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In order to reduce postoperative complications, it is required that the puncture
needle should not pass through the lung lobe without tumor as far as possible in
lung biopsy surgery. Therefore, it is necessary to accurately segment the lung lobe
on the lung CT images. This paper proposed an automatic lung lobe segmentation
method on lung CT images. Considering the boundary of the lung lobe is difficult
to be identified, our lung lobe segmentation network is designed to be a multi-
stage cascade network based on edge enhancement. In the first stage, the
anatomical features of the lung lobe are extracted based on the generative
adversarial network (GAN), and the lung lobe boundary is Gaussian smoothed
to generate the boundary response map. In the second stage, the CT images and
the boundary response map are used as input, and the dense connection blocks
are used to realize deep feature extraction, and finally five lung lobes are
segmented. The experiments indicated that the average value of Dice
coefficient is 0.9741, which meets the clinical needs.
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1 Introduction

Lung cancer is the most prevalent cancer in China [1] and the most prevalent cancer in
the world [2]. The clinicians must use the patient’s pathological cells as the “gold standard”
for the diagnosis and grading of lung cancer [3]. Normally, the pathological cells will be
obtained by a lung biopsy puncture procedure. In order to enable the surgeon to accurately
insert the biopsy needle into the lobe of the lung where the tumour is located, pre-operative
surgical planning requires precise segmentation of the five lobes of the lung [4]. The lungs are
divided into five lobes in Figure 1, including the three lobes of the right lung, namely, the
right upper lobe (RUL), the right middle lobe (RML) and the right lower lobe (RLL), are
separated by a small crack and a large crack, while the two lobes of the left lung, namely, the
left upper lobe (LUL) and the left lower lobe (LLL), are separated by a large crack.

Traditional manual lobe segmentation from CT is time-consuming, laborious and
tedious. During lung biopsy puncture procedures the puncture needle needs to be
constantly adjusted, yet manual lobe segmentation based on intra-operative CT images
is time-consuming and makes the patient suffer more. In addition, unclear lobe boundaries
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[5] and incomplete fissures [6] increase the difficulty of lobe
segmentation. Therefore, a fully automated, fast and accurate
method of lung lobe segmentation would greatly improve the
accuracy of route planning for preoperative lung biopsy puncture
navigation, reduce the risk of procedural complications and reduce
patient suffering.

1.1 Related works

In the past few decades, there have been many automatic, semi-
automatic, traditional or deep learning-based segmentation
methods of the five lobes from CT images of the lungs.

In anatomy, there is a crack between the lobes of the lung.
Therefore, most of the early methods of lung lobe segmentation
distinguished the lobes of the lungs based on the detection of inter-
pulmonary fissures. Pu et al. [7] proposed a fully automatic
computational geometry-based method to detect fissure in three-
dimensional lung images segmented by thresholds. Gao et al. [8]
combined membership function and threshold segmentation
method for the first time to identify and segment lung fissure
contour with fuzzy boundary. Van Rikxoort et al. [9] proposed
to segment the lung region and the fissure in a supervised way,
combined with image processing techniques such as region growing,
and then classify the pixels in the surrounding region according to
the segmented lung region and the fissure as structural features, thus
segmenting the lung lobes. However, these methods have
shortcomings, 1) imprecise segmentation results difficult to meet
clinical needs; 2) incomplete fissure makes for poor segmentation
results.

In view of the incomplete fissure, Pu et al. [10] added Radial
Basis Functions (RBFs) to the above method [7] to fit the surface of
the fissure in a curved surface fitting way, which has low sensitivity
to the incomplete fissure, thus achieving the effect of segmenting the
lung lobe. Schmidt-Richberg et al. [11] proposed a level set-based
method to segment the fissure as structural information for further
lobe segmentation. Although it is indeed optimized for incomplete

fissure detection, the effect is still not very good. After deep learning
matures, it shines in many fields [12,13]. Sarah E. Gerard et al. [14]
proposed a method based on deep learning to detect fissure, which
demonstrates better robustness of deep learning methods. However,
for the task of lung lobe segmentation, the detection of fissure alone
still cannot meet the actual clinical needs.

