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Immiscible color flows in optimal
transport networks for image
classification

Alessandro Lonardi*!, Diego Baptista*' and Caterina De Bacco

Physics for Inference and Optimization Group, Max Planck Institute for Intelligent Systems, Cyber Valley,
Tubingen, Germany

In classification tasks, it is crucial to meaningfully exploit the information contained in
the data. While much of the work in addressing these tasks is focused on building
complex algorithmic infrastructures to process inputs in a black-box fashion, little is
known about how to exploit the various facets of the data before inputting this into
an algorithm. Here, we focus on this latter perspective by proposing a physics-
inspired dynamical system that adapts optimal transport principles to effectively
leverage color distributions of images. Our dynamics regulates immiscible fluxes of
colors traveling on a network built from images. Instead of aggregating colors
together, it treats them as different commodities that interact with a shared
capacity on the edges. The resulting optimal flows can then be fed into standard
classifiers to distinguish images in different classes. We show how our method can
outperform competing approaches on image classification tasks in datasets where
color information matters.

KEYWORDS

network flow optimization, image classification, network optimization, optimal transport,
self-adapting dynamical systems

1 Introduction

Optimal transport (OT) is a powerful method for computing the distance between two data
distributions. This problem has a cross-disciplinary domain of applications, ranging from
logistics and route optimization [1-3] to biology [4, 5] and computer vision [6-10], among
others. Within this broad variety of problems, OT is largely utilized in machine learning [11]
and deployed for solving classification tasks, where the goal is to optimally match discrete
distributions that are typically learned from data. Relevant usage examples are also found in
multiple fields of physics, as in protein fold recognition [12], stochastic thermodynamics [13],
designing transportation networks [14, 15], routing in multilayer networks [16], or general
relativity [17]. A prominent application is image classification [18-23], where the goal is to
measure the similarity between two images. OT solves this problem by interpreting image pairs
as two discrete distributions and then assessing their similarity via the Wasserstein (W)
distance ([24], Definition 6.1), a measure obtained by minimizing the cost needed to transform
one distribution into the other. Using W, for image classification carries many advantages over
other similarity measures between histograms. For example, W; preserves all properties of a
metric [9, 24], it is robust over domain shift for train and test data [22], and it provides
meaningful gradients to learn data distributions on non-overlapping domains [25]. Because of
these and several other desirable properties, much research effort has been put into speeding up
algorithms to calculate W, [12, 19, 20, 26, 27]. However, all these methods overlook the
potential of effectively using image colors directly in the OT formulation. As a result,
practitioners have access to increasingly efficient algorithms, but those do not necessarily
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improve accuracy in predictions, as we lack a framework that fully
exploits the richness of the input information.

Colored
histograms—with one dimension per color channel—are often

images originally encoded as three-dimensional
compressed into lower dimensional data using feature extraction
algorithms [9, 23]. Here, we propose a different approach that
maps the three distinct color histograms to multicommodity flows
transported in a network built using images’ pixels. We combine
recent developments in OT with the physics insights of capacitated
network models [1, 5, 28-31] to treat colors as masses of different
types that flow through the edges of a network. Different flows are
coupled together with a shared conductivity to minimize a unique cost
function. This setup is reminiscent of the distinction between
modeling the flow of one substance, e.g., water, and modeling the
flows of multiple substances that do not mix, e.g., immiscible fluids,
which share the same network infrastructure. By virtue of this
multicommodity treatment, we achieve stronger classification
performance than state-of-the-art OT-based algorithms in real
datasets where color information matters.

2 Problem formulation
2.1 Unicommodity optimal transport

Given two m- and n-dimensional probability vectors gand h and a

positive-valued ground cost matrix C, the goal of a
standard—unicommodity—OT problem is to find an optimal
transport path P* satisfying the conservation constraints ) P; =
gVi and };P; = h;Vj, while minimizing J(g, h) = } ;P;C;.

Entries Pi‘; can be interpreted as the mass transported from g; to h;
when paying a cost Cij» while J*, i.e., J evaluated at P*, encodes the
minimum effort needed to transport g to h. Notably, if all entries C;; are
distances between i and j, then J* is the W, distance between g and h
(see [24] for a standard proof and [9] for derivations focusing on the

discrete case).

