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Theories that extend the Standard Model of particle physics often introduce new
interactions that violate charge-parity (CP) symmetry. Charge-parity-violating
effects within an atomic nucleus can be probed by measuring its nuclear
magnetic quadrupole moment (MQM). The sensitivity of such a measurement is
enhanced when using a heavy polar molecule containing a nucleus with quadrupole
deformation. We determine how the energy levels of a molecule are shifted by the
magnetic quadrupole moment and how those shifts can be measured. The
measurement scheme requires molecules in a superposition of magnetic sub-
levels that differ by many units of angular momentum. We develop a generic
scheme for preparing these states. Finally, we consider the sensitivity that can be
reached, showing that this method can reduce the current uncertainties on several
charge-parity-violating parameters.
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1 Introduction

The observed baryon asymmetry in the Universe is one of the important unsolved problems
in cosmology. Possible models that can lead to this asymmetry are discussed in Refs. [1, 2]. One
such model is due to Sakharov, where the asymmetry can arise under conditions of baryon
number violation, C and CP-violation, and thermal non-equilibrium [3]. The Standard Model
cannot account for the observed asymmetry [4], motivating theories beyond the Standard
Model to introduce new sources of CP-violation [5]. Equivalently, since these theories respect
CPT symmetry [6], they introduce new sources of T-violation. An elementary particle with a
permanent electric dipole moment (EDM) violates both P and T symmetries [7, 8], and
measurements of these EDMs have been exceptionally fruitful in testing physics beyond the
Standard Model. Paramagnetic molecules such as 174YbF [9], 232ThO [10] and 180HfF+ [11] are
excellent probes of P,T-violating physics. These molecules are primarily sensitive to the electron
EDM, de, and the scalar P,T-violating electron-nucleon interaction, CS. The most precise
measurement thus far, in ThO, constrains new CP-violating interactions to mass scales above
30 TeV in some models and above 3 TeV in most [10].

These electron EDMmeasurements use paramagnetic molecules with a heavy atom of zero
nuclear spin, I = 0. As a result, they are not sensitive to P,T-violating nuclear moments1. Instead,
one can use isotopes with nuclear spin to probe CP-violating effects within the nucleus. The
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1 The light atom in themolecule often has nuclear spin but its contribution to any P,T-violating signal scales
approximately as Z2, where Z is the atomic number [12], so is much smaller than that of the heavy atom.
For example, in YbF, the contribution from the F atom is about 60 times smaller than that of Yb.
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lowest-order P,T-violating nuclear moment is the EDM (which
requires I ≥ 1/2), but that is effectively screened by the outer
electrons [13]. The screening is incomplete due to the finite size of
the nucleus [12], but in paramagnetic atoms and molecules the
remaining effect (the nuclear Schiff moment) is negligible
compared to the contribution from the electron EDM. Conversely,
in diamagnetic atoms and molecules the contribution from the
electron EDM is small and the Schiff moment can be probed. At
present, the most stringent limits on the size of nucleon EDMs and
P,T-violating nucleon-nucleon interactions come from a
measurement of the nuclear Schiff moment of 199Hg [14], a
diamagnetic atom with I = 1/2. An experiment is being constructed
that aims to improve on these constraints by measuring the Schiff
moment of 205Tl in a beam of TlF molecules, taking advantage of the
strong polarisation in an electric field due to the small splitting
between opposite parity rotational states [15]. Since the Schiff
moment is a screened effect, it is interesting to consider the effect
of higher-order moments. The next-order nuclear moment of interest
is the magnetic quadrupole moment (MQM) (requires I ≥ 1), which is
not screened and can contribute significantly to the P,T-violating
energy shifts of atoms and molecules.

A spherical nucleus can acquire an MQM from the EDM of its
valence proton or neutron [16], or from P,T-odd nucleon-nucleon
interactions involving the valence nucleon [17]. If we denote the total
nuclear MQM as M and the contribution to the MQM from a single
proton or neutron asMp/n

0 , then for these nuclei we haveM ~ Mp/n
0 . In

nuclei with quadrupole deformation, there are many nucleons in open
shells which collectively contribute to the nuclear MQM, which can
increase M by an order of magnitude [18, 19]. Furthermore, the
interaction of the nuclear MQM with the magnetic moment of the
valence electron in the molecule is enhanced by relativistic effects due to
the heavy atom [17]. Table 1 summarizes these effects for isotopologues
of molecules currently used for electron EDM experiments.

In this paper, we consider how to make a measurement of nuclear
MQMs using heavy, polar molecules. We first calculate the size of
energy shifts in various states of a molecule due to the nuclear MQM.
We then describe a procedure for preparing the molecules in the states
most sensitive to the MQM. In particular, we introduce a generic state
preparation and readout method which utilises the large tensor Stark
shifts in molecules to induce a high-order coupling between the two
states used for the measurement. Finally, we assess the sensitivity of
such an experiment to CP-violating parameters in the hadronic sector,

and compare this to other experiments such as Schiff moment or
neutron EDM measurements. Our analysis applies to a wide range of
molecules, though we will often use 173YbF as a specific example. The
nuclear spin of 173Yb is 5/2, while that of 19F is 1/2. We note that the
advantages of polyatomic molecules for measuring MQMs and other
CP-violating effects are outlined in Ref. [26].