It is difficult to accurately segment the lung lobe only by relying on
the single anatomical structure of the fissure. Therefore, some
methods combine the interpulmonary fissure with other trachea
and tissues in the lung to provide more structural information for
the segmentation of the lung lobe. S. Ukil et al. [15] first extracted the
region of interest of fissure using anatomical structure information
such as vascular tree, trachea and bronchus and proposed a smooth
method for approximate optimization of incomplete fissure, which
improved the segmentation accuracy of lung lobe. Doel et al. [16]
firstly used the seed points obtained from the segmentation results of
the watershed transform of the vessel density filter and the bronchial
tree to perform a rough segmentation of the lung lobe. At the same
time, a new filter is proposed to identify the fissure, and the identified
fissure is fitted and approximated by multi-level B-spline function,
and then the lung lobes coarsely segmented by tracheal tree are
adjusted. Patil et al. [17] performed watershed segmentation
according to the cost image to obtain lung lobes, where the cost
image is calculated from the lungs, blood vessels, airways and fissure.
Bragman et al. [18] proposed to establish an average position
probability model of fissure based on the probability of group
fissure, and combine other anatomical structure information with
groupwise fissure prior to segment lung lobes.

Although these methods have been successful in practice to a
certain extent, they still have the following limitations: 1) Because
they involve complex multistage pipelines, the calculation time is
long; 2) The segmentation effect is greatly affected by the
segmentation quality of fissure and other anatomical structures.

With the development of deep learning in the field of medical
image processing [19–21], especially the victory of U-Net [22] in the
cell image segmentation competition and the excellent performance
of various FCNs [23] networks in medical image segmentation tasks,
a new direction has been opened up for automatic segmentation of
medical images. Compared with traditional segmentation methods,
FCNs has the main advantages of automatically and hierarchically
learning features from data, optimizing the objective function in an
end-to-end manner, and calculating the objective function with the
function of powerful fitting function.

Harrison et al. [24] proposed a two-dimensional deep-
supervised FCN with multi-path connections, that is, a
progressive fully nested network (P-HNN), which is used to
segment lung regions in CT images. The P-HNN + RW
algorithm proposed by George et al. [25] that is based on
2DP-HNN to predict the probability of the boundary, and
combined with the 3D random walk algorithm to perform
three-dimensional segmentation of the lung lobe. This method
based on 2D full convolution network (FCN) processes each slice
of CT 2D image independently. Ignoring that the lungs are three-
dimensional and the context information between CT image
layers, although this method may be a suboptimal use of 3D
data, it will definitely affect the accuracy of segmentation,
especially for incomplete fissure, which usually requires
anatomical information from adjacent slices. Imran et al. [26]

FIGURE 1
Diagram of lung lobe divisions.
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abandoned the extraction of other anatomical structure
information, directly extracted features from the original
three-dimensional lung CT images, and proposed a
progressive dense V-Net (PDV-Net) based on P-HNN [24]
and Dense V-Net [27]. Ferreira et al; [28] realized end-to-end
three-dimensional lung lobe segmentation based on V-Net and
added various regularization techniques (FRV-Net) such as Deep
Supervision, Batch Normalization and Multi-Task Learning. Lee
et al. [29] added dilated residual dense blocks, depthwise
separable convolutions and spatial information enhancement
to 3D FCN to improve the accuracy of lung lobe
segmentation. Park et al. [5] proposed an automatic lung lobe
segmentation method based on 3D U-Net [30], and trained and
verified it in both public data sets and private data sets, showing
clinical potential. Tang et al. [31] used the improved V-Net and
proposed a hybrid loss function for optimization. Similar to this
method, Lassen-Schmidt et al. [32] based on 3D U-Net and
improved DICE loss function also performed well in lung lobe
segmentation task. Kelei He et al. [33] proposed that multi-task
multi-instance deep network (M2UNet) can simultaneously
evaluate the severity of COVID-19 disease and segment lung
lobes, but this method is based on two-dimensions. Although
many methods of lung lobe segmentation have achieved good
results, the problem of lung lobe segmentation still faces some
problems, such as incomplete fissure, small dataset, unclear lung
lobe boundaries and so on.

1.2 Our contributions

Therefore, this paper proposes a multi-stage cascade network to
segment lung lobes from coarse to fine. First, the left and right lungs
are segmented. Then the boundaries of the lobes are generated.
Finally the five lobes are accurately segmented. Our main
contributions are summarized as follows:

• The multi-stage method, including the left and right lungs
segmentation, the lung lobe boundaries extraction and the
lung lobes segmentation, can effectively improve the
segmentation accuracy.

