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Although free-space optical communication (FSOC) is a promising means of high
data rate satellite-to-ground communication, beam distortion caused by
atmospheric optical turbulence remains a major challenge for its engineering
applications. Accurate prediction of atmospheric optical turbulence to optimize
communication plans and equipment parameters, such as adaptive optics (AO), is an
effective means to address this problem. In this research, a hybrid multi-step
prediction model for atmospheric optical turbulence, EMD-Seq2Seq-LSTM, is
proposed by combining empirical mode decomposition (EMD), sequence-to-
sequence (Seq2Seq), and long short-term memory (LSTM) network. First, using
empirical mode decomposition to decompose the non-linear and non-stationary
atmospheric optical turbulence dataset into a set of stationary components for
which internal feature information can be easily extracted significantly reduces the
training difficulty and improves the forecast accuracy of the model. Second,
sequence-to-sequence is combined with LSTM networks to build a prediction
model that can eliminate time delay and make full use of long-term information
and then use themodel to predict each component separately. Finally, the prediction
results of each component are combined to obtain the final atmospheric turbulence
forecasting results. To validate the performance of the proposed method, three
comparative models, including WRF, LSTM, and sequence-to-sequence-LSTM, are
demonstrated in this study. The forecasting results reveal that the proposed model
outperforms all other models both qualitatively and quantitatively and thus can be a
powerful method for atmospheric optical turbulence forecasting.
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1 Introduction

The free-space optical communication (FSOC) has attracted
increasing attention because of the ever-growing demand for high-
data-rate data transmission [1, 2]. Compared to traditional microwave
communication, FSOC offers high communication rate, small size,
low power consumption, and strong confidentiality, which can largely
satisfy current applications, especially satellite-to-ground
communications [3–6].

However, optical propagation is significantly impacted by
atmospheric optical turbulence. Optics passing through non-
negligible distances in the Earth’s atmosphere are affected by
atmospheric optical turbulence, which results in beam diffusion at
high spatial frequencies, beam wanderings at low spatial frequencies,
and intensity variations (scintillation) [7–11].

The integrated strength of atmospheric optical turbulence along
the line of sight is usually defined as Fried parameter (r0) [12, 13]. The
measurement and forecasting of atmospheric optical turbulence is
important because it can help optimize the satellite-to-ground
communication schedule and provide optimum parameters for the
amount of adaptive optics compensation needed to correct for
aberrations [14, 15].

At present, research on atmospheric optical turbulence forecasting
has become increasingly extensive and in-depth. The forecasting
methods can be divided into two categories: physical methods and
machine learning methods.

The physical model is based on the Monin–Obukhov similarity
(MOS) theory to establish the relationship between meteorological
parameters and atmospheric optical turbulence and then uses
meteorological forecast parameters to forecast atmospheric optical
turbulence. In addition, meteorological forecast parameters can be
produced by a numerical weather prediction (NWP) model.

Numerous studies have been conducted based on the physical
model over different application areas and environment: an
atmospheric non-hydrostatic model Meso-Nh conceived to provide
3D maps of the classic meteorological parameters and reconstructed
atmospheric optical turbulence profiles [16–20]; an improved outer-
scale model based on measurement had been used to calculate
atmospheric optical turbulence in Lhasa and achieved high
agreement between the model and the actual measurement results
[21]; atmospheric optical turbulence near the surface of the ocean was
calculated using the bulk model and meteorological parameters
predicted by the WRF model [22]; the diurnal behavior of
atmospheric optical turbulence was simulated during summer over
the entire Antarctic Plateau using the Polar WRF model coupled with
the MOS theory [22, 23]. To solve the problem of limited prediction
accuracy of physical models in complex terrain areas, a method
referred as site learning has been proposed that uses local
measurements to improve predictive turbulence models and better
consider site-specific local characteristics [24, 25].

Despite the widespread application of physical models over the
past decades and the impressive achievements gained, physical models
often failed to provide reliable atmospheric optical turbulence
predictions, in part because they are constrained by the forecast
accuracy of meteorological data and in part because the
relationship between meteorological data, such as the vertical
distribution of atmospheric temperature, water vapor, and wind
fields, and the atmospheric optical turbulence varies over spatial
and temporal scales.

With the development of artificial intelligence techniques,
machine learning models have become important in the forecasting
of atmospheric optical turbulence. Complex and deep network design
brings about powerful non-linear and complex mapping capabilities
which give machine learning methods better performance. Machine
learning methods can be further divided into two types: regression
models, which rely on a large number of historical data for
constructing input (meteorological parameters)/output
(atmospheric optical turbulence) mapping functions, and
autoregressive models, which are time-series models that are
trained to obtain the variables’ change patterns over time.

