 42, and
49 km, respectively. When the weak randomness parameters p1, p2,
p3 = 10−6, 10−5, 10−4, the achievable transmission distance decreases to
34, 50, and 66 km, respectively.

As shown in Figure 3, the curves from right to left are acquired by
the data size of transmitted pulses N = 10x(x = 15, 14, 13, 12). We can
see that the greater the data size of the total transmitted pulses, the
more obvious the effect of weak randomness. In detail, the achievable
transmission distance decreases to 51.63%, 44.25%, 35.05%, and
23.75% when N = 1015, 1014, 1013, 1012, respectively. When the data
size of the total transmitted signals increases, the number of quantum
states attenuated increases. In the practical system, the leaked
information may also increase because Eve can take advantage of
the relationship between the expected values and observed values of
different modulated states.

In order to further analyze the impact of weak randomness in the
case of finite-key size, we consider the conference key rate forN = 1014,
1013 with different weak randomness parameters p1, p2, p3 = 0, 10−x(x =
6, 5, 4). As shown in Figure 4, we can notice that the conference key

TABLE 1 List of experimental parameters applied in the numerical simulation.
Here, α denotes the fiber loss coefficient (dB/km), pd is the dark count rate of
David’s detectors, ηd is the detection efficiency of the David’s detectors, ed is the
optical misalignment-error probability, f is the error correction inefficiency, and ε
is the security bound when considering statistical fluctuation analysis.

α pd ηd (%) ed f ε

0.2 10−7 90 0.015 1.16 10−10

FIGURE 1
(Color online) Conference key rate (per pulse) on a logarithmic scale vs. transmission distance in the asymptotic case for p1,2,3 = 0, 10−x(x = 10, 8, 6). The
solid lines are the results of weak randomness existing in one party, the dashed lines are the results of weak randomness existing in two parties, and the dotted
lines are the results of weak randomness existing in three parties.

Frontiers in Physics frontiersin.org06

Jiang et al. 10.3389/fphy.2023.1101631

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1101631


rate lines for N = 1013 and N = 1014 overlap approximately when the
weak randomness parameters are p1, p2, p3 ≥ 10−5. We also deduce that
the impact of weak randomness on the conference key rate is stronger
than the total data size of transmitted pulses when p1, p2, p3 ≥ 10−5.

Finally, let R(p) be the conference key rate with weak randomness
and R(0) be the conference key rate without weak randomness. The
relationship between R(p)/R(0) and transmission distance for p1, p2,
p3 = 0, 10−6 and N = 1014 is shown in Figure 5. Compared with our

FIGURE 2
(Color online) Conference key rate (per pulse) on a logarithmic scale vs. transmission distance for p1,2,3 = 0, 10−x(x = 6, 5, 4) and the total number of
transmitted signals N = 1014. The solid lines are the results of weak randomness existing in one party, the dashed lines are the results of weak randomness
existing in two parties, and the dotted lines are the results of weak randomness existing in three parties.

FIGURE 3
(Color online) Conference key rate (per pulse) on a logarithmic scale vs. transmission distance for p1,2,3 = 0, 10−5 and different total numbers of
transmitted signals N = 10x(x = 15, 14, 13, 12). The solid lines are the results of p1,2,3 = 0, and the dashed lines are the results of p1,2,3 = 10−5.
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previous studies on MDI-QKD [32] and SNS TF-QKD [33], we can
find that MDI-QCKA is more susceptible to weak randomness. In fact,
all three legitimate members need to prepare quantum states in the
practical MDI-QCKA system, and it is more difficult to protect
random information than the other two. In addition, we notice
that SNS TF-QKD can better resist weak random imperfection and
realize longer transmission distance; therefore, we suspect that QCKA
based on single-photon interference technology may perform better in
resisting weak randomness, which deserves further study.

From the simulation results presented previously, we can find
that the security of MDI-QCKA is sensitive to weak randomness in
both asymptotic and finite-key size cases. Furthermore, we find that

weak randomness damages the performance of MDI-QCKA to
different degrees for different data sizes of the total transmitted
signals. Finally, we conclude that QCKA based on the single-
photon technology may be better resistant to weak random
vulnerabilities.

5 Conclusion

In conclusion, we employ the weak randomness model to
analyze the security of the decoy-state MDI-QCKA and study
the performance of the decoy-state MDI-QCKA in both the
asymptotic case and non-asymptotic case. The simulation results
demonstrate that the weak randomness of the practical QCKA
system is non-negligible. The conference key rate and achievable
transmission distance will be significantly compromised due to the
attenuation operation of Eve. Moreover, we find that weak
randomness impacts the conference key rate differently for
different data sizes of transmitted pulses and the impact may be
greater than that of the data size of transmitted pulses in some
cases. To avoid such a vulnerability risk in a QCKA system, two
approaches can be considered. First, protecting randomness
information from leakage. Second, the risk of the side channels
at the source should be reduced and distinguishability of the
quantum states in all degrees of freedom should be avoided.
Compared with our previous work, we infer that QCKA based
on single-photon interference technology may have more
development prospects in resisting weak randomness, which is
also our future research direction.
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FIGURE 4
(Color online) Conference key rate (per pulse) on a logarithmic
scale vs. transmission distance for p1,2,3 = 0, 10−x(x = 6, 5, 4) and different
values of N = 1014, 1013. The solid lines are the results ofN = 1014, and the
dashed lines are the results of N = 1013.

FIGURE 5
(Color online) R(p)/R(0) vs. transmission distance with p1, p2, p3 = 0,
10−6 and N = 1014. The red lines are the results of SNS TF-QKD, the blue
lines are the results of MDI-QKD, and the black lines are the results of
MDI-QCKA.
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