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Introduction: China is one of the most seismically active countries in the world. It
is an important task for a Chinese earthquake early warning system to quickly
obtain robust magnitude estimation. However, within the first few seconds after
P-wave arrival, there is considerable scatter inmagnitude estimation for traditional
methods based on a single early warning parameter.

Methods: To explore the feasibility of using a convolutional neural network for
magnitude estimation in China, establish a magnitude estimation model suitable
for China and providemore robustmagnitude estimation based on strong-motion
data from China, we propose a new approach combining a convolutional neural
network and transfer learning (TL) to construct a magnitude estimation model
(TLDCNN-M) in this study.

Results and Discussion: Our results show that for the same test dataset, in terms
of themean absolute error and standard deviation of magnitude estimation errors,
the TLDCNN-M model has better performance than traditional methods and
convolutional neural network models without using TL. Meanwhile, we apply the
method to the 2022 LushanM6.1 earthquake occurred in Sichuan province, China.
At 3 s after the earliest P phase, the magnitude estimation error is less than 0.5.
With the increase in time after the earliest P phase, the magnitude estimation is
close to the catalog magnitude; at 10 s after the earliest P phase, the magnitude
estimation error is less than 0.2.
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1 Introduction

Earthquake early warning (EEW) systems can provide warning information to the public
before destructive seismic waves reach specific areas [1]. To date, many earthquake-prone
countries and regions in theworld have used or tested EEWsystems and have proven that EEW is
an effective method for seismic risk reduction [2–4]. Meanwhile, China is one of the earthquake
prone countries in the world. After the great Wenchuan earthquake in 2008, the Chinese
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government and seismologists began to attach importance to EEW
systems, and in 2018, China began to establish a nationwide EEW
system [5,6].

Robust magnitude estimation is necessary for EEW systems, which
affects the reliability of early warning information and the
determination of seismic potential damage zones [7]. Traditional
magnitude estimation EEW methods use a single warning parameter
to establish an empirical regression equation related to magnitude
[8–10]. [11] found that there is a correlation between the peak
amplitude of displacement (Pd) at 3 s after P-wave arrival and the
magnitude, and the Pd can be used to establish a magnitude estimation
function. [12] proposed using the squared velocity integral (IV2) from
the scaling of the early radiated energy to establish a magnitude
prediction function. With the rapid development of artificial
intelligence, many researchers have applied machine learning
methods to related seismology fields [13–16]. Meanwhile, some
researchers have used neural networks to establish magnitude
estimation models [17–19]. [20] used a deep convolutional neural
network (CNN) to establish a magnitude estimation model (DCNN-
M model) based on the strong-motion data recorded by the Japan
Kyoshin Network (K-NET) stations.

The traditional magnitude estimation method in EEW mainly
uses a single early warning parameter to establish an empirical
magnitude estimation equation. However, a single parameter
contains less information related to magnitude, which leads to a
certain degree of magnitude estimation error, magnitude
overestimation and magnitude underestimation [8,11,21,22].
Therefore, it is necessary to improve the accuracy of magnitude
estimation. Meanwhile, some researches shows that machine
learning is helpful to improve the accuracy of magnitude
estimation [17,20]. Besides, transfer learning applies a model
established based on the data of Region 1 to the data of Region
2 and can prevent the problem of insufficient generalization of a
model established using Region 2 [23,24]. At present, transfer
learning has been used in seismology-related fields, such as
seismic phase picking [25] and prediction of earthquake ground
shaking [26]. [27] established a support vector machine magnitude
estimation model (TLSVM-M) using transfer learning for the
Sichuan-Yunnan region, China.

To explore the feasibility of using a CNN for magnitude
estimation in China, establish a magnitude estimation model
suitable for China and provide more robust magnitude
estimation based on strong-motion data from China, in this
study, we propose a new method combining the DCNN-M
model proposed by [20] and transfer learning to construct a
TLDCNN-M model. We show that the TLDCNN-M model has
better performance than traditional methods that use a single
warning parameter and the DCNN-M model without using
transfer learning. Meanwhile, we apply the TLDCNN-M model
to the 2022 Lushan M6.1 earthquake occurred in Sichuan
province, China, and there is a robust magnitude estimation
within 10 s after the earliest P phase.

