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Decisions to shutdown economic activities to control the spread of COVID-19
early in the pandemic remain controversial, with negative impacts including high
rates of unemployment. Here we present a counterfactual scenario for the state of
California in which the economy remained open and active during the pandemic’s
first year. The exercise provides a baseline against which to compare actual levels
of job losses. We developed an economic-epidemiological mathematical model
to simulate outbreaks of COVID-19 in ten large Californian socio-economic areas.
Results show that job losses are an unavoidable consequence of the pandemic,
because even in an open economy, debilitating illness and death among workers
drive economic downturns. Although job losses in the counterfactual scenario
were predicted to be less than those actually experienced, the cost would have
been the additional death or disablement of tens of thousands of workers.
Furthermore, whereas an open economy would have favoured populous,
services-oriented coastal areas in terms of employment, the opposite would
have been true of smaller inland areas and those with relatively larger
agricultural sectors. Thus, in addition to the greater cost in lives, the benefits of
maintaining economic activity would have been unequally distributed,
exacerbating other realized social inequities of the disease’s impact.
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1 Introduction

When the COVID-19 global pandemic emerged in early 2020, there were no preventive
vaccines or effective medical treatments available. Following standard epidemiological
procedures, initial responses in most affected countries and municipalities focused on
disrupting transmission of the disease. Examples of responses included travel bans, the
closure of public venues and workplaces, and isolation of infected individuals and sometimes
of their communities. The abruptness and rapidity with which so-called shutdown measures
proceeded, coupled with the measures themselves, sent a shock wave through the global
economy [1, 2]. The ensuing economic hardship added to the health and other social impacts
of the disease, and in many countries were vigorously opposed from multiple and diverse
economic and political quarters [3]. A common argument in the United States, where the
implementation of “economic shutdown” was heterogeneous in both timing and extent, was
that economic damage could exceed the potential damage of the disease itself [4].
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The situation at the time of this writing, differs with the
availability of both effective vaccines, and post-infection
treatments. After suffering a tremendous death toll from the
disease (more than one million), a major portion (> 71%) of the
American population has received at least two doses of a vaccine (US
Centers for Disease Control), and although hospitalization rates
oscillate with the emergence of new and highly virulent genetic
strains of the virus, mortality rates are significantly lower than
during the first year of the pandemic. Furthermore, the steep
decline of employment in 2020 has been reversed to a
considerable degree—from an unemployment high of 14.7% in
April, 2020 to 3.6% in April, 2022 (US Bureau of Labor
Statistics). Partial economic shutdowns remain a possibility if the
number of infected persons increases, and the question of economic
versus human health continues to be asked in response.

The question is a difficult one to answer, because it is impossible
to know what the outcome would have been if no shutdown
measures were implemented. One could look to other countries
where measures differed or varied, but any comparisons are
complicated by numerous factors, including political system,
socio-economic structure, governmental policies and leadership,
demographic structure, healthcare systems, and socio-behavioural
norms. The question can be addressed, however, as a counterfactual
one, where one examines a situation that did not occur, but that
could have occurred [5].

In this paper, we examine a counterfactual situation in which the
American state of California did not implement an economic
shutdown in 2020, but instead weathered the first wave of the
pandemic with an open economy. We develop a network model
of dynamic relationships among industrial sectors of several major
economic regions within the state, and simulate the impact of an
unmitigated outbreak of COVID-19 on the health and employment
of the employed labour force at the beginning of March, 2020. Those
impacts are estimated by driving the dynamic economic model with
an SIR (Susceptible, Infected, Recovered) epidemiological model,
parameterized with real disease and demographic data. In so doing,
we are able to explore the counterfactual situation of what could
have happened, and compare it to real outcomes that resulted from
the economic shutdowns.

California presents a suitable case for examination because the
state’s economy is comparable in size to those of many nation states’,
ranking as the world’s 5th largest in 2019 [6]. Yet, socio-economic
systems (SESs) within the state, including those used here, span
orders of magnitude in size and economic activity–the smallest SES
examined, Stockton-Lodi, had a workforce of 258,300 employees in
February, 2020, whereas the Los Angeles-Long Beach-Glendale
SES’s was 4,636,800. The SESs are also structurally diverse,
comprising systems dominated by goods producing versus
services providing industries, delineated roughly according to
inland or coastal locations. Furthermore, California acted early
during the emergence of the pandemic in the United States,
declaring a state of emergency on March 4th 2020, and statewide
shelter-in-place orders, social distancing policies, and the closure of
non-essential businesses on March 19th. The economic reaction was
severe and nearly immediate, with more than two million workers in
our SES set being newly unemployed by April 2020. California’s
economy and its regional components may thus serve as suitable
analogs for SESs elsewhere.

We applied the model to ten major metropolitan areas, SESs, in
California, modeling outbreaks for a range of transmission
intensities, including those estimated to have actually occurred
within the areas in March, 2020. Our California SESs are
metropolitan divisions (MDs) or metropolitan statistical areas
(MSAs) delineated by the United States Office of Management
and Budget and utilized by the United States Bureau of Labor
Statistics (USBLS) and the California Employment and
Development Department (CAEDD) for reporting economic
data. They include: San Francisco-San Mateo-Redwood City MD,
Oakland-Berkeley-Livermore MD, San Jose-Sunnyvale-Santa Clara
MSA, Stockton-Lodi MSA, Fresno MSA, Los Angeles-Long Beach-
Glendale MD, Anaheim-Santa Ana-Irvine MD, Riverside-San
Bernardino-Ontario MSA, Oxnard-Thousand Oaks-Ventura
MSA, and San Diego-Carlsbad MSA [7, 8] (Figure 1A).