2.2 Physics-inspired multicommodity optimal
transport

Interpreting colors as masses traveling along a network built from
images’ pixels (as we define in detail below), unicommodity OT could
be used to capture the similarity between grayscale images. However, it
may not be ideal for colored images, when color information matters.
The limitation of unicommodity OT in Section 2.1 is that it does not
fully capture the variety of information contained in different color
channels as it is not able to distinguish them. Motivated by this, we
tackle this challenge and move beyond this standard setting by
incorporating insights from the dynamics of immiscible flows into
physics. Specifically, we treat the different pixels’ color channels as
masses of different types that do not mix but rather travel and interact
on the same network infrastructure, while optimizing a unique cost
function. By assuming capacitated edges with conductivities that are
proportional to the amount of mass traveling through an edge, we can
define a set of ODE:s that regulate fluxes and conductivities. These are
optimally distributed along a network to better account for color
information while satisfying physical conservation laws. Similar ideas
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have been successfully used to route different types of passengers in
transportation networks [2, 16, 32].

Formally, we couple together the histograms of M = 3 color
channels, the commodities, indexed with a = 1, ..., M. We define
¢"and h® as m- and n-dimensional probability vectors of mass of type
a. More compactly, we define the matrix G with entries Gj, = g¢
(respectively, H for h), each containing the intensity of color channel a
in pixel i of the first (respectively, second) image. These regulate the
sources and sinks of mass in our setting. We then enforce the
conservation of mass for each commodity index a },gf = ¥ h’.
This ensures that all the color mass in the first image is accounted
for in the second image, and vice versa. This should be valid for each
mass type.

Moreover, we define the set II(G, H) containing (m x n x M)-
dimensional tensors P with entries P}, being transport paths between
¢ and h“. These regulate how fluxes of colors of different types travel
along a network. We enforce the interaction between transport paths
for different commodities by introducing a shared cost.

Jr(G,H) = Z”Pijngcij) (1)
ij

where |[P;], = (zapgjz)”z

(Pilj,...,Pfy[) and 0 < T' < 4/3 is a regularization parameter. We

is the 2-norm of the vector P;; =

take I' > 0 since a negative exponent would favor the proliferation of
loops with infinite mass [28]. Instead, we conventionally consider T <
4/3 (see Section 3.2) since the cost Jr exhibits the same convexity
properties for any I' > 1, i.e,, it is strictly convex, and OT paths do not
change substantially with I in this regime [2]. We can thus formulate
its corresponding multicommodity OT problem as that of finding a
tensor P* solution of

* _ .
]r (G> H) - Psrl'?(g,lH)]r (GrH) (2)

It should be noted that for M = 1 and I = 1, we recover the
standard unicommodity OT setup.

The problem in Eq. 2 admits a precise physical interpretation. In
fact, it can be recast as a constrained minimization problem with the
objective function being the energy dissipated by the multicommodity
flows (Joule’s law) and a constant total conductivity. Furthermore,
transport paths follow Kirchhoff’s law enforcing conservation of mass
[2, 32, 33] (see Supplementary Material for a detailed discussion).

Noticeably, J is a quantity that takes into account all the different
mass types, and the OT paths P* are found through a unique
optimization problem. We emphasize that this is fundamentally
different from solving M-independent unicommodity problems,
where different types of mass are not coupled together as in our
setting, and then combining their optimal costs to estimate images’
similarity. Estimating J¥ (G, H) directly gives a quantitative and
principled measure of the similarity between two images G and H.
The lower this cost, the higher the similarity of the two images. While
this is valid also for the unicommodity cost in Section 2.1, the
difference here is that we account differently for the color
information as we distinguish different colors via the M-
dimensional vector Pj. The cost in Eq. 2 then properly couples
colors by following physical laws regulating immiscible flows. The
idea is that if this information matters for the given classification task,
incorporating it into the minimization problem would output a cost
that helps to distinguish images better, e.g., with higher accuracy.
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FIGURE 1
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Bipartite network representation for multicommodity OT. The two images (shown on the leftmost and rightmost sides of the panel) are encoded in the
RGB matrices G and H, which regulate the flow traveling on the network K. The graph is made of m + n + 2 nodes, i.e., the total number of pixels plus the two
auxiliary vertices introduced in Section 3.1. Gray edges (belonging to the set E1,) connect nodes in image 1 to nodes in image 2; these edges are trimmed
according to a threshold 7. We highlight the entries of the matrix C in red if these are larger than 7. Transshipment and auxiliary edges used to relax mass

conservation (which belong to E') are colored in brown and magenta.