2 Data

Our dataset consists of 6,350 valid strong-motion records from
990 earthquake events that occurred in China between 2007 and

2020, and the range of magnitude is from Ms4 to Ms7. Meanwhile,
the earthquake catalog of historical strong earthquake events used in
this paper is shown in the Supplementary Table S1. In this paper, the
magnitude is denoted by M. Figure 1A shows the distribution of
epicenters (red stars) and stations (blue triangles). Meanwhile,
Figures 1B–D show histograms of the number of magnitude,
depth and epicentral distance records, respectively. We use the
method proposed by [28] to automatically pick the P-wave
arrival time on the unfiltered vertical acceleration record. And
the seismic waveform with the P-wave arrival time is taken as
the valid seismic waveform used in this paper. We integrate the
acceleration record to obtain the velocity record and then integrate
the velocity record to obtain the displacement record. Meanwhile, to
remove low-frequency drift after integration, the record after
integration is filtered on a 0.075 Hz high-pass Butterworth filter
with four poles [29]. In addition, we randomly divide the dataset into
two subdatasets: a training dataset (80%) and a test dataset (20%).
And the training dataset is used as the learning data in this study.
Figure 2 shows the relationship between the epicentral distance and
the magnitude for the training and test datasets.

3 Method

To explore the feasibility of using a CNN for magnitude
estimation in China, establish a magnitude estimation model
suitable for China and provide more robust magnitude
estimation, in this study, we propose a new method by
combining the DCNN-M model [20] and transfer learning and
Chinese strong-motion data to construct a TLDCNN-Mmodel. The
network architectures of the DCNN-M model and TLDCNN-M
model are shown in Figures 3A, B, respectively.

On the dataset and learning task of Region 1 (the source
domain and the source learning task), the pretrained model can
be established. Transfer learning can help accelerate and
optimize the learning efficiency of a pretrained model on the
dataset and learning task of Region 2 (new target domain and new
target task). Besides, based on the knowledge in the dataset and
learning task of Region 1, transfer learning can improve the
learning ability for the dataset and learning task of Region
2 [23,24].

[20] established a deep convolutional neural network (DCNN-
M) for magnitude estimation (the source learning task), which was
trained with strong-motion data from the Japan Kyoshin Network
(the source domain). The DCNN-M model is composed of a CNN
block and a fully connected layer (FCL) block. A vector composed of
12 early warning parameters collected from a single station is used as
the input to the model, and the size of the input is (12, 1). The output
is the magnitude estimation from a single station. These 12 early
warning parameters include the parameters related to the amplitude
(peak displacement (Pd), peak velocity (Pv) and peak acceleration
(Pa)), the parameters related to the energy (squared velocity integral
(IV2), cumulative vertical absolute velocity (cvav), cumulative
vertical absolute acceleration (cvaa), cumulative vertical absolute
displacement (cvad), cumulative absolute velocity (CAV) and
P-wave index value (PIv)), the parameters related to the period
(product parameter (TP), average period (τc) and peak ratio (Tva)).
Meanwhile, the parameters related to the amplitude and energy are
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corrected for the source distance and normalized to a reference
distance of 10 km [20,30]:

AE10km � AE
10
R

( )c

(1)

where AE is the parameter related to the amplitude or energy, R is
source distance, c is correction coefficient, AE10 km is the parameter
normalized to a reference distance of 10 km. Additionally, in order
to deal with the input data imbalance and the numerical problems
caused by the input parameters with different orders of magnitude,
for each parameter, we normalized the parameter to the range
from −1 to 1:

Xnorm � 2X − Xmax +Xmin( )
Xmax −Xmin

(2)

where X is the parameter before the normalization, Xnorm is the
parameter after the normalization, Xmax and Xmin are the maximum
value and minimum value for each parameter in the dataset,
respectively. Then, the normalized parameters as inputs to the
model. A detailed introduction to these parameters is provided in
the research of [20] and Supplementary Text S1 in this paper.