The model predicts the loss of employment within an SES driven
by mortality and severe illness, as well as losses caused by the
subsequent reductions of production and demand within the SES.
Finally, we compared model predictions based on the initial
contagiousness of an outbreak (R0) to those that resulted from
real-world mitigation efforts and reduced rates of transmission
(“flattening the curve;” R-effective, or Reff). The epidemiological-
economic model subsequently simulates the number of jobs lost
within sectors and SESs under a range of outbreak severities. The
model is analogous to, and draws inspiration from, closed mass
balance or closed ecosystem models such as those employed in
thermodynamics and ecology respectively. SESs are treated as
complex networks of interacting industries or sectors, with
sectors having mutualistic relationships of supply and demand,
similar to the mutualistic interactions among species within
ecological communities. We take advantage of the considerable
body of work demonstrating the complex responses and
emergent properties of such systems to a variety of perturbations
[9–12], as well as the conceptual connections between ecological and
economic networks as complex systems [13].

2 Materials and methods

2.1 The CASES model

The counterfactual model, which we term the “business-as-usual
CASES (Complex Adaptive Socio-Economic Systems) model,” is a
compartmental network model that treats employment within an
industrial sector as a function of employment levels in all sectors,
mediated by the value of inter-industry exchanges. Each SES is
represented as a network of industrial sectors linked by the exchange
of goods and services between sectors (Figure 1B). The sectors
represent the major goods producing and services providing
sectors within the North America Industry Classification System
as utilized by the USBLS and CAEDD (Supplementary File S1).
These particular socio-economic systems were selected primarily
because of the availability of monthly employment data for the
fifteen major industrial sectors used by the USBLS to aggregate
economic activity in the United States during the relevant time
interval (February, 2020 to March, 2021). We used seasonally
unadjusted data [14, 15], and included the Agriculture industrial
sector (Total Farm) both for completeness of the data, and the
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importance of, albeit relatively smaller, farming components of the
SESs. Each sector is an aggregation of related industries; for example,
filmmakers, film distributors, and cinemas are all assigned to the
Leisure and Hospitality sector. There are economic exchanges both
between and within sectors, for example, Leisure and Hospitality
requires products from the Manufacturing and Wholesale Trade
sectors. The model postulates that the strengths of interactions vary
according to the mutualistic dependencies of supply and demand
between sectors.

The model also assumes that the number of employed workers
in a sector is a function of sufficient supply of necessary materials or
services to the sector, and the demand for its products and services.
Those supplies and demands are thus also functions of employment
levels in all sectors. The inter-dependencies are described with a set
of coupled ordinary differential equations (ODEs) (see below). If a
model SES is isolated from variations of external input and output
variables, such as external subsidies and consumer demand, the
system will reach an equilibrium in which employment within
sectors remains constant. Our approach is thus to isolate an SES
in this manner, and to then introduce a perturbation representing
the loss of workers to COVID-19 infection, specifically disabling
disease or death. The system of ODEs then measures, over time, the
cascading consequences of the outbreak as workers are lost to
infection, or jobs are lost because of the impact on inter-sector
supply and demand. Such cascades are well recognized and
unavoidable consequences of both networked systems (the inter-
industry network) and their internal feedback processes (e.g., the
partial regulation of sector activity by the activities of other sectors)
[16, 17]. The timing, frequency and magnitude of a cascade are often
hard or impossible to predict in complex systems on the basis of
input data alone, and forecasting can only be done with the analysis

or simulation of models that capture the salient features of such
systems.

The outbreak and progression of the disease is modelled with an
SIR epidemiological model (Supplementary Material). COVID-19
affects individuals differently based on age and pre-existing
conditions. We account for age dependencies by modeling the
disease dynamics of age classes within sectors, but unfortunately
there are insufficient data within sectors regarding exacerbating pre-
conditions, either medical or socio-economic (for example, income
levels), and how those interact with the disease to affect worker health.

2.2 SES networks

SES networks represent each industrial sector as a node (for
example, [18, 19]). Nodes are linked by exchanges of goods and
services, and all nodes or sectors interact economically. The inter-
sector links are bi-directional, representing the generally asymmetric
requirements between sectors. Link weights, which represent the
strengths of the interactions between two sectors, are derived from
the value of inter-industry exchanges for the United States during
2019 (US Bureau of Economic Analysis; Supplementary File S2), and
based ultimately on input-output evaluations [20]. Total sector
requirements are normalized, with all sector requirements,
including intra-sector trade, summing to 1. Normalization scales
all inter-sector interactions relative to each other, rendering them
dimensionless and more directly comparable to the total flux of
industry exchanges in the system. Furthermore, because the model
assumes that an unperturbed system is initially in a static
equilibrium, any subsequent deviations from that equilibrium are
trivially relative to unity, or one. Link weights are thus calculated as

FIGURE 1
(A) California metropolitan areas representative of SESs. Color bar shows the percentage of the total California workforce in February, 2020. (B) The
US inter-industry network. Link widths are scaled according to total inter-sector exchange strengths (μ in Eq. 3; see Materials and Methods;
Supplementary Dataset S2). Thicker links indicate stronger inter-sector dependencies. Note that “Agriculture” here is equal to employment listed as “Total
Farm” by the CAEDD.
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wij � qij∑S
n�1 qin + qni( ) (1)

where qij is the industry by industry total requirement, that is, the
amount of industry j’s production that is required by industry i. S is
the number of sectors. The input-output interactions are the
monetary values of the input to sector i from j, and output from
i to j. The resulting matrix W comprises the elements wij and wji

(Supplementary File S2), and is asymmetric, as the demands and
supplies between sectors are rarely equal.

