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Evaluating the laser quality accurately is one of the most important and
fundamental physical issues for laser sources, and the beam quality of lasers
from the large mode area few-mode fibers have been haunted by the presence of
high order mode for many years. This paper presents a modification to the M2

factor, which can be used to evaluate the mode content of fiber lasers accurately
and efficiently, no matter whether the fiber modes are superposited coherently or
incoherently. By mathematical derivation, the origin of the influence of relative
phase on theM2 factor has been determinedmathematically. Amodification to the
second moment of the beam intensity profile has been proposed, which
eliminates the impact of uncontrollable relative phase on the second moment,
and subsequently restores the one-to-one mapping between mode content and
M2 factor even for coherent superposition cases. Also presented are the results of
numerical simulations, which support the validity of the modified M2 factor to
evaluate the mode content of the high power fiber lasers. With modified M2 factor
being less than 1.1, the power fraction of LP11 mode content is unique and
determined to be less than 3%.
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1 Introduction

Narrow Linewidth fiber laser systems, which have earned a solid reputation as a highly
power scalable laser with excellent beam quality, are attractive sources for many applications,
such as coherent lidar systems, nonlinear frequency conversion, and coherent/spectral beam
combining architectures [1–4]. As the output power of fiber lasers grows into the multi-
hundred range, detrimental nonlinear effects such as the stimulated Brillouin scattering
(SBS) and the self-phase modulation (SPM) become the major limit factors that preclude
further power upscaling [5]. Low numerical aperture (NA), large mode area (LMA) step
index fiber designs, which support only a few modes in the core, have been employed to
overcome the limitation of the nonlinear effects while maintaining a high beam quality of the
output laser [6–10]. Various coiling of the fibers have been employed to filter the high order
modes and achieve single mode (SM) operation in few-mode fiber [11–16], where criteria are
required to evaluate the performance of these coiling tactic. After the introduce of M2-factor,
the M2-factor has now become a indispensable standard of the laser beam quality in the fiber
laser research and development, and the measured M2-factor is nearly always specified to
evaluate the fundamental mode (LP01) purity whenever a new fiber laser source is
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demonstrated or produced. The M2-factor is generally used to
evaluate the fundamental mode purity in the aforementioned
tactic of achieving SM operation in LMA fibers [11–16], and low
M2 values have been taken to imply that the near-SM or near-
diffraction-limited performance is achieved: lower M2 values means
higher fraction of fundamental mode content in LMA fibers.
Although the M2 values of the fundamental mode is about 1, it
does not means that the laser contains more fundamental mode
power byM2→1. In LMA fiber, the high order mode, especially LP11
mode, is hard to be eliminated completely [18, 19]. Coiling-induced
bend loss increases with the order of the fiber mode, and the bend
loss of LP11 mode is the lowest among the high order mode.
Meanwhile, the fiber perturbations result in that the high order
modes are continually repopulated due to coupling between the
fundamental mode and the high order modes [17], which is the
strongest for the LP11 mode. In the presence of LP11 mode, even the
excellent beam quality (M2 < 1.1) in LMA fibers does not guarantee
low power fraction of LP11 mode when the modes are superposited
coherently, which are generally true for the narrow linewidth fiber
lasers [18]. Due to the presence of the relative phase between the
fiber modes, there is no one-to-one mapping between the mode
content and the M2-factor for the coherent superposition cases [18,
20]. For certain superposition state in LMA fibers, the M2 value can
be as good as 1.08 for a fiber laser consists of 30% LP11 and 70% LP01
[18], which results in that the widely employed criteria is unable to
evaluate the fiber laser mode purity performance, and limits the
applications of high power fiber lasers in the cases requiring strict
mode purity. To determine the fundamental mode content,
sophisticated methods should be employed, such as spatially and
spectrally resolved imaging, cross-correlated imaging, modal
decomposition [21–25]. However, the aforementioned methods
require specially designed experimental setups and complicated
algorithms, and are not compatible with the standard measuring
instruments in laser industry [26, 27]. In recent years, some
intelligent methods have been introduced to calculate the M2-
factor [28–30], which is still suffered from the problem induced
by the presence of high order modes. A modification to the present
method is simple and compatible with the standard measuring
instruments, which inspires the work in this manuscript.