• A lung lobe edge enhancement method has been proposed
based on generative adversarial networks to generate a
response map of the fissure and lung lobe boundaries,
which can improve the sensitivity of the lung lobe
boundaries for the lung lobes segmentation.

• The response map of the fissure and lung lobe boundaries is
concatenated with the original lung data as the input of the
lung lobes segmentation network to improve the attention of
the lung lobe boundaries.

1.3 Organization

The remainder of this paper is organized as follows. Section 2
presents the proposed cascade of the lung lobe segmentation
framework. Section 3 introduces the experimental configuration.
Section 4 describes the results and analysis. Finally, Section 5
discusses and concludes our work.

2 Materials and methods

This paper proposes a cascade of lung lobe segmentation
framework shown in Figure 2. The whole process framework
consists of three parts: the left and right lungs are identified and
the bounding box is taken using the 3DU-Net [30]; the lung lobe
boundary is detected from the left and right lung bounding box and
the boundary response map is generated; the left and right lung
bounding box and the boundary response map are concatenated and
fed into the lung lobe segmentation network to obtain the lung lobe
segmentation results.

2.1 Pre-process

The task of lobe segmentation of the left and right lungs is not
symmetrical because of the different number of lobes (2 lobes in the
left lung and 3 lobes in the right lung). Therefore, in pre-processing,
the left and right lungs are extracted separately for subsequent
boundary identification and lung lobe segmentation. Extracting
the left and right lung regions separately not only reduces the
requirements for GPU memory, but also improves the
performance of the lung lobe segmentation network on the
ipsilateral lobe. The pre-processing consists of two main steps as
follows.

Step 1, 3D-UNet was used to perform left and right lung region
extraction, feeding the raw CT images to obtain dual-channel left
and right lung segmentation results. To reduce the impact of
incorrect segmentation on follow-up, 3D maximum connected
domain extraction was used to improve the segmentation results.

Step 2, according to the mask of the left and right lungs obtained
in Step 1, the left and right lungs are cropped by a bounding box
from the lung CT image. The principle of cropping is to expand the
cross-section outwards by five pixels in the x and y directions
respectively, while the number of axial direction remains
unchanged. In addition, to accommodate network input, the
cropped images of the left and right lungs were resized to 160 ×
160 × 128.

2.2 Edge Generation Network

2.2.1 Network details
The lung lobe segmentation methods include two types of

segmentation, one based directly on the original image and the
other using information from other anatomical structures in the
lung to improve the lobe segmentation results.

This paper proposes a cascade network based on weighted
enhancement of lung lobe edges, considering that the anatomical
structure of the lung has a great influence on the accuracy of lung
lobe segmentationl [18]. Edge Generation Network (EG-Net) inputs
pre-processed left and right lung images with image size 128 × 160 ×
160 and generates response maps of the same size containing the
lung boundary and the fissure. The edge of the original image is
enhanced in the form of a probability map to improve the
segmentation accuracy of the lung lobe. Edge response map
improve attention to lung lobe boundaries and fissures in the
form of probability map [34]. In addition, the edge response map
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still provides a predicted probability value for both incomplete
fissures and fuzzy boundaries.

EG-Net follows the design of the pix2pix GAN [35] and the EG-
Net structure is illustrated in Figure 2. The generator of EG-Net is
based on 3D-UNet structure and attention modules [36] are added
to the network to improve attention to boundaries. There are
continuous five down-sampling layers in encoder, and each layer
consists of a strided convolution, a leaky relu activation function and
a batch normalization operation. In the decoder, five up-sampling
layers are used to gradually restore the image resolution. Each layer
consists of a trilinear interpolation, followed by a regular
convolutional layer containing an activation function and a BN
layer to improve feature availability after upsampling. The output
layer uses a 1 × 1 × 1 convolution and a Sigmoid function to rescale
the results to between 0 and 1 to obtain a probability map of the
boundary and the fissure. Furthermore, in order to pay more
attention to the lobe boundary and the fissure, each skip
connection is replaced by an attention module.

In order to make the generated boundary closer to the real
boundary, the discriminator takes the generated boundary response
map and the lung CT image as two-channels input. Since the
purpose of this network is only to segment the boundary and

fissure with better effect, which means that we pay more
attention to the segmentation ability of the generator. The
learning rate of the discriminator is set to 0.001 times of the
generator’s. In addition, in the training phase, due to the amount
of training data, the generator is updated every 13 times and the
discriminator is updated once, thus ensuring that every data can be
trained for the discriminator.