A regression model is trained on time-correlated weather and
atmospheric optical turbulence measurements and then applied to
weather forecasts from NWP data sources to yield an atmospheric
optical turbulence forecast. Cherubini et al. [26] presented a
classification (logistic regression) algorithm and regressor
algorithm to translate the MKWC experience into a forecast of
the nightly average atmospheric optical turbulence. Bolbasova
et al. [27] proposed the application of a neural network, one of
the earliest deep-learning techniques, to predict the surface-layer
refractive-index structure constant. In [28], a backpropagation
neural network optimized using a genetic algorithm (GA–BP) is
used to estimate atmospheric turbulence profiles in marine
environments. Although machine learning methods can
accurately construct non-linear and highly complex mapping
relationships between meteorological parameters and atmospheric
optical turbulence, their prediction accuracy is still limited by the
accuracy of meteorological data forecasts.

Autoregressive models are more suited for short-term forecasts
of atmospheric optical turbulence based on past observations.
Typical autoregressive models include the autoregressive
integrated moving average (ARIMA) approach and the filter
method. The ARIMA model is trained on a huge quantity of
historical data to simulate the temporal dependency of
atmospheric optical turbulence, and then the historical data are
used to predict short-term atmospheric optical turbulence [29]. The
filter method takes into account, simultaneously, the forecast
obtained with non-hydrostatical mesoscale atmospheric models
and the real-time measurements to help in removing potential
biases and trends which have an impact on short-term
atmospheric optical turbulence forecasting [30, 31].
Autoregressive models are revealed to be extremely efficient in
improving the forecast accuracy on short time scales and usually
have a simple model structure, quick calculation speed, and good
interpretation capability. However, autoregressive methods suffer
from lagging effects, and the accuracy of the prediction decreases as
time increases. In addition, the autoregressive method is poor at
capturing non-linear behaviors in the time series, so it cannot adapt
to changing atmospheric turbulence and cannot accurately predict
sudden changes.

In this paper, a complex deep learning network, LSTM-based
Sequence-to-Sequence (Seq2Seq), combined with data preprocess
techniques such as empirical mode decomposition (EMD) was
proposed as a solution to the forecasting problem of atmospheric
optical turbulence. We used EMD to decompose the observed
atmospheric optical turbulence datasets into several subsequences,
and then Seq2Seq with an attention model which had a hybrid LSTM
structure was built for each subsequence to forecast atmospheric
optical turbulence.
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2 Materials and methods

2.1 Empirical mode decomposition

Atmospheric optical turbulence is non-linear and non-
stationary, and decomposition is a prominent technique for
dealing with such datasets. Traditional decomposition techniques,
such as the Fourier transform, lose much information when
decomposing non-linear and non-stationary datasets, resulting in
distortion of the analysis results [32]. Huang et al. [33] proposed a
strong adaptive and fully data-driven time-series decomposition
technique, EMD, whose main idea is to use Hilbert–Huang
transform (HHT) to decompose the non-linear and non-
stationary datasets until the final datasets are stationary.

EMD decomposed the datasets into a certain number of intrinsic
mode functions (IMFs), which reduces the complexity of original
datasets and makes each component interpreted clearly. Two
conditions need to be satisfied for each IMF: 1) the number of
extreme values (the sum of the maximum and minimum values)
and the number of zero-crossings across the data series must be equal
or deviate by nomore than 1; 2) at any position, the average of the local
maximum envelope and the local minimum envelope equals 0.

Based on the aforementioned constraints on IMFs, we can then
decompose the dataset according to the process shown in Figure 1, and
the decomposed datasets are shown in Eq. 1 as

y t( ) � ∑n
i�1
Imfi t( ) + r t( ) (1)

where y(t) represents the original dataset, Imfi(t) represents
decomposed datasets, n represents the number of IMFs, and r(t) is
the final residual.

2.2 LSTM-based sequence-to-sequence

Long short-term memory (LSTM) is a special type of recurrent
neural network (RNN) that can solve the problem of gradient
disappearance or gradient explosion and thus has the ability to
learn long-term information [34–37]. The basic structure of the
LSTM cell contains three parts: forget gate, input gate, and output
gate. Each LSTM cell updates six parameters per iteration, and the
detailed algorithms are shown as follows:

ft � σ Wfht−1 + Vf + bf( ) (2)
it � σ Wiht−1 + Vixt + bi( ) (3)

c̃t � tanh W�cht−1 + V�cxt + b�c)( (4)
ct � ct−1 · ft + it · c̃t (5)

ot � σ Wo ht−1, xt[ ] + bo( ), (6)
ht � ot × tanh ct( ) (7)

where xt represents input data; ht, ct, and ft are the hidden state, cell
state, and output state, respectively; W and V represent the weight
matrix; b is bias coefficient; and σ and tanh are the activation function.

LSTM can address the challenge of long-term dependence, but
there is a lag effect in the prediction results, especially when making

FIGURE 1
Flowchart of empirical mode decomposition.
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multi-step predictions, and in addition the accuracy of LSTM model
predictions decreases over time. Cho et al. [38] proposed a conditional
autoregressive model called encoder–decoder or sequence-to-
sequence that can effectively solve these problems.