3 Materials and methods
3.1 Optimal transport network on images

Having introduced the main ideas and intuitions, we now explain
in detail how to adapt the OT formalism to images. Specifically, we
introduce an auxiliary bipartite network K, ,(V3, V>, Ei,), which is the
first building block of the network where the OT problem is solved. A
visual representation of this is shown in Figure 1. The images 1 and
2 are represented as matrices (G and H) of sizes m x M and n x M,
respectively, where M is the number of color channels of the images
(M = 3 in our examples). The sets of nodes V; and V, of the network
K., are the pixels of images 1 and 2, respectively. The set of edges E;»
contains a subset of all pixel pairs between the two images, as detailed
further. We consider the cost of an edge (i, j) as

Cij (6,7) = min{(1 - O)|vi = v;l, + 6G; - Hjll,, 7}, (3)

where the vector v; = (x;, y;) contains the horizontal and vertical
coordinates of pixel i of image 1 (similarly v; for image 2). The quantity
0 € [0, 1] is a hyperparameter that is given in input and can be chosen
with cross-validation. It acts as a weight for a convex combination
between the Euclidean distance between pixels and the difference in
their color intensities, following the intuition in [9, 23]. When 6 = 0,
the OT path P* is the one that minimizes only the geometrical
distance between pixels. Instead, when 6 = 1, pixels’ locations are
no longer considered, and transport paths are only weighted by color
distributions. The parameter 7 is introduced following [22, 23] with
the scope of removing all edges with cost Cj;(6, 7) = 7, i.e., those for
which (1 - 0)[[v; = vjll, + 6IlG; — Hj|l, > 7. These are substituted by mm + n
transshipment edges e € E’, each of which has a cost of 7/2 and is
connected to one unique auxiliary vertex u;. Thresholding the cost
decreases significantly the computational complexity of OT, making it
linear with the number of nodes |Vy| + |V, + 2 = m + n + 2 (see
Supplementary Material).

Furthermore, we relax the conservation of mass by allowing Y ;G;,
# ) ;Hj,. The excess mass m* = Y ;H;, — Y ;G is assigned to a second
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auxiliary node, u,. We connect it to the network with » additional
transshipment edges, e € E', each penalizing the total cost by ¢ =
max;C;;/2. This construction improves classification when the
histograms’ total masses largely differ [22]. Intuitively, this can
happen when comparing “darker” images against “brighter” images
more precisely, when entries of ¢* and h” are further apart in the RGB
color space.

Overall, we obtain a network K with nodes V =V UV, U {uy, u,}
and edges E = E, U E', i.e., the original bipartite graph K,,, ., together with
the auxiliary transshipment links and nodes. It should be noted that in its
entirety, the system is isolated, ie., the total mass is conserved. See
Supplementary Material for a detailed description of the OT setup.

Given this auxiliary graph, the OT problem is then solved by
injecting the color mass contained in image 1 in nodes i € V7, as
specified by G, and extracting it from nodes j € V, of image 2, as
specified by H. This is carried out by transporting mass using either i)
an edge in Ej, or ii) a transshipment one in E'. In the following section,
we describe how this problem is solved mathematically.

3.2 Optimizing immiscible color flows: The
dynamics

We solve the OT problem by proposing the following ODEs for
controlling mass transportation:

D Ljlxl¢i =S VieV, a=1,...M, (4)
jeoi

dx,  l9,-¢,13

;t:xg“’c_;ﬂ_xe, Ve=(ij) ¢ E, 5)

which constitute the pivotal equations of our model. Here, we
introduce the shared X, = 0 and define
S = Gia — His, taking values S, =0 and Sj =m* on the auxiliary
nodes. With L;[x] = ) .(x./C,)B;.Bj, we denote the weighted Laplacian
of K, where B is its signed incidence matrix and 0i is the neighborhood

conductivities

of node i. Lastly, ¢? is the scalar potential acting on nodes for a given
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commodity a. The least-square solutions 4 are
¢ [x] =Y jL,Tj [x]S], where t denotes the Moore-Penrose inverse.
The critical exponent 0 < f < 2 [ = 2(2 - B)/(3 - B)] is a

hyperparameter that needs to be chosen before solving Eqs 4 and

of Eq.