In this manuscript, the term that leads to the variation of the
M2 factor has been determined, and a modification to M2 factor
has been proposed to evaluate the beam quality or mode content
of high power narrow linewidth laser from the LMA low NA step
index fibers, which can mitigate the dependence of M2 factor on
the uncontrollable relative phase between the LP01 and LP11
modes, and restores the one-to-one mapping between the
mode content and the M2-factor for coherent superposition
cases. Numerical simulations have been carried out to validate
the modified M2 factor, which revealed that the modified M2

factor can be used to evaluate the mode content of fiber lasers, no
matter whether the modes are superposited coherently or
incoherently.

2 Theoretical model

As pointed out in [18, 19], for low NA, LMA fiber, LP11 mode is
hard to be stripped totally and is the most problematic. In the

following analysis, we focus our attention mainly on the case that
only LP11 mode is contained in the laser, and the electric field of the
high power fiber laser for narrow linewidth fiber laser can be
expressed as [17]:

E x, y, 0( ) � ������
1 − P11

√
ΨLP01 x, y, 0( ) + ���

P11

√
eiΔϕ11ΨLP11 x, y, 0( ), (1)

where P11 is the power in the LP11 mode, and △ϕ11 is the relative
phase between the LP11 mode and the LP01 mode, which drift with
fluctuations in temperature and other environmental factors, and
are difficult to reliably control. In step index fibers, the normalized
electric field of LP11 mode ψLPmn(x, y, z = 0) can be written as:

ΨLPmn x, y, 0( ) � fmn r( )����
Nmn

√ cos mϕ( ), (2)

with

fmn r( ) � Jm Umnr/a( )
Jm Umn( ) a≥ r> 0, (3a)

fmn r( ) � Km Wmnr/a( )
Km Wmn( ) r> a, (3b)

where Jm and Km is the Bessel function of the first kind and the
modified Bessel function of the second kind, respectively, a is the
core radius of the fiber, (r = √x2+y2, ϕ) is polar coordinates and λ is
the wavelength. Umn andWmn are defined as in [31], and Nmn is the
normalization factor, which can be expressed by:

N0n � 2π∫∞

0
f2
0n r( )rdr for m � 0, (4a)

Nmn � π∫∞

0
f2
mn r( )rdr for m> 0. (4b)

According to Eq. 1, the intensity of the near field is given by:

I x, y, 0( ) � P01Ψ2
LP01

x, y, 0( ) + P11Ψ2
LP11

x, y, 0( )
+2 ������

P01P11
√ ΨLP01 x, y, 0( )ΨLP11

x, y, 0( ) cosΔϕ11, (5)
and the intensity of the field after propagating a distance of z is
given by:

I x, y, z( ) � P01Ψ2
LP01

x, y, z( ) + P11Ψ2
LP11

x, y, z( )
+ ������

P01P11

√
ΨLP01

* x, y, z( )ΨLP11 x, y, z( )eiΔϕ11
+ ������

P01P11
√

ΨLP01 x, y, z( )ΨLP11
* x, y, z( )e−iΔϕ11 , (6)

where ΨLPmn(x, y, z) is the field after ΨLPmn(x, y, 0) propagates a
distance of z. Then the M2 factor is calculated by [32]:

M2
x �

πw0x

λz
( ) ��������

w2
zx − w2

0x

√
, (7a)

M2
y � πw0y

λz
( ) ���������

w2
zy − w2

0y,
√

(7b)

with

wzx � 2σzx, wzy � 2σzy, (8a)

σ2zx �
∫ x − x0 z( )( )2I x, y, z( )dxdy∫I x, y, z( )dxdy , (8b)