2.3 Model outline

Employment in sector i is modeled as responding when external
drivers remove or add workers, or labour, to the sector. Here we
consider negative drivers only, that is, the loss of workers specifically
to mortality or long-term debilitating illness. If we represent those
drivers collectively as the rate at which a fraction of the employed
workforce is removed, and the internal dependence of the sector on
its own production, then the rate of change of employment is a
function of the magnitude of the removal rate.

Sector employment, however, is also a function of employment
in other sectors, per the SES network, and disease-driven reductions
in any other sector j therefore leads to further unemployment in i as
supply and/or demand decline. Those inter-sectoral interactions,
plus intra-sectoral dependencies (Eq. 2) are described as

dEi

dt
� −ϕiEi wii +∑S

j�1
wij

Ej

Ej 0( ) + wji
Ej

Ej 0( )( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (2)

where Ei is employment in sector i, ϕi is the rate at which the
employed workforce is reduced, S is the number of sectors (here
equal to 15; Figure 1B), and the terms within parentheses are the
inter-sector exchanges. The contributions of other sectors to Ei are
relative to their own initial employment levels at time t = 0, that is
(Ej/Ej(0)), and are weighted by the sector interactions (w). The
summation represents the weighted supplies and demands of all
other sectors respectively. Thus a downturn of employment in any
sector, including i, affects Ei, as mediated by the input-output
strengths. Relative employment of the other sectors (Ej/Ej(0), that
is, current employment (Ej) relative to initial employment (Ej(0)) is
used because our interest is not in the absolute number of employees
that have been lost in j, but rather in how far j has deviated from its
initial state. If there have been no changes to any other sectors, then
the terms sum to 1.

Equation 2 may be simplified to

dEi
*

dt
� −ϕiEi

* wii + ∑S
j�1

μijEj
*⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (3)

where En* is employment in sector n relative to the initial value, and
μij is the sum of wij and wji. ϕi ≥ 0 if workers are being lost to
COVID-19, and hence dEi

*/dt≤ 0 always. The entire SES network is
represented by 15 such coupled differential equations. Sectors and
the entire system remain in equilibrium if there is no disease,
because ϕ = 0 for all i. If, however, employed workers are lost in
any sector because of disease, that is, ϕj > 0, then those losses will

cascade or propagate to all other sectors with a relative intensity of
μijEj*.

With the outbreak of COVID-19 in a system, workers are
assumed to become infected at the same rate as the general
population (because no mitigating measures are implemented).
Subsequently, some workers are lost to death or severe,
debilitating illness, at rates based on those observed in the
general United States population. The number of workers so
affected is equivalent to the fraction of the Removed component
of an SIR model. The SIR model is parameterized using the
population size of the SES, and the expected infectious and
removal rates due to COVID-19 (Supplementary Section S1.1).
In other words, the SIR model of the impact of a COVID-19
outbreak in an SES is used to predict the number of workers affected.

2.4 Model simulation

Two sets of simulations were performed. First, we initially
simulated the scenario for each SES for 151 days, representing
the interval from March to August, 2020. Those simulations were
conducted under a broad range of potential outbreak intensities
(R0 = [0.9, 4.0]), thereby describing the response of an SES to the
range of R0 values that were estimated for the first wave of COVID-
19 in early 2020 (Supplementary Section S1.1.1). This permits both
exploration of how a particular SES would respond to any level of
initial infection (R0), and comparisons among SESs when subjected
to the same initial levels. Second, scenarios were also simulated for
365 days under the specific R0 that were estimated for each SES on
March 1st by the California Department of Public Health.

We estimated the number of individuals who died, or were
hospitalized because of severe long-term illness and subsequently
exited the workforce, using R0 and the time series of the Removed
component. Nationwide case fatality and hospitalization rates were
obtained from US CDC estimates (Table 1). For example, long-term
hospitalization rates and fatality rates among persons 65 years or
older were 186 per one million, and 88 per one thousand
respectively, whereas they were 40 per one million and two per
one thousand respectively for individuals 17 years and younger. The
Removed component in the SIR-CASESmodel was derived from the
fraction of an SES’s population that was employed in February, 2020,
assuming that COVID-19 dynamics among employed persons is the
same as those for the general population. The component is further
decomposed according to the mortality and hospitalization rates of
four age classes: 5–17 years, 18–49 years, 50–64 years and 65 years
and over (Table 1; Supplementary Section S1.1).

TABLE 1 Hospitalization and fatality per capita rates per worker age categories.

Age range (yrs.) Hospitalization rate Fatality rate

≤17 0.000040 0.0020

18–49 0.000047 0.0027

50–64 0.000101 0.0295

≥65 0.000186 0.0880
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ϕi, or the rate at which workers are lost to COVID-19, is
calculated for each time step (day) in the model as

ϕi t( ) � d + h( )|n|R
N

(4)

where d and h are death and hospitalization rates (Table 1) for age
category n, and |n| is the current size of or number of workers in n.
Then, the number of workers lost from each age compartment of a
sector was obtained by partitioning the SIR Removed compartment
according to sector age demographics. Mortality rates, and rates of
severe illness that do not result in death but require long-term (14+
days) hospitalization and are likely to result in unemployment, are
both fractions of Ei

*(t) and are combined to yield ϕi. The CASES
dynamics of each sector’s age compartment are then calculated
according to Eq. 3, and a sector’s total dynamics may be written as

dEi
*

dt
� −∑4

n�1
Ei,n* ϕi,n wii +∑15

j�1
μijEj

*( )⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦ (5)

where n is one of the four age compartments, and all simulations
were based on this final equation.We consider 1 March 2020 to be
very early in the outbreaks, and set an initial fraction of the
population that was infected in each SES at 0.00002. Thus, at the
beginning of a scenario the Susceptible fraction of the population is
0.99998, the Infected fraction is 0.00002, and the Removed fraction
is zero. An outbreak at any time t > 0 implies then that ϕi > 0, and all
sectors are affected by both a direct impact on Ei

*, and a cascading
impact through the SES network. The cascade is a function of

weighted inter-sectoral interactions, sector employment levels,
and the age structures of sector populations. A cascade captures
the expected changes to employment within a sector as trade both
within and between sectors declines because of lowered productivity,
supplies, and demands, driven by the loss of workers.