2.2.2 Loss function
During the training phase, we find that it is difficult for original

cross-entropy loss function to make the GAN converge. Therefore,
the Mse function is used as the main loss function to ensure stable
training of the GAN and prevent the mode collapse. The loss
function of the final generator can be defined as

L � λ1Mse ERM,GT( ) + λ2Adv ERM*, GT*( ), (1)
where ERM is the generated response map of the lung lobe boundary
and fissure, GT is the boundary label softened by Gaussian
convolution kernel (σ = 5), and the Mse loss function is
expressed as

Mse ERM,GT( ) � ∑ ERM − GT( )2 (2)

FIGURE 2
Overall workflow of the proposed lung lobe segmentation method.
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In addition, ERM* is the dual-channel data formed by ERM
concatenate with original data, GT* is the dual-channel data
formed by GT concatenate with original data, and the adversarial
loss is expressed as

Adv label*( ) � argmin Ex label* 1 − log D G x( )( )( )[ ]( ), (3)
in this paper, λ1 is set to 5 and λ2 is set to 0.001.

2.3 Lobe segmentation network

Inspired by V-Net [37] and DenseNet [38] two networks, we
proposed a Lung Lobe Segmentation Network (LS-Net). LS-Net has
the same network structure as V-net for 3D feature extraction, and
Dense blocks are applied to improve feature reusability. LS-Net
concatenates the lung image with the corresponding edge response
map as two channel inputs, and the outputs of LS-Net are the
segmentation results of the two lobes of the left lung and three lobes
of the right lung separately. The network shown in Figure 2 includes
an encoder and a decoder. In the encoder, there are four down-
sampling layers, and each layer is composed of a Dense block
module for feature extraction and a strided convolution for
down-sampling except for the input layer which uses convolution
instead of Dense block. Where all the convolution kernel sizes of the
Dense block are set to 3, and the growth rates are set to 4, 4, 4, and 8,
respectively, and the step is set to 2, 4, 4, and 4, respectively. Details
of the Dense block construction are shown in Figure 2. All the
convolution kernel size of the convolution layer is 3 × 3 × 3, and the
number of convolution kernels according to the sequence is set to 16,
16, 24, 48, 64, and 96 respectively.

At that decoder, deconvolution is used instead of interpolation
for up-sampling. Two successive convolution operations are
performed to fuse the shallow features with the deep features.
Among them, the kernel size is set to 3, and the kernel number
is set to 64, 64, 48, 48, 24, 24, 16, and 16. The output layer kernel size
is 1, the kernel number is determined by the number of lung lobes.
When the input is the left lung (includes two lobes), the number of
output channels is set to 3, including two lobes and background.
When the input is the right lung (includes three lobes), the number
of output channels is set to 4, including three lobes and background.

3 Experiment configuration

3.1 Data acquisition and experiment
implement

The data of lung CT images in this experiment were all from
Shengjing Hospital, Shenyang City, Liaoning Province. A total of
148 CT image series were randomly collected between January and
December 2018, ranging in age from 23 to 75 years old, 67 females
and 81 males. Among them, 78 sets were scanned by the Aquilation
of Toshiba medical system equipment and 70 sets were scanned by
Brilliance ICT of the Philips medical system equipment. All data are
plain scan data, and images are stored in uncompressed format. The
number of pixels in each slice of image is 512 × 512, and the layer
thickness is 1 mm and 0.5 mm respectively.

There are three kinds of ground truth images, including the left
lung and right lung labels, lung lobe labels and lung lobe boundary
labels. Among them, the labels of left lung, right lung and five lobes

TABLE 1 Results of segmentation of the right and left lung parenchyma.