The LSTM-based sequence-to-sequence (Seq2Seq-LSTM) model
learns multi-step time-series simultaneously and is able to process a
sequence from one domain to another, thus outlining sequences from
different time series with different cluster lengths to each other
[39–43]. Figure 2 shows a Seq2Seq-LSTM model structure where
an input sequence with m steps can be encoded, and the encoded
output is stored in a cell called a state vector, which is then used as an
input to a decoder LSTM and time-distributed dense layer, resulting in
a final output of n-step predictions.

2.3 The proposed method EMD-Seq2Seq-
LSTM

After discussing each key constituent separately, the detailed
description of the proposed model EMD-Seq2Seq-LSTM can be
concluded as follows and is shown in Figure 3.

Step 1: Collect the original atmospheric optical turbulence
dataset X � x1, x2, . . . , xN{ }

Step 2: Decompose the obtained atmospheric optical turbulence
dataset into several groups of stationary IMFs and residuals
based on the EMD algorithm. In general, no more than five
IMFs are decomposed by EMD since too many components
may be over-decomposed, reducing the accuracy and adding
unnecessary computing complexity.

Step 3: Plot the partial autocorrelation coefficient figure (PACF) of
each component and select the best predict target for the
Seq2Seq-LSTM model.

Predicted targets for the LSTM model.

Step 4: Predict each component using the Seq2Seq-LSTM model.
Step 4.1: Each component was normalized to the same scale
ranging from −1 to 1.
Step 4.2: Each component was split into three parts; the first
80% is used for the training and validation sets and the last
20% for the test set.
Step 4.3: As each component has different data features such as
time-correlation, hyperparameter adjustments are made
individually for each component. The most important
hyperparameter is the length of the input sequence,
followed by learning rate and dropout probability.
Step 4.4: Prediction of each component using the best
hyperparameter obtained in the previous step.

Step 5: Reconstruct the predictions given in step 4.
Step 6: Output the final forecasting results and perform error analysis.

3 Case study

3.1 Study area and data description

Available data for the case study are the historical dataset of
atmospheric optical turbulence from China Remote Sensing
Satellite Ground Station (RSGS, 40°27′N, 116°51′ 213 E) in

FIGURE 2
Illustration of Seq2Seq-LSTM architecture.
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Beijing, China. The dataset is a 10-min collection of atmospheric
optical turbulence intensity data from the differential image
motion monitor (DIMM) deployed at the RSGS.

The dataset must be preprocessed to eliminate the noise before it is
utilized as input for model training and testing since the data
measured by DIMM include substantial high-frequency noise
[44–46]. The dataset is separated into three subsets: the training set
(60%) for training, the development set (20%) for searching optimal
structures, and the test set (20%) for validating the hybrid model
EMD-Seq2Seq-LSTM.

3.2 Performance evaluation benchmarks

To evaluate the performance of the proposed EMD-Seq2Seq-
LSTM model, the following three models are used as benchmark

models: WRF model, LSTMmodel, and Seq2Seq-LSTMmodel. The
WRF model is based on a physical model that calculates
atmospheric optical turbulence from vertical multi-layer
meteorological data. The LSTM model is the most traditional
autoregressive atmospheric optical turbulence forecasting model.
The Seq2Seq-LSTMmodel is an autoregressive atmospheric optical
turbulence forecasting model based on sequence-to-sequence
technology.

3.3 Performance metrics

The performance of the proposed model is evaluated with a mean
absolute error (MAE), mean absolute percentage error (MAPE), root
mean square error (RMSE), and coefficient of determination (R2). The
specific computational formulas are defined as follows:

FIGURE 3
Flowchart of the hybrid EMD-Seq2Seq-LSTM model.
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MAE � 1
m
∑m
t�1

Rt − Pt| | (8)

MAPE � 1
m
∑m
t�1

Rt − Pt

Rt

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (9)

RMSE �
�������������
1
m
∑m
t�1

Rt − Pt( )2
√

(10)

R2 � 1 − ∑m
t�1 Rt − Pt( )2∑m

t�1 Pt − Rt

∣∣∣∣ ∣∣∣∣ + Rt − Rt

∣∣∣∣ ∣∣∣∣( )2 (11)

where Rt represents the observed values and Pt is the forecasting
results.

Among these metrics, MAE, MAPE, and RMSE are fairly standard
evaluation metrics in time-series forecasting, they are used to assess
the accuracy of the forecasting result, and R2 indicates how well the
forecasting results match the observations in terms of trend, the closer
the values are to 1, the better the models’ performance.