Simulation code was written in the Julia language, and is
available, with SES data, on the Open Science Framework,
https://osf.io/8jcau/. We have also made available an interactive
online application which re-creates the simulations reported here, at
http://cases.calacademy.org/. Both resources provide readers with
the capability to reproduce simulation data exactly as reported here.

3 Results

3.1 Economic cascades

Employment in each sector of an SES declined as workers were
removed because of illness or death (Figure 2A). There is little
differentiation among sectors when cascades are initiated because
the network is complete (that is, all sectors are connected) and
changes in any sector propagate quickly throughout the network
(Supplementary Figure S2). The magnitude of the decline of a sector
within an SES, or job loss ΔEi

* within sector i, depends on the
transmission rate, R0, and the age distributions within the sector. In
all instances, this decline increased non-linearly with increasing R0.
Those losses track the Removed compartment of the general
population, being dependent on the fraction of the general

FIGURE 2
Examples of model results using the Fresno SES. Results are for simulations run at R0 = 2.35, the estimated value on 1 March 2020. All trajectories in
each plot are normalized against the initial values in the simulation, and are relative only to the other trajectories in the same plot. (A) Declining sector
employments (blue) and total SES employment (red). (B) Employment cascade in the Manufacturing sector, disease-driven (blue) and subsequent
cascade (red). (C) Cascades of the Education and Health sector (blue) and Manufacturing sector (red). (D–F)—Disease-driven and employment
cascades for R0 = 2.0, 2.5 and 3.0 respectively.
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population that was employed in February, 2020. The extent to
which a sector declines within an SES depends on two factors. First,
sectors with relatively greater fractions of older workers are affected
more severely by the disease because older workers are more likely to
be hospitalized and have higher fatality rates. Second, sectors that
interact more strongly with such age-vulnerable sectors are
subsequently also affected to a greater extent. For example,
Manufacturing shows the strongest decline (Figures 2A, B) in
several SESs, including Fresno, Stockton-Lodi, and Oxnard-
Thousand Oaks-Ventura, partly because the average age in that
sector is greater than in others. Compare it to the Leisure and
Hospitality sector in Fresno (Figure 2C), which is both “younger”
than Manufacturing, and has overall weaker interactions with other
sectors (Figure 1B). The fraction of workers in Manufacturing aged
over 50 years ranges among SESs from 34.1% to 43.8%, whereas the
range for Leisure and Hospitality is 21.0%–28.4% (Supplementary
File S1).

The divergence, or gap, between the disease-only and
economically propagated forecasts—that is, death and severe
illness versus cascading job losses—as well as the magnitude of
the cascade, are functions of both R0 and SES network structure, and
all the SESs examined exhibited qualitatively similar responses to
outbreaks. Losses accumulate over time, but approach limits
asymptotically (Figure 2D). The limits of disease-only losses are
set by the course of an outbreak and are reached when there are no
more susceptible individuals remaining in a population. Those limits

in turn set further constraints on the total number of workers lost,
including unemployment driven by declines of production, that is,
the economic cascade. Cascades grow linearly at low values of R0,
i.e., outbreaks of lower intensity, but accelerate relative to disease-
only losses as R0 increases (Figures 2D–F). Further incremental
increases of R0 eventually lead to abrupt accelerations of cascades,
resulting in dramatically greater unemployment than would be
predicted by extrapolation from less intense outbreaks (Figure 2F).

3.1.1 Economic tipping points
All SESs in our study exhibit these abrupt accelerations with

incremental increases of R0, or tipping points [21], but differ both at
which values of R0 they transition between regimes of linearly
growing cascades to tipping point cascades, as well as the
magnitudes of the cascades (Figure 3; Supplementary Figure S3).
The tipping point behavior of each systemmay thus be characterized
by the relationship between R0 and the magnitude of a cascade.
Because ΔE*, the gap between an initial loss of workers and the
subsequent cascade, asymptotes rapidly with increasing R0, we
summarized the expected reduction of employment in each SES
as the growth rate and asymptotic value of ΔE* on day 151 as a
function of R0 (Figure 4). Both values were estimated using a least
squares fitted logistic function of E* vs. R0 profile on day 151
(Figure 4A; Supplementary Table S2). Forecasts of E* ranged
from a high of 95.6% of February, 2020 employment (Riverside-
San Bernardino-Ontario) to 86.3% (Fresno). E* scales negatively

FIGURE 3
(A) Fresno disease-driven (grey) and employment cascades (colored) for R0 ranging from 0.9 to 4.0. (B) The Los Angeles-Glendale-Long Beach SES.
(C) The wedge represents the Fresno gap between disease-driven and economic cascade reductions of employment illustrated in (A), visualizing the
magnitude of the cascade. (D) Same visualization as in (C), for the Los Angeles—Glendale—Long Beach SES.
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with initial employment and location (Figure 4B), with larger,
coastal systems experiencing relatively fewer job losses (Pearson’s
correlation, E* and log-transformed E(0), r2 = −0.712, p = 0.014, α =
0.05) and slower rates of increasing E* with increasing R0 (Pearson’s
correlation, r2 = −0.736, p = 0.01). Neither logistic coefficient, growth
rate, or asymptotic value was significantly correlated with SES age
structure. The mid-point of the logistic relationship between E* and
R0 (Figure 4A) is the point at which an incremental change of R0

generates the largest change in the economic cascade. SES mid-
points are significantly correlated with the logarithm of system size
(Pearson’s correlation, r2 = 0.728, p = 0.017) and range from 2.33 to
2.37, with larger SESs having higher thresholds of R0 (Table 2;
Figure 4B) below which the cascading effects of outbreaks are
relatively smaller. R0 of 2.3–2.4 is therefore an economically
critical threshold range, or tipping points, for outbreak intensity
for the California SESs.