Dsc Precision Se Sp HD (mm)

Left 0.9833 ± 0.0180 0.9756 ± 0.0330 0.9917 ± 0.0017 0.9971 ± 0.0021 9.865 ± 3.798

Right 0.9853 ± 0.0127 0.9821 ± 0.0451 0.9927 ± 0.0017 0.9979 ± 0.0021 11.93 ± 1.134

FIGURE 3
Display of lung segmentation results. Green areas: left lung; Red areas: right lung. Error map that performed the difference between the predicted
and real results is shown.
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were annotated by two clinicians with five and 10 years experience
respectively using a software (ITK-SNAP). However, the labels of
the lung lobe boundary are generated from the labels of the lung
lobe. The lung lobe labels are corroded and expanded using a kernel
of size 3 respectively and are subtracted to obtain the labels of the
lung lobe boundary. In order to improve the recognition of fuzzy
boundary and avoid the influence of incorrect boundary labels on
the next segmetation network, the lung lobe boundary labels are
softened using a Gaussian function (sigma = 5) to obtain the soft
labels of the boundary.

This experiment is based on Windows system, carried out on
Pycharm 2019.3 compiler, using Keras2.2.4 and Tensorflow1.12 deep
learning frameworks, and the GPU is Nvidia GeForce GTX 1080Ti
(11 GB), and an average run time is 26.6 s for a patient’s 3D lung CT.

3.2 Evaluation metrics

The Dice similarity coefficient, precision, sensitivity and
specificity were used to validate the segmentation results.

The Dice similarity coefficient (Dsc) was calculated as follows

Dsc � 2|G ∩ P|
|G| + |P|( ) × 100%, (4)

where G denotes the ground-truth label, and P denotes the
prediction results.

The Precision was calculated as follows

Precision � |G ∩ P| + | ~ G( ) ∩ ~ P( )|
|G| + |P| × 100%. (5)

The Sensitivity (Se) was calculated as follows

Se � |G ∩ P|
|G| × 100%. (6)

The above indicates the correct detection ratio, which is the area
fraction within the manual segmentation region that is also part of
the automatic segmentation output (the higher the evaluation score,
the better the performance of the applied algorithm).

The Specificity (Sp) was calculated as follows

Sp � | ~ G( ) ∩ ~ P( )|
| ~ G( )| × 100%. (7)

The value indicates the area fraction included in the automatic
segmentation region that is not covered in the ground truth mask.
Therefore, a more significant Sp means a more accurate
segmentation.

The Hausdorff distance (HD) was calculated as follows

HD Pi, Gi( ) � max H Pi, Gi( ), H Gi, Pi( ){ }. (8)

FIGURE 4
The visualization results of edge response map generated by EG-Net: (A) left lung origin data; (B) Boundary and fissure response generation map of
the left lung; (C) The resulting responsemap ismapped to the original image; (D) right lung origin data; (E) Boundary and fissure response generationmap
of the right lung; (F) The resulting response map is mapped to the original image.

TABLE 2 Results of segmentation of the right and left lung parenchyma.

Left Right Average

Mse 0.026 ± 0.00159 0.021 ± 0.0009 0.024

Dsc 0.827 0.838 0.833

TABLE 3 Comparison of lung lobe segmentation results with other models. Dsc
is used as the evaluation standard.

RUL RML RLL LUL LLL Overall

3D U-Net [30] 0.9641 0.9028 0.9690 0.9704 0.9675 0.9548

V-Net [37] 0.9600 0.9144 0.9622 0.9601 0.9538 0.9501

PDV-Net [26] 0.8890 0.8349 0.9250 0.9162 0.9235 0.8977

Ours 0.9812 0.9566 0.9830 0.9757 0.9740 0.9741
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The HD measures the maximum surface distance between the
predicted mask map Pi for pixel i and the corresponding ground
truthGimanually labeled by the experts. The formula for calculating
the surface point set distance is shown below:

H Pi, Gi( ) � max min Pi − Gi‖ ‖{ }, (9)
H Gi, Pi( ) � max min Gi − Pi‖ ‖{ }. (10)

4 Results and analysis

Since lung lobe segmentation is carried out by cascading
multiple networks in this paper, quantification will be carried out
from three aspects: Section 4.1 is the segmentation result of lung,
Section 4.2 is the generation result of probability map of lung lobe

boundary and fissure for Section 2.2, and Section 4.3 is the result of
lung lobe segmentation for Section 2.3.

4.1 Left and right lung segmentation

In this paper, 3D-UNet is used to segment the left and right
lungs of lung CT images in pre-processing. To avoid redundant
areas being extracted due to incorrect segmentation, the maximum
connected field of each channel is retained, reducing the
false positive rate. The 148 cases of data were divided into
128 training cases and 20 test cases. Although the entire
experiment included three networks and each network was
trained independently, during the testing phase, the data from
one patient was computed end-to-end. Therefore, to avoid data

FIGURE 5
Visual comparison between our proposed model and 3DU-Net, V-Net, PDV-Net and ground truth; This figure shows the segmentation results of
cross section, sagittal plane and coronal plane of the left lung region; Color indicates that red: Left Upper Lobe; Green: Left Lower Lobe.