2 MQM energy shift in molecules

We consider a molecule in a 2Σ state with electron spin S and
rotational angular momentum N. The nucleus of interest has spin I.
The molecule is in an electric field E which is parallel to z. A suitable
effective Hamiltonian is

H � Hrot +HStark +Hhyp +HM, (1)
whereHrot = BN2 is the rotational energy,HStark � −μ · E describes the
Stark shift, Hhyp describes the hyperfine interactions, and HM

describes the nuclear MQM interaction. Here, B is the rotational
constant and μ is the electric dipole moment operator. The nuclear
MQM interaction can be written as

HM � − WMM

2I 2I − 1( ) ST̂n, (2)

where n is a unit vector along the internuclear axis and T̂ is a second-
rank tensor whose components are Ti,j � IiIj + IjIi − 2

3δi,jI(I + 1)
[17, 18]. With the help of appendices 8.1 and 8.2 of Ref. [27], we
can re-write this in spherical tensor notation as

HM � WMM

2I 2I − 1( )
���
20
3

√
T(1)(S, I 2( )) · n ≡ Q · n � Qz′, (3)

where T(1)(S, I(2)) is a rank-1 tensor constructed from S and I(2); the
latter is a rank-2 tensor constructed from the nuclear spin I. We see
that the MQM interaction has been simplified to a vector Q that acts
along the symmetry axis of the molecule, z′.

To keep the calculation simple, we first neglect Hhyp. Its effects are
considered later. We find it advantageous to use a basis where the
rotational and spin wavefunctions are separated, so we choose the
basis set denoted by |G,MG; N,MN〉, where G = S + I is the total spin
and MG and MN are the projections of G and N on the laboratory z-
axis. Hrot + HStark is diagonal in G, MG and MN, but the electric field

TABLE 1 Properties of certain molecules relevant for a nuclear MQMmeasurement. The selected molecules are ones currently being used or explored for electron EDM
measurements. The P,T-violating energy shift due to a nuclear MQM,M, is proportional toWMM, whereWM is the interaction strength. We list the nuclear spin, parity,
quadrupole deformation (β2), M, and WM. The collective enhancement of M due to the deformation of the nucleus was calculated in [18, 19] using different nuclear
orbitals, and expressed in terms of the single-nucleon contributions to the MQM, Mp/n

0 .

Molecule Iπ β2 (Ref. [20]) M (Ref. [18]) M (Ref. [19]) WM (1033Hz/(e cm2))

137BaF 3
2
+ 0.053 0Mp

0 − 1.2Mn
0

— −0.385 [21]

173YbF 5
2
− 0.300 −10Mp

0 − 10Mn
0 14Mp

0 + 26Mn
0

−1.055 [21]

173YbOH 5
2
− 0.300 −10Mp

0 − 10Mn
0 14Mp

0 + 26Mn
0

−1.067 [21]

229ThO 5
2
+ 0.184 0Mp

0 − 19Mn
0 13Mp

0 + 27Mn
0

1.10 [22, 23]

177HfF+ 7
2
− 0.277 −19Mp

0 − 14Mn
0 17Mp

0 + 42Mn
0

0.494 [24]

179HfF+ 9
2
+ 0.267 −13Mp

0 − 13Mn
0 20Mp

0 + 50Mn
0

0.494 [24]

229ThF+ 5
2
+ 0.184 0Mp

0 − 19Mn
0 13Mp

0 + 27Mn
0

0.88 [25]

Frontiers in Physics frontiersin.org02

Ho et al. 10.3389/fphy.2023.1086980

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1086980


mixes states of different N. After diagonalizing Hrot + HStark we obtain
the eigenfunctions |G,MG; ~N,MN〉 � ∑NaN|G,MG;N,MN〉 and
corresponding eigenvalues E ~N,MN

. Here, ~N is a label which
connects a state adiabatically to its field-free state.

The energy shift due to HM is

ΔEM′ � 〈G,MG; ~N,MN|Qz′|G,MG; ~N,MN〉 � WMM ζ η. (4)
In this equation, ζ depends only on the electron and nuclear spins and
is evaluated in Appendix A, whereas η is independent of the spins and
expresses the degree of alignment between the internuclear axis of the
molecule and the laboratory z-axis, often known as the polarization
factor. It is given by

η � − 1
μmol

dE ~N,MN

dE , (5)

where μmol is the dipole moment along the internuclear axis. Figure 1
shows the evaluation of ζ for a few selected values of S and I. In all the
examples given in Figure 1, the largest MQM energy shift is found for
the states |G,MG = ±G〉, where G does not take its maximum possible
value. It is interesting that the configuration where the electron and
nuclear spins are parallel is not the one most sensitive to the nuclear
MQM. We find this to be true for larger values of S and I as well.