FIGURE 4
(A) Cascade magnitude (red dots), or the difference between
disease-driven and economic cascade reductions of employment, on
day 151, at values of R0 ranging from 0.9 to 4.0, for the Fresno SES.
Solid blue line is a fitted logistic function. The horizontal dotted
line is the asymptotic value of the function. The vertical dotted line is
the point of maximum increase of the function (inflection point),
showing the corresponding value of R0. (B) Inflections points and
asymptotic values for all SESs, showing that SESs with lower inflection
points, that is, critical values of R0, also experience greater reductions
of employment. Symbol size scaled to number of workers per SES.

TABLE 2 SES size (number of employees on 1 March 2020), critical values of R0
(logistic inflection point), and asymptotic cascade value, that is, the fraction of
employment reduction as R0 approaches 4.0.

SES Size Critical R0 Asymptote

Oakland 1,181,500 2.371 0.052

San Francisco 1,192,900 2.357 0.087

San Jose 1,156,500 2.356 0.09

Fresno 401,000 2.329 0.137

Stockton 258,300 2.341 0.112

Oxnard 337,400 2.357 0.082

Los Angeles 4,636,800 2.357 0.051

Anaheim 1,679,600 2.368 0.059

Riverside 1,562,900 2.372 0.044

San Diego 1,524,000 2.361 0.073

FIGURE 5
Principal components analysis ordination of SESs by employment
levels per sector, February, 2020. Each SES is represented by a
visualization of its economic cascade under the business-as-usual
model, equivalent to examples illustrated in Figures 3C, D.
Eigenvector elements represent the contribution of each sector to the
ordination and are projected onto the principal component space
(arrows), thus explaining sector contributions to relative SES
ordination. PC 1 is thus shown to be a contrast between the
Agriculture sector and all others, while PC 2 is a gradient of increasing
goods producing versus services providing sectors. Arrow length is
proportional to the influence of the sector on the ordination. SESs:
1—Oxnard-Thousand Oaks-Ventura; 2—Fresno; 3—Stockton-Lodi;
4—Riverside-San Bernardino-Ontario; 5—Los Angeles-Glendale-
Long Beach; 6—San Diego-Carlsbad; 7—Anaheim-Santa Ana-Irvine;
8—San Jose-Sunnyvale-Santa Clara; 9—Oakland-Berkeley-
Livermore; 10—San Francisco-San Mateo-Redwood City.
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3.2 System structure

We searched for SES structural features that might explain the
dependence of relative unemployment and tipping points on
system size using a principal components analysis (PCA) of
initial sector employment. SESs were characterized by the
number of workers in each sector, and the PCA was performed
on the covariance matrix of sector employment per SES. The first
two principal components account for 89.6% of the variance, with
PC1 being the most important (79.1%). SESs are aligned with
PC1 and ordinated significantly according to SES sizes (Pearson’s
correlation, SES size and PC1, r2 = 0.889, p = 0.0006), but an
examination of sector loadings—the contribution of each sector to
SES principal component coordinates—shows that it is not size per
se that explains the ordination. The Agriculture sector aligns
negatively with PC1 (Figure 5), whereas all other sectors align
positively (Table 3). This reveals a strong contrast between SESs
with relatively large agricultural sectors, compared to non-
Agriculture sectors. PC2 ordinates SESs along a spectrum
ranging from goods producing sectors, such as Agriculture, and
Mining and Logging, to service providing sectors, such as
Financial, and Health and Education, but PC2 accounts for
significantly less variation (10.5%). The contrast along PC1 is
also significantly correlated with the rate at which cascades
grow when an SES is perturbed by COVID-19, as illustrated by
the thicknesses of the “wedges” in Figure 5 (Pearson’s correlation,
growth rate of logistic functions and PC1 coordinates, r2 = 0.777,
p = 0.0081). This demonstrates that the structure of an SES, or the
relative apportionment of workers among industrial sectors, is a
primary determinant of the extent to which COVID-19 driven
unemployment could cascade through the system.

Structural differences among SESs also illuminate the
contributions of relative sector size to total cascade magnitude.
The tipping point and maximum unemployment (asymptotic
level of previous section) of an SES are dependent on the
structure of the SES as revealed by multivariate regression of
those values on PC1 scores (multivariate regression of rate and
asymptote, Supplementary Table S2, on PC 1; p = 0.004 and p <
0.001 respectively; Supplementary Table S3), with both rate and
asymptote declining, or becoming less severe, with increasing
PC1 score. Notably, sector sizes within an SES do not account
for all the inter-SES variation, as several sectors have no significant
relationship between size and cascade unemployment, for example,
Retail Trade, Education and Health Services, Leisure and
Hospitality, and Other Services. Those sectors have amongst the
weakest interactions with other sectors (Figure 1B). In contrast,
Manufacturing, which interacts strongly with all sectors, is also the
most sensitive to COVID-19 perturbations. There is a significant
correlation between sector average interaction strength and the
ranking of sectors according to their contributions to the overall
SES cascade (Pearson’s correlation, r2 = −0.95, p = 0.0001;
Spearman’s rank correlation, ρ = −0.878, p = 0.0018). Thus, the
response of a sector depends on both the structure of the SES within
which it is embedded, including its size and the apportionment of

TABLE 3 Principal components loadings of sectors on the first two principal
components.