3.4 Model optimization

In order to achieve higher prediction accuracy and more
rigorous comparative analysis results, the proposed EMD-
Seq2Seq-LSTM method and the hyperparameters of the baseline
models (LSTMmodel and Seq2Seq-LSTMmodel) need to be tuned.
In this study, a grid search is used to explore each possible
combination of a predefined list of hyperparameter values, and
the optimal combination is determined by the cross-validation
score.

Although the grid search allows for optimal combinations of
hyperparameters, it is very computationally intensive. Therefore,
the most sensitive hyperparameters are manually adjusted to

predefine the search range before the grid search to reduce the
computational overhead.

The most important hyperparameters—length of input sequence,
learning rate, batch size and epoch number, dropout rate, and hidden
layer size—were manually fine-tuned and evaluated with five datasets
to determine the optimal hyperparameter search range. As shown in
Figure 5, the MAPE values for the proposed model with different
hyperparameters were presented as boxplots.

It was discovered that the most important hyperparameter is the
length of the input sequence, followed by the learning rate, batch size
and epochs, optimization, and hidden layer size. As shown in Figure 4,
the MAPE values for the proposed model with different
hyperparameters were presented as boxplots, and the search range
for each hyperparameter can be determined based on the results in the
boxplots.

Table 1 shows the optimal hyperparameter values of the proposed
model, together with their corresponding search range.

4 Results and analysis

The atmospheric optical turbulence forecast framework was

completed in Python 3.7.13. The experimental computer system is

Ubuntu 64 bits, and the GPU is NVIDIA GeForce RTX 3090, 64 GB of

memory, TensorFlow-GPU version is 2.9.1, and Keras version is 2.9.0.

Multiple GPUs are used for model training, so the training takes only

about 285 s and prediction takes only 32 s.
The results of the multistep ahead atmospheric optical turbulence

forecasting for the proposed and compared methods are illustrated in
Figures 5–8. Figure 5 shows the line plots of the observed and
predicted data. Figure 6 displays the histogram of the true and
predicted values for different models. Figure 7 presents the

FIGURE 4
Boxplots of different hyperparameters. MAPE with different (A) length of input sequence, (B) learning rate, (C) batch size, (D) epoch number, (E) dropout
rate, and (F) hidden layer size.
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prediction errors for various models. Figure 8 shows a comparison of
the performance metrics of different prediction models. The detailed
comparison results are shown in Table 1, with the best values in terms
of MAE, RMSE, MAPE, and R2 in bold. The performance shows that
the proposed EMD-Seq2Seq-LSTM model is significantly superior to
that of the other models.

For the line plot in Figure 5, it can be found that the proposed
model fits the best, followed by LSTM and Seq2Seq-LSTM, and WRF
has the worst fit. In addition, compared with observational data, the
prediction of LSTM has a large lag, and the prediction effect of
Seq2Seq-LSTM is poor when the intensity of atmospheric optical
turbulence changes drastically.

For the 2D histogram in Figure 6, it is obvious that the proposed
method distribution is the most uniform and closest to the regression
line, Seq2Seq-LSTM, LSTM, and WRF, with increasing absolute bias
and dispersions.

For the line plot of prediction errors in Figure 7, the prediction
errors of the proposed method are much smaller and very smooth with
no large deviations, while the prediction errors of the comparison

models, especially the WRF model, vary dramatically, with a wide
range of fluctuations and significantly lower prediction accuracy than
that of the proposed model.

For the quantitative analysis of the forecasting results shown in
Figure 8; Table 2, the evaluation criteria MAE, RMSE, MAPE, and R2

of the proposed approach are 0.91, 1.16, 0.17, and 0.95, respectively,
which are significantly better than those of other forecasting models.

For a more thorough analysis of the experimental results, a
detailed comparison can be summarized as follows.

1) Machine learning approaches (LSTM, Seq2Seq-LSTM, and EMD-
Seq2Seq-LSTM) show much higher prediction accuracy than
physical models (WRF). The MAE, RMSE, MAPE, and R2 of
LSTM are 61.0%, 70.1%, 63.9%, and 60.5%, respectively, higher
than those of WRF, while those of Seq2Seq-LSTM are 69.9%,
75.9%, 72.4%, and 81.9%, respectively; and EMD-Seq2Seq-LSTM
outperforms WRF by 81.2%, 78.5%, 80.1%, and 99.4%. This is due
to the fact that the WRF model relies heavily on meteorological
forecast data, but the accuracy of meteorological forecast data is

TABLE 1 Optimal hyperparameter values and corresponding search range of the proposed model.

Hyperparameter Optimal value Search range

Length of the input sequence 1728 [720, 2, 880]

Learning rate 0.01 0.001, 0.005, 0.01, 0.05, and 0.1

Batch size 64 16, 32, 64, and 128

Epochs 30 20, 30, 40, 50, 60, and 70

Dropout regularization 0.25 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35

Hidden layer size 144 [100, 200]

In addition to the dropout regulation, the L2 recurrent weight regularization is used to prevent overfitting in this work. Also, Min–Max scaling is set between −1 and 1 for normalization of the dataset.