5. Depending on the modeling task, its value can be fixed a priori (e.g.,
B =1 for the shortest path problem [34], 8 = 5/3 for river networks
[35], and 8 — 2~ for the Steiner tree problem [36]) or cross-validated
as we do here for image classification. The exponent aggregates paths
using the principle of economy of scale if 1 < 8 < 2. It dilutes them
along the network otherwise, with the goal of reducing traffic
congestion. This a direct consequence of the
subadditivity of J; in Eq. 2 for f > 1 (T < 1), and, respectively,
superadditivity for § < 1 (I' > 1). It has been theoretically discussed and

behavior is

empirically observed, for example, in [32, 37, 38].

The feedback mechanism of Eq. 5 defines multicommodity fluxes
(P¢) that are admissible for the minimization problem introduced in Eq.
2. Particularly, for color of type a on edges e = (i, j), we couple potentials
(¢?) that are the solutions of Eq. 4 and shared conductivities (x,) to define

¢ [x (1)) - ¢ [x (1))

P2 (1) = x. (1) -

, VeeE, a=1,...,.M. (6)

This also highlights another physical interpretation; i.e., by
interpreting the ¢{ as pressure potentials, the fluxes are seen to
arise from a difference in pressure between two nodes as in
hydraulic or electrical networks. Crucially, this allocation is
governed by one unique conductivity for all commodities, whose
dynamics depends on the 2-norm over a of differences in
potentials, as in Eq. 5. In analogy with immiscible flows, this
ensures that flows of different types share the same infrastructure,
and in practice, it couples them into a unique optimization problem.

In the case of only one commodity (M = 1), variants of this
dynamics have been used to model transport optimization in various
physical systems [1, 5, 29-31].

The salient result of our construction is that the asymptotic
trajectories of Eqs 4 and 5 are equivalent to the minimizers of Eq.
2, ie., lim, ., P(t) = P* (see Supplementary Material for derivations
following [32, 33]). Therefore, numerically integrating our dynamics
solves the multicommodity OT problem. In other words, this allows us
to estimate the optimal cost in Eq. 2 and use that to compute
similarities between images. A pseudo-code of the algorithmic

implementation is shown in Algorithm 1.

10.3389/fphy.2023.1089114

3.3 Computational complexity

In principle, our multicommodity method has a computational
complexity of order O(M|V]’) for complete transport network
topologies, i.e., when edges in the transport network K are assigned to
all pixel pairs. Nonetheless, we substantially reduce this complexity to
O(M] V) by sparsifying the graph with the trimming procedure of [22, 23].
More details are given in Supplementary Material. Empirically, we observe
that by running Egs 4 and 5, most of the entries of x decay to zero after a
few steps, producing a progressively sparser weighted Laplacian L[x]. This
allows for faster computation of the Moore-Penrose inverse L'[x] and
least-square potentials ¢ = ) leTj [x]S. A thorough experimental
analysis of the convergence properties of the OT dynamics has been
carried out in [39].

4 Results and discussion

4.1 Classification task

We provide empirical evidence that our multicommodity dynamics
outperforms competing OT algorithms on classification tasks. As
anticipated previously, we use the OT optimal cost J* as a measure
of similarity between two images and perform supervised classification
with a k-nearest neighbor (k-NN) classifier as described in [20].
Alternative methods (e.g., SVM as in [19]) could also be used for
this task. However, these may require the cost J¥ to satisfy the distance
axioms to properly induce a kernel. While it is not straightforward to
verify these conditions for the OT cost in Eq. 2, this is not necessary for
the k-NN classifier, which requires looser conditions on | ;‘ .

We compare the classification accuracy of our model against i) the
Sinkhorn algorithm [19, 40] (utilizing the more stable Sinkhorn scheme
proposed in [41]); ii) a unicommodity dynamics executed on grayscale
images, ie, with color information compressed into one single
commodity (M = 1); and iii) the Sinkhorn algorithm on grayscale
images. All methods are tested on the following two datasets: the Jena
Flowers 30 Dataset (JF30) [42] and the Fruit Dataset (FD) [43]. The first
consists of 1,479 images of 30 wild-flowering angiosperms (flowers).
Flowers are labeled with their species, and inferring them is the goal of the
classification task. The second dataset contains 15 fruit types and
163 images. Here, we want to classify fruit types. The parameters of

Initialize: z(0) =7 > 0

Eq. (3)
- Remove from K, all edges s.t. Cy; > 7

Construct a bipartite network K, , between G and H
Assign Cy;(0, 7) = min{(1 — 8) ||v; — vj||2 + 0 ||Gs — Hj||1, 7} to every edge (i, ) in Ky, as in