Nowwe consider the effect ofHhyp, which includes the spin-rotation
interaction, the magnetic dipole hyperfine interaction and the electric
quadrupole hyperfine interaction [28]. To handle this, we introduce the
spin of the second nucleus I2, an intermediate angular momentum F1 =
G +N and the total angular momentum F = F1 + I2. Using the field-free
coupled basis, |N, G, F1, F, MF〉, we diagonalize Hrot + HStark + Hhyp to
find the new eigenstates | ~N, ~G, ~F1, ~F,MF〉 which are adiabatically
linked to the field-free states. Then, we calculate the MQM energy shift

ΔEM � 〈 ~N, ~G, ~F1, ~F,MF|HM| ~N, ~G, ~F1, ~F,MF〉. (6)
The matrix elements needed to calculate ΔEM are given in
Appendix A.

Although Eq. 6 will be more accurate than Eq. 4, we expect the
latter to work well for most 2Σmolecules since they have no spin-orbit
coupling and the largest spin-rotation coupling is typically much
smaller than the hyperfine and rotational energies. As a concrete
example, for the 2Σ ground state of 173YbF, the electron-spin-rotation
coupling strength is γ = −13 MHz, the hyperfine Fermi contact
strength between the electron and Yb nuclear spins is
bF(Yb) = −1.98 GHz, and the rotational constant is B = 7.24 GHz
[28, 29]. The fluorine nucleus has spin I2 = 1/2 but this gives rise to a
much smaller hyperfine splitting than that of the Yb nucleus (bF(F) =
0.17 GHz). Consequently, the decoupled basis
|N,MN〉|G,MG〉|I2,MI_2〉 is a good first approximation to the
exact eigenstates.

Table 2 lists the MQM energy shifts of all states that correlate to
the lowest rotational level of ground state 173YbF, in a static electric
field of 18 kV/cm. At this field, the polarization factor is η = 0.676. We
have given bothΔEM calculated using Eq. 6 and the approximate result
ΔEM′ calculated using Eq. 4. The two sets of results are similar, as we
would expect from the arguments above. These states, together with
the MQM energy shifts, are shown pictorially in Figure 2. The large
splitting between the ~G � 2 and ~G � 3 states comes from the hyperfine
interaction between the electron spin and the Yb nuclear spin. The
much smaller splitting into states with ~F � ~G ± I2 is due to the
interaction with the F nuclear spin. States of the same ~F and ~G but
different |MF| are split by the tensor part of the Stark interaction. This
is small for the state with ~N � 0, but much larger for all other states. In
the absence of the MQM or other P, T-violating interactions, states of
the same { ~G, ~F, |MF|} are degenerate. The MQM interaction lifts this
degeneracy by the amounts indicated in the figure.

3 Measurement scheme

An MQM measurement can be done in a similar way to
measurements of the electron EDM or the nuclear Schiff
moment [10, 15, 30]. Using the notation2 |F, MF〉, let us define
states |0〉 = |F, F〉 and |±〉 � 1�

2
√ (|F,+F〉±|F,−F〉). Molecules are

first prepared in |0〉, typically by optical pumping, and then
transferred to | + 〉. This state evolves for time τ in the presence
of parallel electric and magnetic fields, becoming
|ψ〉 � 1�

2
√ (eiϕ|F,+F〉 + e−iϕ|F,−F〉) � cos ϕ| + 〉 + i sin ϕ| − 〉. Here,

ϕ � ϕM + ϕB � (ΔEM + ΔEB)τ/Z, where ΔEB is the (absolute)
Zeeman shift of the states. Finally, the populations in | + 〉 and
| − 〉 are read out, typically by transferring the population in | + 〉 to
one state (e.g., back to |0〉) and the population in | − 〉 to a state of
sufficiently different energy that the two are easily resolved (e.g., by
laser-induced fluorescence detection).

A particular challenge in this measurement scheme, which does
not typically arise in related experiments, is the preparation of a
superposition of ±MF states whereMF and −MF differ by several units.
For example, consider the levels of 173YbF shown in Figure 2. The
states most sensitive to the MQM have ~G � 2, ~F � 5/2,MF � ± 5/2. In
that case, the measurement scheme calls for a superposition of a pair of
states that differ in MF by 5 units of angular momentum. Previously,

FIGURE 1
Values of ζ in hyperfine states |G,MG〉, for (A) S= 1/2, I= 1; (B) S= 1/2,
I = 3/2; (C) S = 1, I = 1. These are calculated using Eq. A6.

2 Here, for notational convenience, we have dropped the tildes and the other
quantum numbers.
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optical pumping light modulated at a harmonic of the Larmor
frequency has been used to prepare and study coherences within
states of high angular momentum [31]. In the following, we describe a
general method to prepare the states we need.