FIGURE 5
Forecasting results of the proposed method and the contrast method. Observed atmospheric optical turbulence (blue) and forecasting results of WRF
(green), LSTM (yellow), Seq2Seq-LSTM (gray), and proposed method EMD-Seq2Seq-LSTM (red).
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FIGURE 6
2D histograms of observed atmospheric optical turbulence versus forecasting results of the proposed method and the contrast method; WRF (A), LSTM
(B), Seq2Seq-LSTM (C), and EMD-Seq2Seq-LSTM (D).

FIGURE 7
Prediction error of the proposed method and the contrast methods; WRF (blue), LSTM (green), Seq2Seq-LSTM (yellow), and proposed method EMD-
Seq2Seq-LSTM (red).
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limited. Near-surface meteorological forecast data, which have a
significant impact on the optical turbulence of the atmosphere,
have an even lower accuracy due to the influence of topography
and landforms. Furthermore, the relationship between
atmospheric optical turbulence and meteorological data in the
WRF method is a general model and is not optimized for site-
specific climate characteristics. In contrast, machine learning
methods, especially those based on autoregression, mainly
exploit the spatiotemporal features of the atmospheric optical
turbulence itself, resulting in better prediction accuracy in
short-term predictions.

2) Compared with the LSTM model, the lag effect and prediction
accuracy of the Seq2Seq-LSTM model were substantially
improved, with MAE, RMSE, MAPE, and R2 improving by
22.8%, 19.4%, 23.5%, and 13.3%, respectively. This is mainly
due to the fact that the Seq2Seq technique alleviates the time
delay problem by encoding and decoding the data during the
training process and that by using the Seq2Seq technique, the
number of lookback periods can be increased as much as possible
to obtain longer-term historical information without significantly
increasing the computational complexity.

3) The EMD-Seq2Seq-LSTM model further improves the time delay
problem, and, in addition, the proposed model provides a
significant prediction promotion compared to non-
decomposition-based LSTM model and Seq2Seq-LSTM model,

especially when the fluctuations in atmospheric optical
turbulence are large. MAE, RMSE, MAPE, and R2 are further
improved by 37.5%, 10.8%, 27.9%, and 9.6%, respectively,
compared to those of Seq2Seq-LSTM. This may be due to the
difficulty in extracting and analyzing the dramatic variation
patterns of atmospheric turbulence using individual regression
methods; therefore, satisfactory prediction results are usually not
obtained. In contrast, the decomposition algorithm in the hybrid
model can decompose the atmospheric optical turbulence data into
several stationary and more regular subseries at different
frequencies, which can extract complex internal feature
information more effectively to improve the forecast accuracy.

5 Conclusion

Atmospheric optical turbulence has a considerable effect on beam
transmission. Thus, accurate forecasting of atmospheric optical
turbulence is essential for optimizing the satellite-to-ground
communication schedule and determining the appropriate
operating parameters for adaptive optics. In this paper, a novel
multistep atmospheric optical turbulence forecasting model is
proposed by combining the EMD, Seq2Seq, and LSTM network.
Here, the EMD method is used as a powerful data preprocessing
technique to decompose the non-linear and non-stationary
atmospheric optical turbulence dataset into a set of stationary
components that makes the extraction of internal feature
information easier. Seq2Seq is used in conjunction with the LSTM
network to build a predictive model for each component with greater
lagging problem handling capability and easier access to long-term
historical information. The individual forecasts for each subseries are
aggregated to form a final forecast.

To investigate the performance of the proposed model, testing
experiments are carried out on three different contrast models,
namely, WRF, LSTM, and Seq2Seq-LSTM. The qualitative and
quantitative results demonstrated that the proposed EMD-

FIGURE 8
Evaluation criteria results of different forecasting models.

TABLE 2 Performance evaluations of different models.

Model MAE RMSE MAPE R2

WRF 4.84 5.40 0.83 0.48

LSTM 1.89 1.61 0.30 0.76

Seq2Seq_LSTM 1.46 1.30 0.23 0.87

EMD_Seq2Seq_LSTM 0.91 1.16 0.17 0.95
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Seq2Seq-LSTM model is apparently superior in comparison to other
models in all evaluation criteria. The main novelty of the proposed
model includes the following: 1) EMD was used to decompose the
trend, period, and variation terms according to the characteristics of
atmospheric optical turbulence, making it simple to train the model
separately for data characteristics of different terms, thereby
significantly reducing the training difficulty of the model and
enhancing the model’s forecast accuracy; 2) a new deep learning
network, Seq2Seq combined with LSTM, is applied to atmospheric
optical turbulence forecasting to eliminate time delays and fully
utilized the depth information of atmospheric optical turbulence;
and 3) the model proposed in this paper has a relatively low
computational complexity and is a useful tool for forecasting
highly non-stationary and non-linear atmospheric optical
turbulence in practical forecasting applications.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Author contributions