Sector PC1 PC2

Total farm −0.1616 0.6093

Mining and logging 0.137 0.6388

Utilities 0.252 0.0132

Construction 0.2802 0.0333

Manufacturing 0.2634 0.0139

Wholesale trade 0.28 0.1301

Retail trade 0.2859 0.1265

Transportation and warehousing 0.2159 0.1562

Information 0.2418 0.286

Financial 0.2769 0.132

Professional and business 0.2735 0.1946

Education and health 0.2874 0.0579

Leisure and hospitality 0.287 0.0077

Other 0.2891 0.0259

Government 0.2801 0.1439

FIGURE 6
(A, B) R0 and Reff trajectories superimposed on business-as-
usual model forecasts of SES relative employment (colour
spectrum). R0 trajectories (straight black line) indicate model
outcome if transmission rates on 1 March 2020 had remained
unchanged, whereas Reff trajectories (green lines) show actual SES
histories. (A) Fresno, (B) Los Angeles-Glendale-Long Beach. Note
that in both (A, B), the unmitigate R0 trajdctories would cross the
threshold or tipping point (transition between yellow and redder
regions) leading to accelerated job losses.

Frontiers in Physics frontiersin.org08

Roopnarine et al. 10.3389/fphy.2023.1074704

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1074704


labour among sectors, as well as the strengths of its interactions with
other sectors.

3.3 R0, Reff and critical thresholds

Specific forecasts of the real world performance of each SES
requires a specific set of initial conditions. We therefore extracted
from the ensemble simulation results of each SES, the outputs that
correspond to the real world R0 estimate for that SES. Thus, although
simulations were performed across a range of potential R0 values of
[0.9, 4.0] to facilitate comparison among SESs, simulations were also
performed based on the actual R0 estimates for each SES, to facilitate
comparison between model predictions for an SES to actual
employment figures. California R0 estimates for all the SESs [22]
ranged between 1.59 (San Jose-Sunnyvale-Santa Clara) and 2.63
(Stockton-Lodi) at the beginning of March, 2020 (Supplementary
Table S1), meaning that initial outbreaks in California would have all
sustained positive growth (R0 > 1). Transmission rates subsequently
followed more complicated trajectories because of measures
intended to mitigate transmission, as well as variable societal
adherence to those measures (Figure 6). Included in the measures
were the mandated closures of non-essential workplaces. Thus,
effective transmission rates, Reff, are generally lower than the
initial transmission rates, R0. The business-as-usual model shows
that reductions of employment, however, are an unavoidable
consequence of the disease, even if workplaces remained open
(see earlier Results), because losses include workers lost to both
the disease, and to the cascading secondary negative economic
impacts of those primary casualties.

The model also projects what the losses would be at a particular
value of R0 in the absence of mitigating measures. The actual R0

values of the SESs imply that over time many of the systems would
have encountered the tipping points predicted by the model to occur
at greater outbreak intensities if transmission rates had remained
unchanged or higher (Reff ≥R0) (Figure 6). However, the real-
world negative divergence of Reff from R0 in all the SESs, a direct
consequence of mitigation efforts and the reduction of transmission
rates, resulted in all systems avoiding the dramatic tipping points
and cascades of declining employment predicted by the CASES
model (Figure 6).

3.4 The counterfactual scenario

Identifying the complexity andmultiple, interrelated factors that
underlie the model predictions begs the counterfactual question of
how well the economy might have fared if a business-as-usual
approach had been adopted. We framed this question on the
scale of long-term unemployment (6–12 months) by extending
model simulation to 365 days, and using the real-world SES R0

values. Viewing all the SES’s collectively by summing their model
results, total job losses would have reached 720,929 by 1 December
2020, representing a 5.17% reduction relative to 1 March 2020. Of
that total, 565,374 would be due not to direct impacts of the disease
(severe illness or death), but instead to the cascading effects of
declining inter-sector interactions. The model predicts that by
March, 2021, those numbers would have grown to a total loss of

756,152 employees, representing 5.43% of total SES employment at
the onset of the pandemic (Figure 7A), with 586,185 of those being
due to declining inter-sector interactions. As of December, 2020, the
true total number of jobs lost in the SESs was actually greater,
equalling 983,200 (a 7.1% reduction); according to the simulations, a
business-as-usual approach would therefore have spared
≈262,271 jobs.

The sum of the simulated predictions is lower than
unemployment at the height of the Great Recession, when
California’s total unemployment surpassed 12% in 2010 [23].
It would nevertheless be among the highest levels of
unemployment since the Great Recession. Furthermore,
employment by December, 2020 had already recovered
substantially from the steep initial losses in every SES between
March and April (Figure 7; Supplementary Figure S4). The total
proportional loss among all the SESs between March and April,
2020 was 13.54%. Employment began to recover in May, 2020,
but the rate of recovery has varied among SESs, and in all cases
peaked prior to December, 2020, subsequently declining again.

4 Discussion

The CASES model confirms, for every SES to which it was
applied, the hypothesis that severe job loss is an unavoidable
outcome of COVID-19 outbreaks. Illness and death of workers
reduce sector productivities. The networked nature of the sectors
ensures that those primary losses will have cascading effects
throughout a system, and that the cascades are system-wide
because all sectors are connected.

