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In our last study [J. Phys. B At. Mol. Opt. Phys. 54, 125,102 (2021).], we reported the
ab initio calculation of the full-dimensional potential energy surfaces of water
molecule including 9 A’ and 9 A” states in Cs symmetry. In this study, we performed
additional non-adiabatic semi-classical studies based on the potential energy
surfaces. Our simulation successfully repeated the near picosecond lifetime of the
~F
1
A′ state measured by time resolved photo-electron spectra experiment

[Chinese J. Chem. Phys. 32, 53 (2019)]. We also determined the dissociation
branching ratio including H +OH(X, A), H + H+O and H2+O channels. In addition,
the reaction path corresponding to H2+O (1S) channel is clearly marked out, which
is found in recent free-electron laser experiment [Nat. Commun. 12, 6,303 (2021)].
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1 Introduction

With the development of vacuum ultra-violet free electron laser (VUV-FEL) light
sources combined with time-sliced velocity-map imaging (TSVMI) [1] and time-resolved
photo-electron spectroscopy (TRPES) technique [2], dynamical studies for the photo-
chemistry process in molecules from highly excited electronic states have been
performing for several years before [1, 3, 4]. Among small molecules, water had been
extensively studied as an ideal polyatomic system. Interesting phenomena have been found
for the photodissociation dynamics of highly-excited states of water, including the hot
rotation of OH fragments in ground and excited states at special incident photon
wavelengths [4, 5] the long-lived lifetime of ~F and ~F′ states [6] and the high yield of the
three-body H + H + O channel [7] at short wavelengths.

Despite the extensive experimental studies of the photodissociation of water molecule in
highly-excited states, corresponding theoretical studies are relatively scarce due to the lack of
the corresponding potential energy surfaces (PES). On the other hand, most theoretical
studies focus on specific fragment quantum distributions such as the rovibronic [8] or the
fine structures of OH radical [9], and few studies consist of all three channels of H + OH,
H2+O and H + H + O. In our latest work [10], we obtained the full dimensional potential
energy surfaces with the combined multi configurational self-consistent field and multi
reference single and double excitation configuration interaction method (MCSCF +
MRDCI), nearly 99,000 geometries are considered which include all the three mentioned
channels.
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If we do not aim at studying quantum effects such as
interference, energy resonant, or geometric phase, a semi-
classical simulation of the nuclear motions is good enough to
describe the reaction behavior with a lower computational cost.
In this paper, based on our full-dimensional PESs, the
photodissociation of water molecule with respect to the
photon energy of 9–12 eV are studied with a semi-classical
method, and the non-adiabatic transition is included using a
Landau-Zener type approach near conical-intersections or avoid-
crossings. It should be noted that, in the present study, only the
states of 1A′ symmetry are taken into consideration because the
ones with 1A″ symmetry are either long-lived [2, 6](second or
higher 1A″) or lower than the energy range of interest ( ~A

1
A′, less

than 8eV).

2 Theoretical method

The semi-classical simulation is performed by solving the
Newton equations with the Verlet algorithm:

q t + Δt( ) � 2q t( ) − q t − Δt( ) + €q t( )Δt2 (1)
Here, q is the coordinate of an atom. The acceleration €q is

determined from a finite difference on the PES with a multi-
dimensional B-spline interpolation. Non-adiabatic process is
considered using two main approximations—surface hopping
and the Landau–Zener model [11, 12], which has been
analyzed and tested in several conical intersection problems
[13–15]. When the potential energy gap comes minimal along
the classical trajectory, a non-adiabatic transition may occur.
Considering a classical trajectory associated with the ith adiabatic
surface, if at a critical time tc, the energy gap function Zij(qc)
between the ith and jth surfaces at the coordinate qc{ } reaches a
minimum, a transition from surface i to j can take place. The
transition probability can be described by a Landau-Zener
formula [11]:

PLZ � exp
−π
2Z

�������������
Zij qc( )3

d2

dt2Zij q t( )( ) ∣∣∣∣ t�tc
√√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

During the simulation, such probability is compared with a
pseudorandom number ξ within a uniform interval of [0,1]. If
ξ >PLZ the trajectory stays on the current surface i. If ξ <PLZ,
the trajectory hops from the current surface i to the surface j, and the
velocities are rescaled as:

∑
α

1
2
mα _qα t( )∣∣∣∣ ∣∣∣∣2 + Ui qc( ) � ∑

α

1
2
mα _qrsα t( )∣∣∣∣ ∣∣∣∣2 + Uj qc( ) (3)

to ensure the energy conservation. The summation is over all nuclear
with mass mα. In our approach, only j � i ± 1 are taken into
consideration i.e. only the hopping between the adjacent surfaces
are considered.

The initial geometry samplings are based on a Wigner
distribution [16, 17] near the equilibrium geometry of the
ground state ~X1A′ at the ground vibrational state.