To establish the TLDCNN-M model for magnitude
estimation of earthquake events in China (new target task),
during the transfer learning process, we fine-tuned the
DCNN-M model. We use the same CNN block as the DCNN-
M model (Figure 3), which is pretrained. And in the CNN block,
there are 124, 150, 190 and 250 filters for four convolutional
layers respectively. Additionally, for each convolutional layer, the
kernel size of filter and the size of stride are 4 and 2, respectively.
And for each max pooling layer, the size of max pooling and the
size of stride both are 2. Meanwhile, the weights and training
parameters of the pretrained CNN block in the TLDCNN-M
model are taken directly from parts of the DCNN-M model,
which are frozen in the TLDCNN-M model. For the FCL block of
DCNN-M model, there are four FCLs, which have 250, 125,
60 and 1 neurons. Meanwhile, detailed information about the
CNN block, FCL block and training strategy of DCNN-M model
have been introduced in the research of Zhu et al. [20]. In this
work, we finetune the FCL block of the DCNN-M model, and use
a new FCL block in the TLDCNN-M model, which is composed
of five FCLs, and the weights are retrained. Meanwhile, these five
FCLs have 128, 64, 31, 27 and 1 neurons, respectively. And the

FIGURE 1
(A) The distribution of epicenters and stations in the dataset of this paper. (B) The relationship between themagnitude and the number of records. (C)
The relationship between the depth and the number of records. (D) The relationship between the epicentral distance and the number of records.
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last FCL with one neuron uses the linear activation function for
obtaining the predicted magnitude.

We use the training dataset from Chinese strong-motion records
(new target domain) introduced in the Data section to train the
TLDCNN-M model and use the test dataset from Chinese strong-
motion records (new target domain) to test the TLDCNN-Mmodel.
During the training process, the command “validation split = 0.1” is
used to randomly divide 10% of the training dataset as a validation
dataset. We use the Adam optimizer [31] and the mean squared
error (MSE) loss function. The MSE loss function is defined as
follows:

MSE � 1
n
∑n

i�1 yitrue − yipred( )2 (3)

where n is the number of samples, ytrue is the true value, and ypred
is the predicted value. We use a batch size of 16, an initial learning
rate of 0.001, and 100 epochs. Additionally, we use the
ReduceLROnPlateau (with a factor of 0.1, a patience of
5 epochs and a minimum learning rate of 0.5 × 10−6) to
monitor the validation loss and to optimize the learning rate.
ReduceLROnPlateau is a scheduler in machine learning, which is
used to lower and optimize the learning rate (https://keras.io/api/
callbacks/reduce_lr_on_plateau/) [32]. In this training process of
the work, based on the ReduceLROnPlateau scheduler, the initial
learning rate is multiplied by 0.1 if the validation loss does not
improve for more than five epochs. Meanwhile, we use the
EarlyStopping (with a patience of 10 epochs) to prevent
overfitting [33]. When the validation loss is no longer reduced
for 10 epochs, the training stops. Figure 4 shows the variation in
training loss and validation loss with epochs during training, and
the validation loss is close to the training loss, which indicates
that there is no obvious overfitting for the model.

4 Results

Our results show the comparison between the TLDCNN-M and
baseline models. Meanwhile, we apply the TLDCNN-M model to
the 2022 Lushan M6.1 earthquake occurred in Sichuan province,
China.