FIGURE 6
Visual comparison between our proposedmodel and 3DU-Net, V-Net, PDV-Net and ground truth; This figure shows the segmentation results of the cross
section, sagittal plane and coronal plane of the right lung region; Color Coded, Red: Right Upper Lobe; Blue: Right Middle Lobe; Green: Right Lower Lobe.
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leakage between networks, the distribution of training and test
data for the boundary generation and lobe segmentation
networks was kept consistent with that of the lung parenchymal
segmentation network. Dsc, Precision, Sensitivity (Se), Specificity
(Sp) and Hausdorff distance (HD) will be used to evaluate that
result of lung segmentation. The final test results are shown in
Table 1. The results show that the most of the lung area is segmented
and that the under and over-segmentation rates are low.
Nevertheless, we have chosen to expand the bounding box by
five pixels when we take it. Figure 3 shows the result of the
segmentation and ground truth.

4.2 Boundary enhancement

Since the goal of the boundary generation network is to generate
a relatively complete boundary and fissure that can provide a
probability for the next level of lung segmentation network,
the lung boundary and fissure generated by this level of network
are actually response map. The label used in this section for
evaluation, which is smoothed by Gaussian (σ = 5) function, so
that the original binary label is converted into soft label, especially on
the edge, to ensure that the label value of the generated boundary
and fissure is between 0 and 1. After smoothing, as shown
in Figure 4, the boundary enhancement network can still give a
prediction probability for boundaries that are difficult to distinguish
from naked eyes. The lung lobe boundary results generated by
the boundary generation network is a probability map between
0 and 1. A threshold of 0.5 was used to binarize the results, and
then they were evaluated using Dsc and Mse. The same data
distribution as the training data and test data of lung region
segmentation are adopted, and the final test results are shown in
Table 2.

As shown in Figure 4, the boundary of the left lung and the
fissure have a better effect, in which the fissure is usually complete
and clear. While the fissure of the right middle lobe of the right lung
is not very good and easy to distinguish, but the response map still
gives a probability prediction.

4.3 Lung lobar segmentation

In the task of lung lobe segmentation, we choose 3D U-Net [30],
V-Net [37] and PDV-Net [26] for comparative experiments. 3D
U-Net is widely used in the network structure of image segmentation
tasks. V-Net also performs well in the task of lung lobe
segmentation. PDV-Net is also a model that performs well in
lung lobe segmentation based on deep learning method.

Table 3 is the Dice coefficient evaluation results compared with
3DU-Net, V-Net and PDV-Net, which are the segmentation
results of two lobes of the left lung and three lobes of the right
lung respectively. It can be seen that our proposed lung lobe
segmentation network based on edge enhancement performs
best, even for the most difficult right middle lung lobe to be
segmented. Figures 5, 6 show the visualization results compared
with other models.

5 Discussion and conclusion

In this study, we propose a fully automatic deep learning model
for lung lobe segmentation. In this method, the left and right lungs
are segmented by cascade method. Considering the importance of
anatomical structure information, the lung lobe boundary and
fissure are segmented, and the obtained lung lobe boundary is
weighted to the original image as a response map for boundary
enhancement to improve the segmentation accuracy.

The method based on boundary enhancement proposed in this
paper can effectively improve the accuracy of boundary
segmentation and reduce the sensitivity to fissure. For
indistinguishable boundaries, the boundary enhancement network
can still give a probability, thus making the lung lobe form a
relatively closed area and improving the segmentation effect of
the lung lobe on the boundary.

At the same time, we use 40 test data to compare 3DU-Net,
V-Net and PDV-Net, which all perform well in segmentation tasks,
and finally prove that our method is more effective. However, the
proposed method still suffers from high memory requirements and
data quality issues. Due to memory reasons, the left and right lungs
can only be processed separately, which means that we need to train
different models for the left and right lungs respectively. Different
from natural images, the amount of medical image data is relatively
small. Although depth learning performs very well in function fitting
tasks, over-fitting is easy to occur, so a large amount of data will well
reduce the risk of over-fitting.
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