The magnitude of a cascade depends on four factors. First, the
intensity of an outbreak, equivalent here to the initial transmission
rate, R0. The higher the transmission rate, the more workers who
become severely ill (or die) and the more rapid the acceleration of a
cascade. Second, the age demographics of a sector determine the
primary impact of an outbreak on the sector. The greater the
number of workers 50 years and older, the greater the primary or
direct impact of the disease. Third, although all sectors are
connected to each other by supply and demand exchanges, the
extent to which the primary impact of an outbreak in one sector will
cascade to a secondary impact in another is mediated by the
strengths of the exchanges between those sectors. Thus, sectors
with stronger interactions will both transmit and receive stronger
secondary cascades. Fourth, cascades are affected by the overall
structure of an SES, notably the total number of workers, and how
those workers are apportioned among sectors (relative sector sizes).
The relationships between relative sector sizes and total system size
reflect the relatively more dominant role of Agriculture in smaller or
inland systems, with an increasing dominance of services-providing
sectors as system size and proximity to the coast increase (Figure 5).
This reflects the general trend of coastal socio-economic systems in
California being both larger than inland systems, and having
relatively larger service sectors, such as Information and
Financial Services, or larger sectors that are dominated by
services, such as Leisure and Hospitality. The trend is
significantly correlated with the relative magnitudes of the
secondary cascades of job loss, with larger and more service
oriented SESs experiencing relatively smaller cascades.
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4.1 California job losses

Overall, if COVID-19-driven unemployment in California
peaked early in the pandemic, and a potential recovery began
during the summer of 2020 [24], then the total unemployment
generated by a business-as-usual approach would be less than the
real unemployment that was incurred under mitigation conditions
(Figure 7A), but by the slim margin of 1.93%. The true cost of a
business-as-usual scenario, however, is greater than indicated by this
simplistic comparison of model predictions and real unemployment.
There are two additional damages that must be considered.

First, unemployment would be distributed disproportionately
among the SESs relative to the sizes of their employed populations,
and their geographic locations. Real unemployment exceeded model
forecasts in most SESs (Supplementary Figure S4), consistent with
the overall result explained above. For example, by December,
2020 true unemployment in the San Francisco-San Mateo-
Redwood City SES exceeded the model estimate by 15,167

(Figure 7B). Smaller SESs however, which in some instances
correspond to California’s inland cities, would in general respond
differently. Fresno (Figure 7C), Oxnard-Thousand Oaks-Ventura
(Figure 7D) and Stockton-Lodi (Supplementary Figure S4), three
systems forecast by the PCA to be most vulnerable to disease-driven
cascading unemployment (Figure 5), had actual unemployment
levels by August, 2020 lower than model forecasts. This suggests
that for those SESs, a business-as-usual scenario would have been
worse than the real-world experience. In general, SES responses are
variable enough to support the development and application of
mitigation policies that pay attention to the variability among SESs
based on their size, economic structure, and location.
Unemployment generated by a business-as-usual approach would
therefore have mixed impact throughout the state, benefiting some
regions, while costing others. This is consistent with arguments that
at the sub-national level it is important to consider geographically
correlated variation when examining the economic impacts of
COVID-19 [25].

FIGURE 7
Comparisons of unemployment forecast by the business-as-usual model and actual unemployment of March to December, 2020. (A)—all SESs
combined; (B)—San Francisco-SanMateo-RedwoodCity; (C)—Fresno; (D)—Oxnard-ThousandOaks-Ventura. Actual unemployment is depicted by solid
red lines, connecting actual monthly estimates (red circles). Model forecast unemployment of the business-as-usual scenario is the solid grey line, while
the red line is actual unemployment. Model unemployment is partitioned between losses to the disease because of death or long-term illness, and
unemployment caused by the cascading economic consequences; black and grey filled areas respectively.
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Second, an unmitigated business-as-usual approach to the
disease, while sparing jobs overall, would incur significant losses
of life and health. Ultimately, the model’s economic downturns are
driven by workers who die or become too ill to continue or return to
work, with simulated statewide totals of 155,555 by 1 December
2020, and 169,967 by March, 2021, including 155,088 and
169,450 fatalities respectively. Model unemployment prior to
economic cascades is dominated by death because of the
disparities of case fatality rates among age categories: a majority
of younger workers who contract the disease recover fully, whereas a
majority of older workers experience severe illness or death. The
totals are also based on workers only, and do not account for illness
and mortality in the broader SES populations. As of March, 2021,
actual total COVID-19 related deaths in California were fewer,
≈57,000. The business-as-usual approach would therefore,
according to the CASES model, have generated additional deaths
in excess of 100,000 workers.

In contrast to the un-quantifiable ethical and sociological costs
of an unabated pandemic, the economic cost of a business-as-usual
policy can be estimated using Value of Statistical Life (VSL)
estimates (United States Office of Management and Budget
2003). We used VSL estimates to speculate what the scenario
could cost the California economy if employees worked in
increasingly risky environments [26]. Various current US
Government VSL estimates align roughly at $10 million per
person [27]. The estimated cost to the California economy under
a business-as-usual scenario would therefore have been $1.55 trillion
by December, 2020, increasing to $1.7 trillion by March, 2021,
coupled with the 155,088 and 169,450 worker fatalities respectively.