4.1 Comparison with baseline models

To investigate the performance and the rationality of the
TLDCNN-M model for magnitude estimation on the same
dataset, we compare the TLDCNN-M model with baseline
models, including traditional methods (such as the IV2 model
and Pd model), the TLSVM-M model and the DCNN-M model.
In this study, for a fair comparison, we use the same dataset as
the TLDCNN-M model to establish the IV2 model
(i.e., magnitude prediction function based on the
IV2 parameter) and Pd model (i.e., magnitude prediction
function based on the Pd parameter) for magnitude
estimation. The magnitude prediction functions based on the
IV2 and Pd parameters are as follows:

M � 0.60 p log10 IV210km( ) + 5.34 (4)
M � 1.29 p log10 P10km

d( ) + 6.20 (5)
where IV210km and Pd10km are the IV2 and Pd by correcting the
distance effect (normalizing them to a reference of 10 km),
respectively. Additionally, [27] used a support vector machine
and transfer learning to establish the TLSVM-M model based on
the strong-motion data from the Sichuan-Yunnan region. In
addition, [20] used the strong-motion data of the Japan Kyoshin

FIGURE 2
The relationship between themagnitude and epicentral distance. The green crosses represent the training dataset, and the purple crosses represent
the test dataset.
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Network to establish the DCNN-M model (Japan) based on a CNN.
In this study, we also establish a newDCNN-Mmodel (China) using
the strong-motion data (introduced in the Data section) of
earthquake events that occurred in China.

We use the mean absolute error (MAE) and standard deviation
(Std) to evaluate the performance of each model for magnitude
estimation. The magnitude estimation error (E), MAE and Std are
defined as follows:

E � estimated magnitude − catalog magnitude (6)
MAE � ∑n

i�1 Ei| |
n

(7)

Std �















1
n
∑n

i�1 Ei − uE( )2
√

(8)

where n is the number of samples and uE is the mean error. A smaller
MAEmeans a smaller magnitude estimation error by the model, and
a smaller Std means a smaller scatter of the magnitude estimation
error by the model. For the same test dataset, at 3 s after P-wave
arrival, Table 1 shows the MAE and Std of magnitude estimation
errors of the TLDCNN-M model and baseline models. From
Table 1, the MAE and Std of the magnitude estimation errors for
the TLDCNN-M model are 0.33 and 0.45, respectively, which are

less than those of the IV2 model (0.46 and 0.60, respectively), Pd
model (0.46 and 0.58, respectively), TLSVM-M model (0.35 and
0.47, respectively), DCNN-M (Japan) (0.38 and 0.52, respectively)
and DCNN-M (China) (0.41 and 0.70, respectively). Meanwhile, the
TLDCNN-M model has better performance than the DCNN-M
models (Japan and China) without using transfer learning. Table 2
shows the error percentage of each model within the absolute error
(AE) range of different magnitude estimates. Table 2 shows that the
error percentage of the TLDCNN-M model within AE≤0.5 is
78.62%, which is more than those of the IV2 model (63.05%), Pd
model (64.07%), TLSVM-M model (77.59%), DCNN-M (Japan)
(74.13%) and DCNN-M (China) (72.72%). The error percentage of
the TLDCNN-M model within AE>1 is 3.85%, which is less than
that of the other models. This indicates that the TLDCNN-Mmodel
has better performance than the baseline models. In addition,
Supplementary Figure S1 shows a histogram of the magnitude
estimation errors.

For the same test dataset, at 3 s after P-wave arrival, Figure 5A
shows the relationship between the MAE and the range of different
epicentral distances for the TLDCNN-M model and baseline
models. Figure 5B shows the relationship between the Std and
the range of different epicentral distances for the TLDCNN-M