3.1 Optical pumping

We first describe how the molecules can be optically pumped into
a single quantum state. This is done at zero electric field. We choose
the state |0〉 = |F, MF = F〉, where F is the target angular momentum
for the MQM measurement. A small magnetic field defines the z-axis.
It should be small enough that Zeeman splittings are small compared
to the linewidth of the relevant optical transitions, but large enough to
ensure thatMF is preserved. Then, using circularly polarized light with
k-vector along z, we drive an optical transition where the excited state
angular momentum is F′ = F. The light drives only σ+ transitions so the

target state is a dark state and the population will be pumped into this
state. There will be decay channels to other hyperfine and rotational
states that are not resonant with the optical pumping light. Additional
lasers need to be used to drive population out of these states. These
extra lasers should have their polarizations modulated at a rate that is
close to the Rabi frequency, to ensure that there are no other dark
states in the system.

Figure 3 shows an example of this procedure for 173YbF
molecules. Within the ground state X2Σ+, each rotational
manifold (labelled by N) is split into states G = 2 and G = 3 by
the Yb hyperfine interaction. Each of these is then further split by
spin-rotation and F hyperfine interactions. As an example, the inset
shows the hyperfine structure of the N = 2, G = 3 manifold, spanning
roughly 1 GHz. The figure also shows the lowest rotational manifold
of the electronically excited state, A2Π1/2 (J′ = 1/2). This is split into
states of opposite parity by the Λ-doubling interaction, then by the
Yb hyperfine interaction yielding states labelled by F1′, and finally by

TABLE 2 MQM energy shifts for states correlating to the lowest rotational level of 173YbF, in an electric field of 18 kV/cm. We have dropped ~F1 from the state notation
since ~F1 � ~G for these states. The second column gives ΔEM calculated using Eq. 6. The fourth column gives ζ calculated using Eq. A6 and the fifth column gives ΔEM9

calculated using Eq. 4.

| ~N, ~G, ~F,MF〉 ΔEM(WMM) |G,MG〉|IF,MIF〉 ζ ΔEM′ (WMM)
|0, 2, 5/2, ±5/2〉 ±0.211 |2, ±2〉|1/2, ±1/2〉 ±14/45 ±0.210

|0, 2, 5/2, ±3/2〉 ±0.208 |2, ±2〉|1/2, ∓1/2〉 ±14/45 ±0.210

|0, 2, 5/2, ±1/2〉 ±0.094 |2, ±1〉|1/2, ∓1/2〉 ±7/45 ±0.105

|0, 2, 3/2, ±3/2〉 ±0.110 |2, ±1〉|1/2, ±1/2〉 ±7/45 ±0.105

|0, 2, 3/2, ±1/2〉 ±0.014 |2, 0〉|1/2, ±1/2〉 0 0

|0, 3, 7/2, ±7/2〉 ∓ 0.113 |3, ±3〉|1/2, ±1/2〉 ∓ 1/6 ∓ 0.113

|0, 3, 7/2, ±5/2〉 ∓ 0.079 |3, ±2〉|1/2, ±1/2〉 ∓ 1/9 ∓ 0.075

|0, 3, 7/2, ±3/2〉 ∓ 0.042 |3, ±1〉|1/2, ±1/2〉 ∓ 1/18 ∓ 0.038

|0, 3, 7/2, ±1/2〉 ∓ 0.009 |3, 0〉|1/2, ±1/2〉 0 0

|0, 3, 5/2, ±5/2〉 ∓ 0.113 |3, ±3〉|1/2, ∓1/2〉 ∓ 1/6 ∓ 0.113

|0, 3, 5/2, ±3/2〉 ∓ 0.076 |3, ±2〉|1/2, ∓1/2〉 ∓ 1/9 ∓ 0.075

|0, 3, 5/2, ±1/2〉 ∓ 0.031 |3, ±1〉|1/2, ∓1/2〉 ∓ 1/18 ∓ 0.038

FIGURE 2
MQM energy shifts in the ground rotational state manifold of 173YbF. The shifts are calculated at E = 18 kV/cm and given in units of WMM. States labeled
with ~G and ~F are adiabatically linked to field-free states with quantum numbers G and F.
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the fluorine hyperfine interaction, into states of total angular
momenta F′. The latter splittings are smaller than the linewidth of
the optical transition. The target state is |N = 0, G = 2, F = 5/2,
MF = 5/2〉. To optically pump molecules into this state, σ+

transitions are driven from the N = 0, G = 2 levels of X to the
F′ = 3/2, 5/2 levels of A. This state can decay to the G = 3 manifold
of N = 0 and also to rotational state N = 2. Molecules decaying to
those states are excited by additional polarization-modulated
lasers in such a way that the target state is the only dark state.
In addition, population in N = 1 can also be transferred to the
target state by driving microwave transitions to N = 2 as shown. In
this way, population distributed across many initial states is all
driven to the target state. The efficiency of this process is limited
by leaks to higher-lying vibrational states (not shown in the
figure). We note that the number of spontaneous emission
events needed to reach the stretched state can be substantially

reduced by using a combination of coherent and incoherent
processes, and that such schemes could improve the optical
pumping efficiency in the case of substantial leaks to other
states [32].