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Sadiku MNO, Musa SM, Nelatury SR. Free space optical communications: An
overview. Eur Sci J ESJ (2016) 12:55. doi:10.19044/esj.2016.v12n9p55

2. Smutny B, Kaempfner H, Muehlnikel G, Sterr U, Wandernoth B, Heine F, et al.
5.6 Gbps optical intersatellite communication link. Editor. H Hemmati (San Jose, CA),
719906. doi:10.1117/12.812209

3. Zhu Z, Janasik M, Fyffe A, Hay D, Zhou Y, Kantor B, et al. Compensation-free high-
dimensional free-space optical communication using turbulence-resilient vector beams.
Nat Commun (2021) 12:1666. doi:10.1038/s41467-021-21793-1

4. Jahid A, Alsharif MH, Hall TJ. A contemporary survey on free space optical
communication: Potentials, technical challenges, recent advances and research
direction. J Netw Comput Appl (2022) 200:103311. doi:10.1016/j.jnca.2021.103311

5. Kang HJ, Yang J, Chun BJ, Jang H, Kim BS, Kim Y-J, et al. Free-space transfer of
comb-rooted optical frequencies over an 18 km open-air link. Nat Commun (2019) 10:
4438. doi:10.1038/s41467-019-12443-8

6. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, et al. Terabit free-space data
transmission employing orbital angular momentum multiplexing. Nat Photon (2012) 6:
488–96. doi:10.1038/nphoton.2012.138

7. Strasburg J, Harper W. Impact of atmospheric turbulence on beam propagation. Proc
SPIE - Int Soc Opt Eng (2004). doi:10.1117/12.541666

8. Tyson RK. Chapter 2 - sources of aberrations. In: RK Tyson, editor. Principles of
adaptive optics. Academic Press. p. 25–52. doi:10.1016/B978-0-12-705900-6.
50006-9

9. Kwiecień J. The effects of atmospheric turbulence on laser beam propagation in a
closed space—an analytic and experimental approach. Opt Commun (2019) 433:200–8.
doi:10.1016/j.optcom.2018.09.022

10. Clifford SF. The classical theory of wave propagation in a turbulent medium. In:
JW Strohbehn, editor. Laser beam propagation in the atmosphere. Berlin, Heidelberg:
Springer Berlin Heidelberg. p. 9–43. doi:10.1007/3540088121_16

11. Ricklin JC, Hammel SM, Eaton FD, Lachinova SL. Atmospheric channel effects on
free-space laser communication. J Opt Fiber Commun Rep (2006) 3:111–58. doi:10.1007/
s10297-005-0056-y

12. Sergeyev A, Roggemann M. Monitoring the statistics of turbulence: Fried parameter
estimation from the wavefront sensor measurements. Appl Opt (2011) 50:3519–28. doi:10.
1364/AO.50.003519

13. Zhan H,Wijerathna E, Voelz D.Wave optics simulation studies of the fried parameter
for weak to strong atmospheric turbulent fluctuations (2019). doi:10.1364/PCAOP.2019.
PM1C.3

14.Wang Y, Xu H, Li D, Wang R, Jin C, Yin X, et al. Performance analysis of an adaptive
optics system for free-space optics communication through atmospheric turbulence. Sci
Rep (2018) 8:1124. doi:10.1038/s41598-018-19559-9

15. Yang L, Yao K, Wang J, Cao J, Lin X, Liu X, et al. Performance analysis of 349-
element adaptive optics unit for a coherent free space optical communication system. Sci
Rep (2019) 9:13150. doi:10.1038/s41598-019-48338-3

16. Masciadri E, Vernin J, Bougeault P. 3D mapping of optical turbulence using an
atmospheric numerical model: I. A useful tool for the ground-based astronomy. Astron
Astrophys Suppl Ser (1999) 137:185–202. doi:10.1051/aas:1999474

17. Masciadri E, Vernin J, Bougeault P. 3D numerical simulations of optical turbulence
at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh.
Httpdxdoiorg1010510004- (2001) 636120000050:699–708. doi:10.1051/0004-6361:
20000050

18. Masciadri E, Lascaux F, Fini L. Mose: Operational forecast of the optical turbulence
and atmospheric parameters at European southern observatory ground-based sites - I.
Overview and vertical stratification of atmospheric parameters at 0-20 km. Mon Not R
Astron Soc (2013) 436:1968. doi:10.1093/mnras/stt1708

19. Masciadri E, Jabouille P. Improvements in the optical turbulence parameterization for
3D simulations in a region around a telescope (2001). p. 376. Httpdxdoiorg1010510004-
636120010999. doi:10.1051/0004-6361:20010999