FIGURE 3
The framework of (A) the DCNN-Mmodel [20] and (B) the TLDCNN-Mmodel. The DCNN-Mmodel is composed of a CNN block and an FCL block.
The TLDCNN-M model is composed of a pretrained CNN block and a new FCL block.
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model and baseline models. Figures 5A, B show that the TLDCNN-
Mmodel has a smaller MAE and Std in different ranges of epicentral
distances, which also indicates that the TLDCNN-M model has
better performance in different ranges of epicentral distances than
the IV2 model, Pd model, TLSVM-M model, DCNN-M model
(Japan) and DCNN-M model (China). Figure 5C shows the
relationship between the MAE and the range of different signal-
to-noise ratios (SNRs) for the TLDCNN-M model and baseline
models. Figure 5D shows the relationship between the Std and the
different ranges of SNRs for the TLDCNN-M model and baseline
models. Figures 5C, D show that the TLDCNN-M model has a
smaller MAE and Std in different SNR ranges, which indicates that
the TLDCNN-M model has better performance in different SNR
ranges than the IV2 model, Pd model, TLSVM-Mmodel, DCNN-M
model (Japan) and DCNN-Mmodel (China). Supplementary Figure
S2 shows the relationship between the magnitude estimation error
and epicentral distance and SNR. The magnitude estimation errors
are mainly distributed in a range of ±1.

4.2 Application to the 2022 Lushan
M6.1 earthquake

At 17:00 Beijing Time on 1 June 2022, an earthquake of
M6.1 occurred in Lushan County, Sichuan Province, China. The
epicenter was located at 30.37° N, 102.94° E, and the focal depth was
17 km. This earthquake caused the death of 4 people, injured
14 people and was felt in many cities in Sichuan [34]. We

FIGURE 4
The relationship between the loss and epoch. The red line represents the training loss, and the blue line represents the validation loss.

TABLE 1 The mean absolute error (MAE) and standard deviation (Std) of the
magnitude estimation errors of the TLDCNN-M model and baseline models.

Model MAE Std

IV2 0.46 0.60

Pd 0.46 0.58

TLSVM-M 0.35 0.47

DCNN-M (Japan) 0.38 0.52

DCNN-M (China) 0.41 0.70

TLDCNN-M 0.33 0.45

TABLE 2 The error percentage of the different absolute error (AE) ranges for
the TLDCNN-M model and baseline models.

Model Percentage

AE≤0.5 (%) 0.5 < AE≤1 (%) AE>1 (%)

IV2 63.05 28.77 8.18

Pd 64.07 27.98 7.95

TLSVM-M 77.59 18.23 4.18

DCNN-M (Japan) 74.13 19.96 5.91

DCNN-M (China) 72.72 20.51 6.77

TLDCNN-M 78.62 17.53 3.85
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obtained seismic data for this earthquake event recorded by
591 stations provided by the China Seismic Networks Center.
Figure 6A shows the epicenter (red star) and distribution of the
stations (green triangles) for this earthquake. The event was located
using the real-time continuous earthquake location method from
the EEW system in Fujian, China [22,35].

To explore the feasibility of the TLDCNN-M model in this
earthquake, we apply the TLDCNN-M model to the event.
Meanwhile, the event is not in the training dataset and test
dataset. After the earthquake occurs, based on the triggered
stations, we can obtain the real-time final magnitude estimation
by calculating the average value of the magnitude estimation of the
triggered stations [36–38]. The steps are as follows.

(1) When one or more stations are triggered at the same time first,
we will average the estimated magnitudes obtained by the
triggered stations;

(2) Then, when a new station is triggered again, the P-wave time
window of the new triggered station needs to meet 3 s to
participate in the average of the estimated magnitude. The
purpose is to improve the stability of the average of multiple
stations for calculating the final magnitude estimation.

The calculation formula for final magnitude estimation based on
the multiple triggered stations is as follows:

M � ∑N
i�1M

j
i

N
(9)

where N is the number of triggered stations, which meet the
conditions of step (1) and step (2); Mi

j is the estimated
magnitude of the ith triggered station in the jth second, M is the
final magnitude estimation based on the multiple triggered stations.
Figure 6B shows the evolution of the magnitude estimation based on
the TLDCNN-Mmodel with the time after the first triggered station