Input: Image 1 (G € R™M) Tmage 2 (H e R"M) 0<0<1,7>0,0< <2

>eg T~ U(0,1
> complexity O(m - n

> complexity O(m + n)

- Add w1 to Ky and it m + n auxiliary links, each costing 7/2

. while convergence is False do

5
6
7. Balance mass: add ug, with inflowing mass m® = 37, Hio — 325 Gja
8
9

Update x with discretization of Eq. (5)
: end while

: Compute P as in Eq. (6)

Return: Ji(G, H) as in Eq. (2)

Solve Kirchhoff’s law, Eq. (4) — ¢ € RIVIXM

Algorithm 1. Multicommodity dynamics.

Frontiers in Physics

04

frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1089114

Lonardi et al.

TABLE 1 Classification task results. With multicommodity, Sinkhorn RGB,
unicommodity, and Sinkhorn GS, we label methods on colored images (the first
two) and grayscale images (the second two). The optimal parameters in the
central columns are selected with a 4-fold cross-validation; k is the number of
nearest neighbors used in the classifier. The rightmost column shows the fraction
(in percentage) of correctly classified images. Results are ordered by
performance, and we highlight the best ones in bold.

Algorithm Hyperparameters Class accuracy
[%] (1)
JF30 | Multicommodity | 0.25 0125 1 = — 1 62.2
Sinkhorn RGB 025 005 — | 100 1 58.4
Sinkhorn GS 0.25 0.05 — 500 1 54.3
Unicommodity | 025 0125 | 125 — 1 53.6
FD Multicommodity 0 0.04 1.5 — 2 75.0
Sinkhorn RGB 05 006 @ — | 750 1 69.6
Unicommodity 0 0.06 1.5 — 5 64.3
Sinkhorn GS 025 006 — | 500 4 60.7

the OT problem setup (6 and 7) and regularization parameters ($ and ¢,
which enforce the entropic barrier in the Sinkhorn algorithm [19]), have
been cross-validated for both datasets (see Section 3 and Section 4 in
Supplementary Material). All methods are then tested in their optimal
configurations (see Supplementary Material for implementation details).

Classification results are shown in Table 1. In all cases, leveraging
colors leads to higher accuracy (about an 8% increase) with respect to
classification performed using grayscale images. This signals that in the
datasets under consideration, color information is a relevant feature for
differentiating image samples. Remarkably, we get a similar increase in
performance (about 7%-8%) on both colored datasets when comparing
our multicommodity dynamics against the Sinkhorn algorithm. As the
two algorithms use the same (colored) input, we can attribute this
increment to the effective usage of color that our approach is capable of.

In addition, by analyzing results in more detail, we first observe
that on JF30, all methods perform best when 6 = 0.25, i.e., 25% of the
information used to build C comes from colors. This trend does not
recur on the FD, where both dynamics favor 6 = 0 (Euclidean C).
Hence, our model is able to leverage color information via the
multicommodity OT dynamical formulation.

Second, on JF30, both dynamics perform best with 7 = 0.125,
contrary to Sinkhorn-based methods that prefer 7 = 0.05. Thus,
Sinkhorn’s classification accuracy is negatively affected both by low
7—many edges of the transport network are cut—and by large 7
—noisy color information is used to build C. We do not observe this
behavior in our model, where trimming fewer edges is advantageous.
All optimal values of T are lower on the FD since the color distributions
in this dataset are naturally light-tailed (see Supplementary Material).

Lastly, we investigate the interplay between 0 and 5. We notice that
0 =0 (FD) corresponds to higher 8 = 1.5. Instead, for larger 6 = 0.25
(JF30), the model prefers lower f (8 = 1 and 1.25 for the
multicommodity and unicommodity dynamics, respectively). In the
former case (6 = 0, C;; is the Euclidean distance), the cost is equal to
zero for pixels with the same locations. Thus, consolidation of
transport paths—large fS—is favored on cheap links. Instead,
increasing 6 leads to more edges with comparable costs as colors
distribute smoothly over images. In this second scenario, better
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performance is achieved with distributed transport paths, i.e., lower
B (see Supplementary Material).