3.2 State preparation and readout

Next, we show how to drive effective Rabi oscillations between the
initial state |F,MF= F〉 and the superposition state
| + 〉 � 1�

2
√ (|F,+F〉 + |F,−F〉). We start by considering the F = 1

system illustrated in Figure 4. An electric field is applied along z so
that there is a Stark shift Δ between theMF = 0 and |MF| = 1 states. We
also allow a small splitting δ between theMF = ±1 states due to a small
magnetic field along z. There is a time-independent coupling, Ω,
between the MF = 0 and MF = ±1 states. For example, this could be a
magnetic field along the x-axis, Bx, which yields Ω � −μBx/

�
2

√
, where

μ is the magnetic moment.
The Hamiltonian describing this system, in the basis {MF = −1,

MF = 0, MF = 1}, is

H �
−δ/2 Ω 0
Ω Δ Ω
0 Ω δ/2⎛⎜⎝ ⎞⎟⎠. (7)

This is the same Hamiltonian as for a two-photon Raman transition
after transforming to the rotating frame. In that situation,Ω is the Rabi
frequency, Δ is the one-photon detuning and δ is the two-photon or
Raman detuning. Motivated by this, we consider the situation where
Δ≫Ω, δ and the initial state is one of the MF = ±1 states. Then,

FIGURE 3
Optical pumping scheme for 173YbF molecules. Thick green arrows denote transitions driven using polarization-modulated light. The thin green arrow
denotes light that drives only σ+ transitions from theG= 2manifold ofN= 0. The target state, |N = 0,G= 2, F = 5/2,MF= 5/2〉, is the only dark state. Microwave
transitions (blue arrows) can also be driven in order to bring population from N = 1 to the target state. The inset shows the hyperfine structure within N = 2,
G = 3.

FIGURE 4
An F = 1 system with tensor Stark splitting Δ and couplings Ω
between the MF = 0 sublevel and MF = ±1 sublevels. The MF = ±1 states
have a splitting δ between them.
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adiabatic elimination of theMF = 0 state reduces the dynamics to that
of an effective two-level system:

Heff �
−δ
2
− Ω2

Δ −Ω
2

Δ

−Ω
2

Δ
δ

2
− Ω2

Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

This system undergoes Rabi oscillations between theMF = ±1 states at
the effective generalised Rabi frequency,Weff �

�������
δ2 + Ω2

eff

√
, where the

effective Rabi frequency is Ωeff = 2Ω2/Δ. This effective coupling is
mediated by the coupling of MF = ±1 to MF = 0.

This approach can be generalised to states of higher angular
momentum. For example, consider the F = 5/2 system illustrated
in Figure 5. Here we have two different tensor Stark splittings Δ1,2, and
three couplings between adjacent levels Ω1,2,3. As before, these
couplings can be generated by a magnetic field orthogonal to the
electric field. For simplicity, we have made states of equal MF

degenerate. The Hamiltonian for this six-level system is

H �

0 Ω1 0 0 0 0
Ω1 Δ1 Ω2 0 0 0
0 Ω2 Δ2 Ω3 0 0
0 0 Ω3 Δ2 Ω2 0
0 0 0 Ω2 Δ1 Ω1

0 0 0 0 Ω1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

We adiabatically eliminate all states except for |MF = ±5/2〉 to derive
the effective two-level Hamiltonian

Heff �
−Ω

2
1

Δ1

Ω2
1Ω2

2Ω3

Δ2
1Δ2

2

Ω2
1Ω2

2Ω3

Δ2
1Δ2

2

−Ω
2
1

Δ1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

The derivation is given in Appendix B. We have assumed that the
shifts Δ1,2 are much greater than the couplings Ω1,2,3. The effective
Rabi frequency is

Ωeff � 2Ω2
1Ω2

2Ω3

Δ2
1Δ2

2

. (11)

Figure 6A compares the numerical solution of the Schrödinger
equation using Eq. 9 to the effective two-level dynamics described by
Eq. 10. We see excellent agreement between the effective model and
the complete solution. We also find that two-level Rabi flopping
dynamics are obtained whenever Δ1≫Ω1, without needing to
constrain Δ2, Ω2, Ω3. The first condition ensures that the
amplitudes of all intermediate states remain small, even when Ω2

and Ω3 are large. This greatly increases the effective Rabi frequency,
producing a rapid coupling between the stretched states even though
this is a high-order process mediated through many intermediate
states. Note that in this case the effective Rabi frequency is no longer
given by Eq. 11. Figure 6B compares the numerical solution to the
two-level model in the case where the coupling between the states is
similar to Δ2. The numerical solution shows almost perfect Rabi
oscillations between the stretched states, with negligible population
in any of the other states. The Rabi frequency is larger than given by
Eq. 11.