20. Bendersky S, Lilos E, Kopeika N, Blaunstein N. Modeling andmeasurements of near-
ground atmospheric optical turbulence according to weather for Middle East
environments. Proc SPIE - Int Soc Opt Eng (2004) 5612. doi:10.1117/12.578192

21. Han Y, Wu X, Luo T, Qing C, Yang Q, Jin X, et al. New $\text{C}_{n}̂{2}$ statistical
model based on first radiosonde turbulence observation over Lhasa. J Opt Soc Am A (2020)
37:995. doi:10.1364/JOSAA.387211

22. Qing C, Wu X, Li X, Zhu W, Qiao C, Rao R, et al. Use of weather research and
forecasting model outputs to obtain near-surface refractive index structure constant over
the ocean. Opt Express (2016) 24:13303. doi:10.1364/OE.24.013303

23. Yang Q, Wu X, Han Y, Qing C. Estimation of behavior of optical turbulence during
summer in the surface layer above the Antarctic Plateau using the Polar WRF model. Appl
Opt (2021) 60:4084. doi:10.1364/AO.419473

24. Giordano C, Rafalimanana A, Ziad A, Aristidi E, Chabé J, Fanteï-Caujole Y, et al.
Contribution of statistical site learning to improve optical turbulence forecasting.Mon Not
R Astron Soc (2021) 504:1927–38. doi:10.1093/mnras/staa3709

25. Giordano C, Vernin J, Vázquez Ramió H, Muñoz-Tuñón C, Varela AM, Trinquet H.
Atmospheric and seeing forecast: WRF model validation with in situ measurements at
ORM+. Mon Not R Astron Soc (2013) 430:3102–11. doi:10.1093/mnras/stt117

26. Cherubini T, Lyman R, Businger S. Forecasting seeing for the Maunakea
observatories with machine learning. Mon Not R Astron Soc (2021) 509:232–45.
doi:10.1093/mnras/stab2916

27. Bolbasova LA, Andrakhanov AA, Shikhovtsev AY. The application of machine
learning to predictions of optical turbulence in the surface layer at Baikal Astrophysical
Observatory. Mon Not R Astron Soc (2021) 504:6008–17. doi:10.1093/mnras/stab953

28. Bi C, Qing C, Wu P, Jin X, Liu Q, Qian X, et al. Optical turbulence profile in marine
environment with artificial neural network model. Remote Sens (2022) 14:2267. doi:10.
3390/rs14092267

29. Li Y, Li L, Guo Y, Zhang H, Fu S, Gao C, et al. Atmospheric turbulence forecasting
using two-stage variational mode decomposition and autoregression towards free-space
optical data-transmission link. Front Phys (2022) 10:10. doi:10.3389/fphy.2022.970025

Frontiers in Physics frontiersin.org10

Li et al. 10.3389/fphy.2023.1070762

https://doi.org/10.19044/esj.2016.v12n9p55
https://doi.org/10.1117/12.812209
https://doi.org/10.1038/s41467-021-21793-1
https://doi.org/10.1016/j.jnca.2021.103311
https://doi.org/10.1038/s41467-019-12443-8
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1117/12.541666
https://doi.org/10.1016/B978-0-12-705900-6.50006-9
https://doi.org/10.1016/B978-0-12-705900-6.50006-9
https://doi.org/10.1016/j.optcom.2018.09.022
https://doi.org/10.1007/3540088121_16
https://doi.org/10.1007/s10297-005-0056-y
https://doi.org/10.1007/s10297-005-0056-y
https://doi.org/10.1364/AO.50.003519
https://doi.org/10.1364/AO.50.003519
https://doi.org/10.1364/PCAOP.2019.PM1C.3
https://doi.org/10.1364/PCAOP.2019.PM1C.3
https://doi.org/10.1038/s41598-018-19559-9
https://doi.org/10.1038/s41598-019-48338-3
https://doi.org/10.1051/aas:1999474
https://doi.org/10.1051/0004-6361:20000050
https://doi.org/10.1051/0004-6361:20000050
https://doi.org/10.1093/mnras/stt1708
https://doi.org/10.1051/0004-6361:20010999
https://doi.org/10.1117/12.578192
https://doi.org/10.1364/JOSAA.387211
https://doi.org/10.1364/OE.24.013303
https://doi.org/10.1364/AO.419473
https://doi.org/10.1093/mnras/staa3709
https://doi.org/10.1093/mnras/stt117
https://doi.org/10.1093/mnras/stab2916
https://doi.org/10.1093/mnras/stab953
https://doi.org/10.3390/rs14092267
https://doi.org/10.3390/rs14092267
https://doi.org/10.3389/fphy.2022.970025
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1070762


30. Turchi A, Masciadri E, Martelloni G. Evaluation of filtering techniques to increase the
reliability of meteo forecasts for ground-based telescopes (2018). doi:10.1117/12.2312480