3 Results and discussion

3.1 The lifetime of state ~D
1
A′ and ~F

1
A′

We obtain the lifetime of state ~D
1
A′ and ~F

1
A′ by applying the

simulation from each specific adiabatic surface. Thousands of
trajectories are performed with different initial condition and
then we can collect the numbers of undissociated trajectories at
each time t as N(t). Finally, the lifetime τ is obtained through an
exponential fitting on N(t) versus t as: N(t) � N0 exp (−t/τ).

The state ~D
1
A′ is believed to be unstable due to the strong non-

adiabatic coupling with the lower state of ~B
1
A′ at the bending

geometry. Several experimental studies have reported slightly
diverging results. Steinkellner etal [18] obtained a value of
60 ± 50 fs with a large uncertainty using an ultrafast two-photon
experiment in 2004. Then Yuan etal [19] estimated the lifetime of
~D
1
A′ to be 13.5 fs from the bandwidth value of a two-photon

spectrum. In the present study, as shown by Figure 1A, the
dissociation lifetime for ~D

1
A′ state is determined to be near

124 fs. The relatively short lifetime of 13.5 fs by Yuan etal [19] is
within the lower limit of 60 ± 50 fs by Steinkellner etal [18] while the
present value of 124 fs is near the upper limit of that. Present study
may slightly overestimate the lifetime of ~D

1
A′ state because other

non-adiabatic processes (e.g. Coriolis couplings) may also lead to the
dissociation thus reduce the dissociation lifetime. More theoretical
and experimental works are required to accurately determine the
lifetime of ~D

1
A′ state. It should be noticed that, at the first

50 femtoseconds, the counts in Figure 1A is flat. This is caused
by our simulation algorism: in first tens of femto-seconds, most
trajectories cannot reach the defined dissociation conditions (e.g.
OH bond length larger than a threshold value), so they are not
regarded as ‘dissociated’.

The lifetime of ~F
1
A′ state had been determined by Yang etal [6] to

be as long as 1000 ± 300 fs using the time-resolved photo-electron
spectroscopy (TRPES). They suggested a weak non-adiabatic traisition
from ~F

1
A′ to ~D

1
A′, followed by dissociation from the ~D

1
A′ surface as

discussed above. However, in our last study [10], we suggested that the
long lifetime should come from the long-time for symmetry-breaking
process by analysing the PESs corresponding to such process. As shown
in Figure 1B, the lifetime of ~F

1
A′ is determined to be about 770 fs with

our semi-classical simulation which is in good agreement with the
TRPES results of Yang etal [6]. So our initial suggestions are well
supported by the present simulation.

3.2 The channel ratio with respect to the
incident photon energy

In previous theoretical studies, researchers mainly focus on part
of the dissociation channels. e.g., for H + OH dissociation channel,
Jiang etal [20] studied the rotational and vibrational distributions of
the OH fragment, Zhou etal [8] studied the effect of spin-orbit
couplings on the rotational distributions of OH fragment. For H2+O
channel, the only theoretical study was performed by van Harrevelt
etal [21], in which the rotational and vibrational distributions of H2

were obtained, a 10% ratio for the H2+O channel was found which
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was in good accordance with earlier experimental results t [22]. For
the three body channels, no specific theoretical studies are published.
In a recent study, Chang etal [7] found a quite large ratio of the
three-body channel at short wavelengths (near 100 nm, 12.34 eV).

Here we perform a simulation containing all three channels with
the full-dimensional PESs obtained in our last work [10]. A key
point is the determination of the initial surface. In the present study,
we perform the simulation from all the excited 1A′ states and the
numbers of the trajectories from each surface are determined as:

Ni ∝ D1i Re( )| |2/ω2
1i. (4)

HereNi is the number of the trajectories from the ith (i > 1) 1A′
surface, and D1i(Re) and ω1i are the transition dipole moments and
vertical excitation energy at the equilibrium geometry from 1A′ to
i1A′. Such approximation is based on a vertical excitation from the
ground state to the ith excitation state. Then the photon energy of
each trajectory is determined as:

Ep � Ui q t � 0( )( ) +∑
α

1
2
mα _qα t � 0( )∣∣∣∣ ∣∣∣∣2 − E0 (5)

Ep and E0 are the photon energy and the zero-point energy of
ground state, respectively. Ui is the PES of the ith surface. q(t � 0)
and _qα(t � 0) correspond to the initial coordinates and velocities of
each atom. Totally, hundreds of thousands of trajectories are
performed, and the channel ratios are obtained and shown in
Figure 2.