Let us consider again the specific example of the G = 2 manifold
of 173YbF. The upper half of Figure 2 shows the level structure of
this manifold of 10 states in an electric field E = 18 kV/cm. We start
with all population in the state |F, MF〉 = |5/2, 5/2〉. We apply a
magnetic field along x, Bx, such that Ωij = −μijBx where μij is the
magnetic dipole transition moment between states i and j. We ramp
the field on for tramp = 20 µs, keep the field at its maximum value for
ton = 60 μs and then ramp the field down for tramp. The total time for
the state evolution is therefore 100 µs. Figure 7 shows our
numerical simulations for Bx = 5.9 mT, which is the value
needed to apply an effective π/2 pulse. We find that when the
initial state is |5/2, 5/2〉 the final state is | + 〉 as desired. The reverse

FIGURE 5
An F = 5/2 system with tensor Stark splittings Δ1 and Δ2, and
couplings Ω1, Ω2, Ω3 between states of adjacent MF.

FIGURE 6
Dynamics of the six-level system shown in Figure 5. Populations of the states MF = 5/2 (blue) and MF = −5/2 (orange). Solid lines: solutions of the
Schrödinger equation for the Hamiltonian given in Eq. 9. Dashed lines: effective two-level model, Eq. 10. Parameters are: (A) Ω1 = Ω2 = Ω3 = 2π × 6 MHz, Δ1 =
Δ2 = 2π × 100 MHz. (B) Same as (A) except Δ2 = 2π × 10 MHz.
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process also works well, as is needed for the state readout. When the
initial state is | + 〉 the final state is |5/2, −5/2〉, and when the initial
state is | − 〉 the final state is |5/2, 5/2〉. Thus, despite the complexity
of this system, a magnetic field pulse is sufficient to prepare the
initial superposition state and to read out the final state.

4 Sensitivity to CP-violating parameters

Finally, we consider the sensitivity of a molecular MQM
experiment to hadronic CP-violating parameters, and compare
related experiments. Again, we use 173YbF as a prototypical
example. The parameters of the experiment are the coherence
time τ and the number of molecules measured N. At the shot-
noise limit, the statistical uncertainty of an ideal frequency
measurement will be δf � 1/(2πτ ��

N
√ ). Recent experimental work

and case studies [15, 33–35] suggest that measurements using the
molecules considered here can reach a sensitivity of approximately
1 mHz/

���
Hz

√
. This could be achieved using a high flux focussed

molecular beam from a cryogenic source, giving N ≈ 3 × 108

molecules per second and τ ≈ 10 ms, or an ultracold molecular
beam giving N ≈ 3 × 106 molecules per second and τ ≈ 100 ms, or

ultracold molecules in an optical lattice giving N ≈ 3 × 104 molecules
per second and τ ≈ 1 s. In this case, the uncertainty reaches δf =
1 μHz in about 300 h of measurement time.

If we assume that the CP-violating energy splitting in 173YbF is due
only to the MQM of the Yb nucleus, 2ΔCP = 0.42WMM, then the
uncertainty is equivalent to a 2σ-sensitivity on the MQM of 4.5 ×
10−13 e fm2. From this, we can calculate the expected level to which we
can measure various CP-violating parameters, using the parameter
sensitivities compiled in Table 3. We compare these to the
experimental constraints set by the Schiff moment measurement of
199Hg [14] and the projected sensitivities of the proposed Schiff
moment measurement of 205Tl from a TlF beam experiment [15].
The former is S (199Hg)< 3.1 × 10−13 e fm3, and the latter has an
anticipated statistical sensitivity of δf = 45 nHz which corresponds to3

δS (205Tl) = 9.1 × 10−14 e fm3.
Table 4 shows the 95% confidence limit constraints on CP-

violating parameters set by the 199Hg experiment, as well as

FIGURE 7
Dynamics within theG= 2manifold of 173YbF induced by a pulse of magnetic field orthogonal to the electric field, calculated by numerical solution of the
Schrödinger equation for all 10 levels shown in the upper half of Figure 2. Populations of the statesMF = 5/2 (blue) andMF = −5/2 (orange) as Bx is ramped on
and off for a total time of 100 µs. Themaximum value of the field is 5.9 mT and its amplitude relative to this maximum is shown by the dashed red line. (A) Initial
state is |5/2, 5/2〉; final state is | + 〉. (B) Initial state is | + 〉; final state is |5/2, −5/2〉. (C) Initial state is | − 〉; final state is |5/2, 5/2〉.

TABLE 3 The dependence of the Schiff moments of 199Hg and 205Tl [36], nucleon MQMs and the MQM of 173Yb [19] on CP-violating parameters. The dependence of
M(173Yb) is calculated from the enhancement of nucleonMQMs as given in Table 1. Throughout, we take the strong π-meson nucleon-nucleon interaction constant to be
g = 13.6 [18].