σ2zy � ∫ y − y0 z( )( )2I x, y, z( )dxdy∫I x, y, z( )dxdy , (8c)

w0x � 2σ0x, w0y � 2σ0y, (8d)
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σ20x �
∫ x − x0 0( )( )2I x, y, 0( )dxdy∫I x, y, 0( )dxdy , (8e)

σ20y � ∫ y − y0 0( )( )2I x, y, 0( )dxdy∫I x, y, 0( )dxdy , (8f )

where σzx(y) and wzx(y) is the second moment of the beam
intensity profile and the beam size at the distance of z along
x(y) direction, respectively, which is σ0x(y) and w0x(y) at the near
filed. (x0(z), y0(z)) is the gravity center of the beam at the distance
of z, given by:

x0 �
∫xIdxdy∫Idxdy , (9a)

y0 �
∫yIdxdy∫Idxdy , (9b)

where I is the laser intensity at arbitrary distance. In Eq. 7a, one can
see that the M2 seems to be dependent on the wavelength. However,
the wzx(y) is also related to the wavelength through the laser intensity
I. In fiber waveguide, the variation of the wavelength changes the
V-number, which results in the laser intensity I changes. It is shown
that theM2 sharply peaks near the corresponding cutoff values of the
V-number but remains nearly constant for V>3 [20]. In the practical
high power laser systems, the V is generally larger than 3, so the
dependence of M2 on wavelength is negligible. The divergence angle
of the beam can be obtained directly fromM2 value by employing the
simple Equation in [33].

The second moment of the beam intensity profile can be
expressed as:

σ2
zx �

∫x2Idxdy∫Idxdy + x2
0∫Idxdy∫Idxdy − 2

x0∫xIdxdy∫Idxdy , (10a)

σ2zy � ∫y2Idxdy∫Idxdy + y2
0∫Idxdy∫Idxdy − 2

y0∫yIdxdy∫Idxdy , (10b)

According to the electric field distribution of the LP01 mode and
the LP11 mode, we can obtain:

ΨLP01 −x, y, 0( ) � ΨLP01 x, y, 0( ), (11)
and

ΨLP11 x, y, 0( ) � −ΨLP11 −x, y, 0( ), (12)
where the LP11mode is assumed to be anti-symmetric along x direction.

By using the extended Huygens–Fresnel principle [34–38], the
electric field of the modes at the z plane can be expressed as:

ΨLP01 p, q, z( ) �
k

2πz
∫∞

−∞
∫∞

−∞
ΨLP01 x, y, 0( ) exp ik

2z
p − x( )2 + q − y( )2[ ]{ }dxdy,

(13a)
ΨLP11 p, q, z( ) �
k

2πz
∫∞

−∞
∫∞

−∞
ΨLP11 x, y, 0( ) exp ik

2z
p − x( )2 + q − y( )2[ ]{ }dxdy,

(13b)
where (p, q) is the coordinate at the z plane. Then we can derive:

ΨLP01 −p, q, z( )
� k

2πz
∫∞

−∞
∫∞

−∞
ΨLP01 x, y, 0( ) exp ik

2z
−p − x( )2 + q − y( )2[ ]{ }dxdy

�ξ�−x − k

2πz
∫∞

−∞
∫∞

−∞
ΨLP01 −ξ, y, 0( ) exp ik

2z
−p + ξ( )2 + q − y( )2[ ]{ }dξdy,

(14a)
ΨLP11 −p, q, z( )
� k

2πz
∫∞

−∞
∫∞

−∞
ΨLP11 x, y, 0( ) exp ik

2z
−p − x( )2 + q − y( )2[ ]{ }dxdy

�ξ�−x − k

2πz
∫∞

−∞
∫∞

−∞
ΨLP11 −ξ, y, 0( ) exp ik

2z
−p + ξ( )2 + q − y( )2[ ]{ }dξdy,

(14b)

Take Eqs 11, 12 into consideration, the above equations can be
rewritten as:

ΨLP01 −p, q, z( )
� − k

2πz
∫∞

−∞
∫∞

−∞
ΨLP01 ξ, y, 0( ) exp ik

2z
p − ξ( )2 + q − y( )2[ ]{ }dξdy,

(15a)
ΨLP11 −p, q, z( )
� k

2πz
∫∞

−∞
∫∞

−∞
ΨLP11 ξ, y, 0( ) exp ik

2z
p − ξ( )2 + q − y( )2[ ]{ }dξdy,

(15b)
which can be simplified into:

ΨLP01 −p, q, z( ) � −ΨLP01 p, q, z( ), (16)
and

ΨLP11 −p, q, z( ) � ΨLP11 p, q, z( ), (17)
Referring to the odd-even property, we can obtain:

∫∫Ψp
LP01

x, y, z( )ΨLP11 x, y, z( )dxdy � 0, (18a)

∫∫ΨLP01 x, y, z( )Ψp
LP11

x, y, z( )dxdy � 0, (18b)

∫∫xΨp
LP01

x, y, z( )ΨLP11 x, y, z( )dxdy ≠ 0, (18c)

∫∫xΨLP01 x, y, z( )Ψp
LP11

x, y, z( )dxdy ≠ 0, (18d)

∫∫x2Ψp
LP01

x, y, z( )ΨLP11 x, y, z( )dxdy � 0, (18e)

∫∫x2ΨLP01 x, y, z( )Ψp
LP11

x, y, z( )dxdy � 0, (18f )

According to Eq. 18a, one can conclude that only the third term
in Eq. 10a is non-zero, which means that the third term introduces
the effect of relative phase on the final obtained beam quality value.
If we rewritten Eq. 10b as:

σ2zx �
∫x2Idxdy∫Idxdy , (19a)

σ2zy � ∫y2Idxdy∫Idxdy , (19b)

Eq. 7b becomes independent of the relative phase. Replacing the
calculation equation of the second moment Eq. 10a with Eq. 19a, the
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calculated M2 factor is only dependent on the power content of LP11
mode, and the influence of relative phase on theM2 factor is eliminated.
By employing Eq. 19b, the influence of the last two terms in Eqs 5, 6,

representing the mode interference, disappears, and the remaining
terms is the same as the incoherent case. For the case that the
modes are superposited incoherently, the gravity center of the beam
is zero, Eq. 10b reduce to the form of Eq. 19a, and the modified M2

factor in coherently superposited cases is coincident with those of the
classical M2 factor in incoherently superposited cases, whichmeans that
the ideal value for the modified M2 factor is still very close to 1. In
conclusion, the modified M2 factor calculated from Eqs 7a, 19b can be
used to evaluate the high power narrow linewidth fiber lasers.

3 Numerical simulations

For high power fiber lasers, nonlinear effects are themain limitation
for power scaling, which is stronger for higher laser intensity [39].
Generally, fibers with larger core diameter have been employed to
reduce the laser intensity in fiber core. However, the number of the
supported modes in the core increases as the core diameter
increases, which renders the fiber lasers into multimode
operation, and undermines the beam quality [40]. To realize
high power laser while maintaining near diffraction limited
beam quality, a core diameter of 30 μm is generally used
[41–47]. So the exemplary fiber that will be considered here has
an ideal step-index profile with a 30 μm core and a core NA of
0.065, which was chosen to be representative of a commercially-

FIGURE 1
Bend loss vs. bend radius for different modes of a 0.065 NA fiber
with a 30-μm-core at 1064 nm.

FIGURE 2
M2 as a function of LP11 fraction and relative phase for x direction (A) and y direction (B), M2 as a function of LP11 fraction for the case that the relative
phase is 0 (C).
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available LMA fiber and to validate the analysis in the former
section. For high power narrow linewidth fiber lasers, the
wavelength is generally located at 1064nm, and the laser
wavelength used in simulation is chosen to be 1064 nm. The
bend loss as a function of the bend radius for different modes
is shown in Figure 1, which is calculated using the method of
Marcuse [48]. An additional correction factor, yielding an effective
bending diameter, has been employed to incorporate the material
stress-optic effect [49]. It shows that even with the bend radius of
10cm, the bend loss for LP21 mode is significantly large, which is
about 100 dB/m, which means that higher order mode can be
stripped efficiently by coiling the fibers. For common fiber laser
package of low NA LMA step index fiber, the bend radius of fiber is
not larger than 10 cm to mitigating mode instability [6, 14], so it is
reasonable to consider only the LP01 and LP11 mode.