FIGURE 5
The relationship between the (A)mean absolute error (MAE) and (B) standard deviation of errors (Std) and the range of different epicentral distances
for the TLDCNN-M model and baseline models. The relationship between the (C) MAE and (D) Std and the range of different SNRs for the TLDCNN-M
model and baseline models.
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(i.e., the time after the earliest P phase). In Figure 6B, the number
near the red square indicates the number of triggered stations at the
corresponding time. As the time after the first station is triggered
increases, the magnitude related seismic information obtained by
triggered stations also increases gradually. We can find from
Figure 6B that with the increase in time after the earliest P
phase, the magnitude estimation based on the TLDCNN-M
model gradually approaches the catalog magnitude. Within 10 s
after the earliest P phase, there is a robust magnitude estimation. At
3 s and 10 s after the earliest P phase, the magnitude estimation error
is less than 0.5 and 0.2, respectively.

5 Discussion and conclusion

To explore the feasibility of using a CNN for magnitude
estimation in China, establish a magnitude estimation model
suitable for China and provide more robust magnitude
estimation, in this study, we propose a new method by
combining a pretrained neural network [20] with transfer
learning and Chinese strong-motion data to construct a
TLDCNN-M model. We then apply the TLDCNN-M model
to the 2022 Lushan M6.1 earthquake that occurred in Sichuan
province, China.

5.1 Advantages of the method

We compare the method proposed in this study with baseline
models. In terms of the MAE and Std of magnitude estimation errors,
the proposed method has better performance than traditional models
(such as the IV2 and Pd models), CNN models without using transfer
learning (the DCNN-M (Japan) and DCNN-M (China) models), and
the TLSVM-M model proposed by [27]. Meanwhile, for different
ranges of epicentral distance and the SNR, the TLDCNN-M model
has a smaller MAE and Std of magnitude estimation errors than those
of other models. Additionally, the error percentage of the TLDCNN-M
model within AE≤0.5 is also greater than that of the baseline models,
and the error percentage of the TLDCNN-Mmodel within AE>1 is less
than that of the baseline models. For the 2022 LushanM6.1 earthquake
that occurred in China, at 3 s and 10 s after the earliest P phase, the
magnitude estimation error based on the TLDCNN-M model is less
than 0.5 and 0.2, respectively, which indicates that there is a robust
magnitude estimation within 10 s after the earliest P phase.

5.2 Potential method improvements

In this work, based on the transfer learning, for the TLDCNN-M
model, we finetuned the number of FCLs, the number of neurons

FIGURE 6
(A) The epicenter and distribution of stations for the 2022 LushanM6.1 earthquake. (B) Evolution of themagnitude estimation with the time after the
first triggered station. The black line represents the catalog magnitude, each red square represents the estimated magnitude via the TLDCNN-M model,
and the number near the red square represents the number of triggered stations.
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and the position of the dropout layer of the FCL block (Figure 3).
Supplementary Table S2 shows the performance of TLDCNN-M
model when the dropout layer is in different positions. We find from
Supplementary Table S2 that the position of the dropout layer will
affect the performance of the model. Additionally, Supplementary
Table S3 shows the performance of TLDCNN-M model when there
are different number of FCLs.We find from Supplementary Table S3
that the number of the FCLs in the FCL block will affect the
performance of the model. These also indicate that it is
important to select appropriate hyperparameters (the position of
the dropout layer, the number of neurons, the number of full
connection layers, etc.) for the performance of the neural
network model [39].

A pretrained model with good performance is very important
for transfer learning, which also determines the performance of the
new model established using transfer learning. With the rapid
development of artificial intelligence technology in recent years,
machine learning methods are also emerging [17,18,40,41]. It is
possible to establish a better EEW magnitude estimation model
suitable for China by combining a better pretrained model with
transfer learning.

Additionally, considering the requirements of machine learning
methods for data balance and the scarcity of large earthquake events
(M > 7) in China, this paper only selects earthquake events of M4 to
M7 as the dataset and research object. However, although the number
of large earthquakes in China is very small, large earthquakes can cause
very serious damage. Therefore, further research is needed to address
the problem of magnitude estimation for large earthquakes in EEW
using machine learning methods in the future [42].
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