CP-violating parameter (x) zS (199Hg)/zx zS (205Tl)/zx zMp
0 /zx zMn

0/zx zM(173Yb)/zx
Isoscalar πNN coupling (�g0) 0.32 e fm3 1.77 e fm3 −0.08 e fm2 −0.09 e fm2 −3.4 e fm2

Isovector πNN coupling (�g1) −0.10 e fm3 −0.05 e fm3 0.41 e fm2 0.44 e fm2 17 e fm2

Isotensor πNN coupling (�g2) 0.39 e fm3 −3.67 e fm3 0.16 e fm2 0.18 e fm2 6.88 e fm2

QCD θ-term (~θ) 0.005 e fm3 0.027 e fm3 0.002 e fm2 0.003 e fm2 0.09 e fm2

Proton EDM (dp (e fm)) 0.06 fm2 0.4 fm2 0.25 fm 0 3.5 fm

Neutron EDM (dn (e fm)) 0.6 fm2 0 0 0.25 fm 6.4 fm

u-quark chromo-EDM (~du (fm)) 0 9 e fm2 12 e fm 13 e fm 506 e fm

d-quark chromo-EDM (~dd (fm)) 5 e fm2 12 e fm2 −12 e fm −13 e fm −506 e fm

3 This calculation comes from ΔCP = ηWSS, where the polarisation factor η =
0.547 and WS = 40539 au = 1.8 × 106 Hz/(e fm3) [37].
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projected 2σ-sensitivities for experiments using TlF and YbF, given the
uncertainties quoted above. We find that a measurement of the MQM
of 173Yb using YbF molecules can make large improvements relative to
the current limits on CP-violating parameters obtained from the Hg
experiment. The measurement also gives greater sensitivities than
obtainable from the proposed TlF experiment, even though the
projected frequency uncertainty of the TlF experiment is 20 times
smaller.

5 Conclusion

Measurements of nuclear MQMs in isotopologues of heavy,
paramagnetic molecules have the potential to probe hadronic CP-
violating physics at a level well beyond current limits. We have
calculated the molecular energy shifts to be expected, showing
which states should be used. We find that measurements will
require molecules prepared in a superposition of magnetic sub-
levels that differ by many units of angular momentum, and we
have described a general method for preparing these states. These
experiments would benefit from the recent advances in laser
cooling applied to molecules [38]. The nuclear spin of the
heavy atom in the molecule leads to large hyperfine intervals
and a more complex hyperfine structure which makes the laser
cooling more difficult than for the isotopologues cooled so far.
Nevertheless, a recent study [39] shows how cooling of the
required molecules can be done with relatively small additions
to existing experiments.
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TABLE 4 Constraints (95% CL) on CP-violating parameters set experimentally by 199Hg [14], and projected 2σ-sensitivities from proposals to measure these in 205TlF [15]
and 173YbF (this paper). For 199Hg, the constraints given here differ from those given in [14] because we use the coefficients from [36].

CP-violating parameter (x) 199Hg 205TlF 173YbF

Schiff moment (S) 3.1 × 10−13 e fm3 9.1 × 10−14 e fm3 —

Magnetic quadrupole moment (M) — — 4.5 × 10−13 e fm2

Isoscalar πNN coupling (�g0) 1.0 × 10−12 5.1 × 10−14 1.3 × 10−13

Isovector πNN coupling (�g1) 3.3 × 10−12 1.7 × 10−12 2.6 × 10−14

Isotensor πNN coupling (�g2) 8.1 × 10−13 2.4 × 10−14 6.5 × 10−14

QCD θ-term (~θ) 6.2 × 10−11 3.3 × 10−12 5.0 × 10−12

Proton EDM (dp) 5.1 × 10−25 e cm 2.3 × 10−26 e cm 1.3 × 10−26 e cm

Neutron EDM (dn) 5.1 × 10−26 e cm – 7.0 × 10−27 e cm

u-quark chromo-EDM (~du) — 1.0 × 10−27 cm 8.9 × 10−29 cm

d-quark chromo-EDM (~dd) 6.2 × 10−27 cm 7.5 × 10−28 cm 8.9 × 10−29 cm
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Appendix A: Further details on the
evaluation of the MQM energy shift

In Section 2, we considered the energy level shifts of a 2Σ
molecule due to the nuclear MQM interaction. Here, we provide
more details of the calculation. As described in Section 2, the
Hamiltonian is

H � Hrot +HStark +Hhyp +HM. (A1)
In the field-free basis, the matrix elements of Hrot are

〈N,MN|Hrot|N′,MN′ 〉 � BN N + 1( )δN,N′δMN,MN′ . (A2)
We can write HStark � −μmolED00 where D is the rotation operator
that transforms from the molecule frame to the laboratory frame. The
matrix elements of HStark are

〈N,MN|HStark |N′,MN′ 〉 � −μmolE −1( )MN

����������������
2N + 1( ) 2N′ + 1( )√

N 1 N′
−MN 0 MN′

( )
× N 1 N′

0 0 0
( ).

(A3)
Neglecting the hyperfine interaction, the energy shift due to HM is

ΔEM′ � 〈G,MG; ~N,MN|Qz′|G,MG; ~N,MN〉. (A4)
This factorizes as

ΔEM′ � 〈G,MG; ~N,MN|D00Qz|G,MG; ~N,MN〉
� 〈G,MG|Qz|G,MG〉〈 ~N,MN|D00| ~N,MN〉 � WMMζ( )η.