4.2 Model assumptions, limitations and
future research

There are several assumptions and nuances of the model that
constrain its applicability. First, the model excludes falling consumer
demand as a perturbation. Real and anticipated declines of demand
certainly affected industries severely, for example, the Leisure and
Hospitality sector, which includes travel, restaurants, hotels,
museums, and so forth. Our justification for exclusion is that
falling demand itself is not a primary outcome of contracting the
disease, and that many of the impacts are compounded by the
closure and restriction of various industries, for example, travel
bans. Nevertheless, even if business had continued as usual, there
would be consumer reluctance to participate in certain activities,
such as boarding a crowded airplane or cruise ship, or attending a
crowded museum. Incorporating those effects into our model would
steepen the forecasted job losses, in fact narrowing the gap between
the predictions and reality in cases where real unemployment was
greater. The “gap” exists because of supply and demand shocks.
Recent work measuring those shocks on a national scale [28]
suggests that incorporating those factors into our model may
become feasible at the regional scale in the near future.
Furthermore, initial stock market and industry reactions to
anticipated economic downturns add a conservative constraint to
our predictions. Those reactions undoubtedly contributed
significantly to job losses in California during March-April, 2020.
Estimated statewide transmission rates (R0) were low, ranging

between 0.9 and 2.57 [22], and the number of cases (8,233) and
deaths (27) were also low [29]. Accelerated job losses and cascading
effects to that point were therefore generated by layoffs driven by
anticipated declines of economic activity, and not by the disease
itself. Nevertheless, although data uncertainty and unavailability
mean that model predictions should not be treated as precise
numerical predictions, we assert our conclusions are qualitatively
accurate.

An additional concern is that we treat SESs as independent
entities, when in fact they are parts of an integrated and nested
economy at the state, national and global levels. Our analysis shows
that there are important structural differences and economic
responses among the SESs that would be missed if SESs were
aggregated at higher organizational or geographic levels, thus
overlooking important issues of scale, geographic and economic
heterogeneity that have been highlighted and exacerbated by this
disease [25, 30–33]. Nevertheless, given that trade is not limited to
isolated SESs, the question arises of what the model dynamics could

FIGURE 8
Comparisons of unemployment forecast by the business-as-
usual model and actual unemployment of March to December, 2020.
(A)—California state; (B)—United States. The key to the plots are
explained in Figure 7.
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be were our SESs integrated into the full state and national networks.
That analysis is clearly beyond the scope of the current paper, but we
can examine the model dynamics and forecasts of aggregated
California and total United States systems treated as single SESs.
We therefore compiled data for each industrial sector at the
California state, and national levels, and simulated the CASES
model for each. Interestingly, though perhaps not surprisingly,
the dynamics of the total California state SES, although much
larger in size than any individual SES, resembles most closely
those of its large coastal SESs, such as San Francisco-San Mateo-
Redwood City and Los Angeles-Glendale-Long Beach (Figure 8A;
Supplementary Figure S4); model forecasts are not as steep as the
actual reduction of employment, but the gap narrows considerably
during the interval of May-December, 2020. This can be explained
by the numerical dominance of the coastal cities in the state SES, the
differently structured economies of both the state and cities that
feature services prominently, and a gradual acceleration of the
model outbreak because of initially low values of R0. In contrast,
the dynamics of the national SES resembles California’s inland and
smaller SESs (Figure 8B). This results from both the greater
representation of goods production at the national level, as well
as the more severe consequences of the disease at the national level,
given an R0 estimate for the country of 4.97 in early March, 2020,
compared to the estimate for California of 2.01.

Finally, the persistence of COVID-19 suggests two areas of
future research. First, there have been multiple waves of varying
severity since the initial year of the pandemic. It is possible that
extending the counterfactual scenario presented here would suggest
longer term economic strategies that could be adopted to better
address long-term shocks to socio-economic-health systems.
Second, there is the question of whether economic losses,
specifically unemployment, affected progression of the disease
itself. Such processes would represent feedback from the CASES
model to the SIR model. Possible mechanisms facilitating that
feedback could be, for example, a slowing of the epidemic
because newly unemployed workers would be at a reduced risk
of exposure and hence infection. Alternatively, rates of infection
could accelerate because those workers might experience greater
residential crowding and therefore increased risks of exposure. It is
likely that both mechanisms operated in different socio-economic
settings. A coupled CASES-SIR model is beyond the scope of the
current paper, but presents an interesting avenue of future research.

5 Conclusion

The extent to which economic shutdowns should be
implemented to combat outbreaks or resurgence of COVID-19
remains a contentious issue. Here we explored a counterfactual
scenario in which California adopted a no shutdown, business-as-
usual approach during the first year of the pandemic. Model
predictions of job losses for seven large, coastal Californian
socio-economic systems with economies dominated by services,
such as financial and recreational, were lower than actual job
losses. In contrast, smaller and/or more inland systems, where
goods production is a larger economic component, are predicted
to suffer more under the counterfactual scenario. Overall, California
may have experienced lower pandemic-driven unemployment

under a business-as-usual approach, but the experience would
have been geographically heterogeneous, and it would have
come at a cost. Simplistic prioritization of the economy over
the health emergency, while possibly lessening economic losses,
would nevertheless have resulted in an economic downturn,
coupled with greatly increased health consequences of the
disease. Fewer jobs would have been lost, but at the expense
of the health and lives of tens of thousands of workers. In
addition to the moral and societal costs of that impact, future
recovery would be hampered by a smaller, younger and less
experienced post-pandemic labour force.

The variance of predicted outcomes among SESs subjected to the
counterfactual scenario, suggests that combining local structural
economic data with dynamic epidemiological and economic models
could form a basis for flexible policies going forward that are
strategically designed to disrupt the spread of pandemics and
simultaneously adhere to the highest and most compassionate
moral and societal standards, even while minimizing inevitable
economic damage. California eventually developed a county by
county re-opening strategy based on positive case counts, an
approach that appears to be epidemiologically effective [34]. Our
work supports the adoption of similarly nuanced strategies to
manage economic impacts.
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