4.2 Performance in terms of sensitivity

We assess the effectiveness of our method against benchmarks by
comparing the sensitivity of our multicommodity dynamics and that of
the Sinkhorn algorithm on the colored JF30 dataset. Specifically, we set all
algorithm parameters to their best configurations, as shown in Table 1.
Then, for each of the 30 classes in JF30, we compute its one-to-all
sensitivity, i.e., the true positive rate. This is defined for any class ¢ as

TP (c)

SO = o NE

%
where TP(c) is the true positive rate, i.e., the number of images in ¢ that
are correctly classified; FN(c) is the false negative rate, i.e., the number of
c-samples that are assigned a label different from c. Hence, Eq. 7 returns
the probability that a sample is assigned label c, given that it belongs to c.

We find that our method robustly outperforms the Sinkhorn
algorithm. Specifically, the multicommodity dynamics has the
highest sensitivity 50% of the times—15 classes out of a total of
30—as shown in Figure 2. For nine classes, Sinkhorn has higher
sensitivity, and for six classes, both methods give the same values of
S.Furthermore, we find that in 2/3 (20 out of 30) of the classes, the
multicommodity dynamics returns S(c) > 1/2. This means that our
model predicts the correct label more than 50% of the time. In only
three out of these 20 cases, Sinkhorn attains higher values of S, while in
most instances where Sinkhorn outperforms our method, it has a
lower sensitivity of S < 1/2. Hence, this is the case in classes where both
methods have difficulty distinguishing images.

4.3 The impact of colors

To further assess the significance of leveraging color information,
we conduct three different experiments that highlight both
qualitatively and quantitatively various performance differences
between the unicommodity and multicommodity approaches. As
the two share the same principled dynamics based on OT with the
main difference being that multicommodity does not compress the
color information, we can use this analysis to better understand how
fully exploiting the color information drives better classification.

Experiment 1: Landscape of optimal cost. Here, we focus on a
qualitative comparison between the cost landscapes obtained with the
two approaches. We consider the example of an individual image taken
from the FD test set and plot the landscape of optimal costs J* when
comparing it to the train set. Results for the multicommodity dynamics
(M = 3) and the unicommodity dynamics (M = 1) on grayscale images are
shown in Figure 3. Here, we highlight the five lowest values of the cost and
mark them in green if they correspond to correctly classified train samples
and in red otherwise. At first glance, one may conclude that their
performance is identical (as both dynamics classify correctly three
samples out of five), and we notice how the multicommodity dynamics
consistently clusters them at the bottom of the cost landscape, thus ranking
them in a better order. This may explain why the cross-validated best value
of k (the number of nearest neighbors in the k-NN classifier) is higher for
unicommodity methods in this dataset. On a larger sample of data, this
results in better overall classification performance, as shown in Table 1.
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FIGURE 2
Sensitivity on the JF30 dataset. Sensitivity values are shown for the multicommodity dynamics (blue circles) and for Sinkhorn RGB (red triangles). Markers
are sorted in descending order of S, regardless of the method. Background colors are blue, red, and gray, when Sis higher for the multicommodity method, the
Sinkhorn algorithm, or none of them, respectively. In green, we plot frequency bars for all classes in the test set.
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FIGURE 3

Evaluating the effect of colors. Experiment 1: The top black-framed image is the one to be classified. Predictions given by the multicommodity and
unicommodity dynamics (those with lower J¥) are shown on the right side of the panel and are displayed in a sorted fashion from worst to best (from bottom
to top). Experiment 2: The top right samples are the three test images to be classified. Middle and bottom rows are predictions given by the two dynamics.
Markers, backgrounds, and test images shared a color code: red for apples, orange for apricots, and yellow for melons. In both panels, green circles and
red crosses are used to highlight classified and misclassified images, respectively. All algorithms are executed with their optimal configurations listed in Table 1.

Experiment 2: Controlling for shape. We further mark this tendency
with a second experiment where we select a subset of the FD composed of
images belonging to three classes of fruits that have similar shapes but
different colors such as red apples, orange apricots, and yellow melons. As
we expect shape to be less informative than colors in this custom set, we
can assess the extent to which color plays a crucial role in the classification
process. Specifically, the test set is made of three random samples, each
drawn from one of these classes (top row of the rightmost panel) in
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Figure 3, while the train set contains the remaining instances of the classes.
We plot the cost landscape J¥ for the train set and draw in the red,
orange, and yellow values of J7* that correspond to the samples that are
compared against the test apple, apricot, and melon, respectively. We also
sort the train samples so that they are grouped in three regions
(highlighted by the background color in Figure 3), which correspond
to train melons, apricots, and apples. With this construction, if the
minimum cost among the yellow markers falls in the yellow region, it
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Evaluating the importance of colors: when shapes matter most. Experiment 3: The top black-framed image is the one to be classified. The best three (out
of 10) predictions returned by the two dynamics are shown on the right. We mark the training samples belonging to the same class as the testimage with green
circles. All algorithms are executed with their optimal configurations listed in Table 1.