We first calculated the M2 factor by using the classical definition.
The fiber mode profiles at the fiber output were propagated a
distance from the initial plane (z = 0) by using the angular

spectrum propagation method, which is based on fast Fourier
Transform algorithm [50, 51]. Then several beam parameters of
interest, such as second moment of the beam intensity profile and
beam gravity centroid, can be calculated directly from the intensity
distribution at the initial plane and distant plane, which are used to
calculate the M2 factor through Eqs 7a, 8a, 8b, 8c. TheM2 factor (in x
and y direction) as a function of the LP11 fraction and the relative
phase is calculated, which is shown in Figure 2. It is shown that the
value of M2 factor is dependent on the LP11 fraction and the relative
phase, and M2 is less than 1.1 even with the LP11 fraction as high as
0.35. It is indicated in [52] that the power in the bucket is dependent
on the LP11 fraction, which means that even M2 < 1.1 can not
guarantee excellent long-distance propagation properties or high
energy concentration for narrow width fiber laser, and that the M2

factor can not reflect the mode content and is unsuitable to verify
good propagation properties of a LMA fiber.

Employing the modified calculation, the modified M2 factor as a
function of relative phase and power fraction is presented in Figure 3. It
can be seen from Figure 3A that the calculatedM2 factor is independent
of the uncontrollable relative phase, which validate the predication in
the theoretical analysis in Section 2. It also reveals in Figure 3B that the
calculatedmodifiedM2 factor increases linearly with the increase of high
order mode content, which means that the M2 factor can be used to
evaluate the beam quality or mode content of the laser from low NA,
LMA fibers. With modified M2 factor being less than 1.1, the power
fraction of LP11mode content is less than 3%. In Figure 3B, themodified
My

2 value is constant with a change in the LP11 fraction. This is due to
that M2 value in the y direction is nearly the same for LP01 mode and
LP11mode [20], and themodifiedMy

2 value is a weighted superposition
of the M2 value for LP01 mode and LP11 mode.

The calculatedM2 factor as a function of power fraction is presented
in Figure 4, in which the modes are superposited incoherently for the
cases of broadband fiber lasers. Both classical and modified M2 factor is
used to evaluate the beam quality, which indicates that there is no
difference in the two methods for the case that the modes are
superposited incoherently. One can conclude that the modified M2

factor is suitable for evaluating the beam quality of the fiber laser
whenever themodes are superposited coherently or incoherently, which
means that the methods can be employed in broader applications, not
only restricted to evaluate the narrow linewidth fiber lasers but also the

FIGURE 3
Beam quality factor of the coherent mixture of LP01 and LP11 modes, as a function of the relative phase (A) and higher order mode content (B).

FIGURE 4
Beam quality factor of the incoherent mixture of LP01 and LP11

modes.
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broadband ones. Due to that the modification is only made on the
calculation of the second moment of the beam intensity profile, the
modified M2 can be used in the conventional measuring instrument
except for updating the calculating software programs.

4 Conclusion

We have presented a modification to the M2 factor for high power
narrow linewidth lasers from low NA, LMA fibers. The modified M2

factor eliminates the influence of the uncontrollable relative phase by
ignoring the gravity center in the calculation of the beam intensity
profile second moment, and the one-to-one mapping between the M2

factor and the mode content has been restored, which make the M2

factor can be employed to characterize the mode content even for the
narrow linewidth fiber lasers. It is demonstrated numerically that the
modification to M2 factor can reflect the mode content, and the M2

factor → 1 means that less high order mode are contained in the laser
beam. With the new calculation method, the power fraction of LP11
mode is less than 3% when the modified M2 parameter is less than 1.1.
The results can be used to improve the method to measure the beam
quality of high power fiber lasers.
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