As shown in Figure 2, at low photon energy (near 9 eV), most
trajectories lead to the H + OH(X) channel. As the photon energy
increases the ratio of H + OH(X) channel reduces rapidly and the
ratios of other channels rise. H + OH(A) channel corresponds to the
dissociation on B1A′ surface: as the photon energy increases, the
ratio of H + OH(A) channel rises to the maximum at near 10.7 eV.
This may due to the fact that at higher photon energy, competition
between three-body and H2+O channel can take place. The H2+O
channel also rises with the photon energy increases from 9 eV and
reaches the maximum at about 11.2 eV. It should be noted that, at
about 10.2 eV, the H2+O channel ratio is close to 10%, this is in good
agreement with the ones presented by the theoretical results of van
Harrevelt etal [21] and the experimental ones of Slanger etal [22].
The three-body dissociation of water molecule is an important way
to generate the oxygen atom, and was discovered by both
dissociative electron attachment [23] and photodissociation [7]
experiments, but the mechanisms are different because the PESs
of H2O molecule and its anion are quite different. In present result,
the ratio of three-body channel reaches the first maximum of about

FIGURE 1
Number of undissociated trajectories versus simulation time of state ~D

1
A′ (panel (A)) and ~F

1
A′ (panel (B)). The lifetimes are obtained through a fitting

procedure with an exponential function. Points are the simulated values and lines are the fitted curves. The uncertainties are due to the fitting procedure.

FIGURE 2
Branching ratio versus photon energy. OH(X) and OH(A)
correspond to the H + OH channel with the OH fragment on ground
and first excited states, respectively. “Three” correspond to theH+H+
O channel. The error bars are determined from the statistical
error of the number of the trajectories of each channel.
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22% at near 10 eV, and reduces to below 10% at 10.6eV. Such
reduction may come from the competition of the H + OH(A) and
H2+O channel. After that, the ratio of the three-body channel
increases rapidly. A quite large value of 62% ± 12% of such
channel is determined near 12 eV. In the recent experimental
study by Chang etal [7], the ratios considering only H + OH and
three-body channels are obtained, and a value of near 85% at 102 nm
photon wavelength (12.15 eV) was presented. In present study, if we
also exclude the H2+O channel, the ratio of three-body channel can
be determined as near 78% ± 15% at 12 eV. Such value is within the
range of the experimental ones by Chang etal [7].

3.3 The H2+O channel

In recent experimental work of Chang etal [3], the photo
dissociation of water at wavelength ranging from 102.67 to
112.81 nm (10.99—12.08 eV), corresponding to the H2+O
channel, was studied. The H2+O (1S) channel was observed and
the vibrationally excited H2 molecule was mostly populated. This is

surprising because the H2+O (1S) channels correspond to the fourth
1A′ surface at the asymptotic region and there exist a rather high
energy barrier to overcome on this surface as shown in Figure 3B. In
our last work [10] and the theoretical study in Chang etal [3], it was
pointed out that the system can follow a non-adiabatic reaction path
which corresponds to an avoid crossing zone between ~D

1
A′ and

4th1A′ (two OH bonds near 3.4 bohr and HOH angle near 45°), after
such non-adiabatic transition, the system falls into a well which leads
to the hot vibration of H2 fragment. In present study, we also found
few numbers of trajectories leading to the H2+O (1S) channel. A
typical trajectory for the H2+O (1S) channel is shown in Figures 3A,B
not only with the geometry movement but also the adiabatic state
transition processes. Just as illustrated in our last study [10], the
system oscillates for several cycles on the bending and symmetric
stretching coordinates, but when the system transit to ~D

1
A′ surface

and the two OH bonds enlarge to near 2.6 bohr, at the HOH angle of
180°, the length of the two OH bonds will not shorten or elongate for
a while and the system will keep staying at the ~D

1
A′ surface. The

main movement then is the contraction of HOH angle from 180 ° to
near 60 °. Then the system moves to the avoid crossing between

FIGURE 3
Reaction path corresponding to H2+O (1S) channel. In panel (A), the adiabatic potential energies within the 1A′ symmetry along the reaction path is
shown, the values corresponding to the trajectory is shown as a dashed line. In panel (B), the symmetric (ROH1 = ROH2) PES of 41A′ in electron volts is
shown, and the trajectory for the H2+O (1S) channel is shown in a multi-colored line, and each color correspond to an adiabatic surface shown by the
legend. The color of the trajectory line depends on which adiabatic state the system is on during the reaction process. It should be noted that the
horizonal axis correspond to the average length of the two OH bonds within this trajectory.
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~D
1
A′ and fourth 1A′ and transit to fourth 1A′ which leads to the

H2+O (1S) channel.

4 Conclusion

By performing semi-classical simulation with Landau-Zener
surface hopping approximation, the photo-dissociation dynamics
of water molecule in high-lying states are studied. The lifetimes of
~D
1
A′ and ~F

1
A′ states are determined and found in good agreement

with previous experiments. The dissociation channel ratio
considering all three channels of H + OH, H2+O and H + H +
O within the photon energy from 9 to 12 eV are obtained. Good
agreement is found between present ratio values and available
experimental and theoretical ones. The H2+O (1S) channel is also
found in the simulation and the corresponding reaction path is
shown, which may help understanding such interesting reaction
channel better. In future works, for deeper understanding of the
dissociation mechanisms, more analysis of the reaction channels,
and full-quantum mechanically studies including non-adiabatic
coupling matrix elements and the wave-package propagation
simulation should be performed.
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