will correspond to a correctly classified sample (respectively, for orange
and red). We further mark the yellow, orange, and red minima in green if
the test and train labels correspond, i.e., the marker’s and background
colors are the same, and in red otherwise. Train and test samples are also
in Figure 3. The multicommodity dynamics correctly label each test
image. In contrast, unicommodity dynamics fails at this task, labeling a
melon as an apricot. This suggests that the multicommodity approach is
able to use the color information in datasets where this feature is more
informative than others, e.g., shape.

Experiment 3: When shape matters. Having shown results on a custom
dataset where shape was controlled to matter less, we now do the opposite
and select a dataset where this feature should be more informative. The
goal is to assess whether a multicommodity approach helps in this case as
well, as its main input information may not be as relevant anymore.
Specifically, we select as a test sample a cherry, whose form is arguably
distinguishable from that of many other fruits in the dataset. One can
expect that comparing it against the train set of the FD will result in having
both unicommodity and multicommodity dynamics able to assign low J*
to train cherries and higher costs to other fruits. This intuition is confirmed
by the results in Figure 4. Here, train cherries (in green) strongly cluster in
the lower portion of the cost landscape, whereas all the other fruits have
higher costs. In Figure 4, we also plot some of the correctly classified train
samples. These results suggest that when color information is negligible
compared to another type of information (e.g., shape), unicommodity and
multicommodity formulations perform similarly. In light of this, we
reinforce the claim that our multicommodity formulation can boost
classification in contexts where color information does matter but may
not give any advantage when other types of information are more
informative. We encourage practitioners to evaluate when this is the
case based on domain knowledge when available.

5 Conclusion

We propose a physics-informed multicommodity OT formulation for
effectively using color information to improve image classification. We
model colors as immiscible flows traveling on a capacitated network and
propose equations for its dynamics, with the goal of optimizing flow
distribution on edges. Color flows are regulated by a shared conductivity
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to minimize a unique cost function. Thresholding the ground cost as in
[22, 23] makes our model computationally efficient.

We outperform other OT-based approaches such as the Sinkhorn
algorithm on two datasets where color matters. Our model also assigns a
lower cost to correctly classified images than its unicommodity counterpart,
and it is more robust on datasets where items have similar shape. Thus,
color information is distinctly relevant. We note that for some datasets,
color information may not matter as much as another type of information
(e.g., shape), which has stronger discriminative power. However, while we
focused here on different color channels as the different commaodities in our
formulation, the ideas of this study can be extended to scenarios where
other relevant information can be distinguished into different types. For
instance, one could combine several features together, e.g., colors, contours,
and objects’ orientations when available.

Our model can be further improved. While it uses the thresholding of
[22, 23] to speed up convergence (as mentioned in Section 3.1), it is still
slower than Sinkhorn-based methods. Hence, investigating approaches
aimed at improving its computational performance is an important
direction for future work. Speed-up can be achieved, for example, with
the implementation of [39], where the unicommodity OT problem on
sparse topologies is solved in O(|E|**) time steps. This bound has been
found using a backward Euler scheme combined with the inexact
Newton-Raphson method for the update of x and solving Kirchhoff’s
law using an algebraic multigrid method [44].

Our main goal is to frame an image classification task into that of
finding optimal flows of masses of different types in networks built from
images. We follow physics principles to assess whether using colors as
immiscible flows can give an advantage compared to other standard OT-
based methods that do not incorporate such insights. The increased
classification performance observed in our experiments stimulates the
integration of similar ideas into deep network architectures [45] as a
relevant avenue for future work. Combining their prediction capabilities
with our insights on how to better exploit the various facets of the input
data has the potential to push the performance of deep classifiers even
further. For example, one could extend the state-of-the-art architecture of
Eisenberger et al. [45], which efficiently computes implicit gradients for
generic Sinkhorn layers within a neural network, by including edge, shape,
and contour information for Wasserstein barycenter computation or
image clustering.
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