(A5)
The first factor depends only on electron and nuclear spins and
evaluates to

〈G,MG |Qz |G,MG〉 � WMMζ � WMM −1( )G−MG

�
5
6

√
2G + 1( )

���������������������������������
S S + 1( ) 2S + 1( ) 2I + 1( ) 2I + 2( ) 2I + 3( )

2I 2I − 1( )

√
×

G 1 G
−MG 0 MG

( ) G G 1
S S 1
I I 2

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭.

(A6)
The second factor is η � 〈 ~N,MN|D00| ~N,MN〉 and is known as the
polarization factor. To evaluate η, we note that

〈HStark〉 � 〈 ~N,MN|HStark| ~N,MN〉 � −μmolE〈 ~N,MN|D00| ~N,MN〉
� −ημmolE,

(A7)
and that

〈dHStark

dE 〉 � 〈dH

dE〉 � d〈H〉
dE � dE ~N,MN

dE . (A8)

Thus, we see that

η � − 1
μmol

dE ~N,MN

dE , (A9)

which is straightforward to calculate once the eigenvalues E ~N,MN
have

been found.
When we include the hyperfine interaction and the spin of the

second nucleus, we use the field-free basis |N, G, F1, F, MF〉 as
discussed in Section 2. The matrix elements of Hhyp depend on the
terms included in the hyperfine interaction and can all be found in

[27]. The eigenstates of Hrot + HStark + Hhyp are denoted
| ~N, ~G, ~F1, ~F,MF〉 and the energy shift due to the MQM is

ΔEM � 〈 ~N, ~G, ~F1, ~F,MF|HM| ~N, ~G, ~F1, ~F,MF〉. (A10)
This can be evaluated with the help of the matrix element

〈N′, G′, F1 , F,MF |HM |N,G, F1 , F,MF〉 � WMM −1( )F+2F1+I2+G
�
5
6

√
×

���������������������������������������������
2F + 1( ) 2F1 + 1( ) 2G + 1( ) 2G′ + 1( ) 2N + 1( ) 2N′ + 1( )√

×

���������������������������������
S S + 1( ) 2S + 1( ) 2I + 1( ) 2I + 2( ) 2I + 3( )

2I 2I − 1( )

√
×

F1 F I2
F F1 0

{ } G N F1

N′ G′ 1
{ } N′ 1 N

0 0 0
( ) G′ G 1

S S 1
I I 2

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭.

(A11)

Appendix B: Derivation of effective two-
level Hamiltonian for F = 5/2 system

The time-dependent Schrödinger equation for the Hamiltonian
given in Eq. 9 can be written as (setting Z = 1):

i _a t( ) � Ω1b t( ),
i _b t( ) � Ω1a t( ) + Δ1b t( ) +Ω2c t( ),
i _c t( ) � Ω2b t( ) + Δ2c t( ) +Ω3d t( ),
i _d t( ) � Ω3c t( ) + Δ2d t( ) +Ω2e t( ),
i _e t( ) � Ω2d t( ) + Δ1e t( ) + Ω1f t( ),
i _f t( ) � Ω1e t( ),

where the amplitudes {a(t), b(t), c(t), d(t), e(t), f(t)} correspond to
those ofMF = −5/2, −3/2, −1/2, 1/2, 3/2, 5/2 respectively. Consider the
initial condition where f (0) = 1 and all other amplitudes are zero at t =
0, and the assumption that Δ1, Δ2≫Ω1, Ω2, Ω3. Then, we can
approximate _b(t) ≈ _c(t) ≈ _d(t) ≈ _e(t) ≈ 0, which gives us

b t( ) � −Ω1a t( ) +Ω2c t( )
Δ1

,

c t( ) � −Ω2b t( ) + Ω3d t( )
Δ2

,

d t( ) � −Ω3c t( ) +Ω2e t( )
Δ2

,

e t( ) � −Ω2d t( ) +Ω1f t( )
Δ1

.

We now substitute the expression for e(t) into d(t) to get

1 − Ω2
2

Δ1Δ2
( )d t( ) � −Ω3

Δ2
c t( ) + Ω1Ω2

Δ1Δ2
f t( ).

Since the tensor shifts are much greater than the direct couplings
between MF states, the LHS is approximately d(t). Next, we substitute
this expression into the equation for c(t) above and repeat the process.
Eventually, we substitute an expression for b(t) into the first
differential equation involving a(t) to get

i _a t( ) � −Ω
2
1

Δ1
a t( ) + Ω2

1Ω2
2Ω3

Δ2
1Δ2

2

f t( ).

Similarly, we find for f(t),

i _f t( ) � Ω2
1Ω2

2Ω3

Δ2
1Δ2

2

a t( ) − Ω2
1

Δ1
f t( ),

which together give the effective two-level Hamiltonian in Eq. 10.
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