31. Masciadri E, Martelloni G, Turchi A. Filtering techniques to enhance optical
turbulence forecast performances at short time-scales. Mon Not R Astron Soc (2020)
492:140–52. doi:10.1093/mnras/stz3342

32. Wu Z, Huang N. Ensemble empirical mode decomposition: A noise-assisted data
analysis method. Adv Adapt Data Anal (2009) 1:1–41. doi:10.1142/S1793536909000047

33. Huang N, Shen Z, Long S, Wu MLC, Shih H, Zheng Q, et al. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc R Soc Lond Ser Math Phys Eng Sci (1998) 454:903–95. doi:10.1098/rspa.1998.
0193

34. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient
descent is difficult. IEEE Trans Neural Netw Publ IEEE Neural Netw Counc (1994) 5:
157–66. doi:10.1109/72.279181

35. Mandic D, Chambers J. Recurrent neural networks for prediction: Learning
Algorithms,Architectures and stability (2001). doi:10.1002/047084535X

36. He F, Zhou J, zhong-kai F, Guangbiao L, Yuqi Y. A hybrid short-term load
forecasting model based on variational mode decomposition and long short-term
memory networks considering relevant factors with Bayesian optimization algorithm.
Appl Energ (2019) 237:103–16. doi:10.1016/j.apenergy.2019.01.055

37. Shi X, Chen Z, Wang H, Yeung D-Y, Wong W, Woo W. Convolutional LSTM
network: A machine learning approach for precipitation nowcasting. Neural Inf Process
Syst (2015).

38. Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H,
Bengio Y. Learning phrase representations using RNN encoder–decoder for statistical

machine translation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). Doha, Qatar: Association for Computational Linguistics.
p. 1724–34. doi:10.3115/v1/D14-1179

39. Wang X, Cai Z, Luo Y, Wen Z, Ying S. Long time series deep forecasting with
multiscale feature extraction and Seq2seq attention mechanism.Neural Process Lett (2022)
54:3443–66. doi:10.1007/s11063-022-10774-0

40. Gong G, An X, Mahato N, Sun S, Chen S, Wen Y. Research on short-term load
prediction based on Seq2seq model. Energies (2019) 12:3199. doi:10.3390/en12163199

41. Masood Z, Gantassi R, Ardiansyah A, Choi Y. A multi-step time-series clustering-
based Seq2Seq LSTM learning for a single household electricity load forecasting. Energies
(2022) 15:2623. doi:10.3390/en15072623

42. Zhang Y, Li Y, Zhang G. Short-term wind power forecasting approach based on
Seq2Seq model using NWP data. Energy (2020) 213:118371. doi:10.1016/j.energy.2020.
118371

43. Xiang Z, Yan J, Demir I. A rainfall-runoff model with LSTM-based sequence-to-
sequence learning. Water Resour Res (2020) 56:56. doi:10.1029/2019WR025326

44. Tokovinin A, Kornilov V. Accurate seeing measurements with MASS and
DIMM. Mon Not R Astron Soc (2007) 381:1179–89. doi:10.1111/j.1365-2966.2007.
12307.x

45. He Y, Sheng Z, Zhu Y, He M. Adaptive variational mode decomposition method for
eliminating instrument noise in turbulence detection. J Atmos Ocean Technol (2020) 38:
31–46. doi:10.1175/JTECH-D-20-0004.1

46. Lian J, Liu Z, Wang H, Dong X. Adaptive variational mode decomposition method
for signal processing based on mode characteristic. Mech Syst Signal Process (2018) 107:
53–77. doi:10.1016/j.ymssp.2018.01.019

Frontiers in Physics frontiersin.org11

Li et al. 10.3389/fphy.2023.1070762

https://doi.org/10.1117/12.2312480
https://doi.org/10.1093/mnras/stz3342
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/72.279181
https://doi.org/10.1002/047084535X
https://doi.org/10.1016/j.apenergy.2019.01.055
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1007/s11063-022-10774-0
https://doi.org/10.3390/en12163199
https://doi.org/10.3390/en15072623
https://doi.org/10.1016/j.energy.2020.118371
https://doi.org/10.1016/j.energy.2020.118371
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1111/j.1365-2966.2007.12307.x
https://doi.org/10.1111/j.1365-2966.2007.12307.x
https://doi.org/10.1175/JTECH-D-20-0004.1
https://doi.org/10.1016/j.ymssp.2018.01.019
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1070762

	Multistep ahead atmospheric optical turbulence forecasting for free-space optical communication using empirical mode decomp ...
	1 Introduction
	2 Materials and methods
	2.1 Empirical mode decomposition
	2.2 LSTM-based sequence-to-sequence
	2.3 The proposed method EMD-Seq2Seq-LSTM

	3 Case study
	3.1 Study area and data description
	3.2 Performance evaluation benchmarks
	3.3 Performance metrics
	3.4 Model optimization

	4 Results and analysis
	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


