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The kernel ridge regression (KRR) approach has been successfully applied in
nuclear mass predictions. Kernel function plays an important role in the KRR
approach. In this work, the performances of different kernel functions in nuclear
mass predictions are carefully explored. The performances are illustrated by
comparing the accuracies of describing experimentally known nuclei and the
extrapolation abilities. It is found that the accuracies of describing experimentally
known nuclei in the KRR approaches with most of the adopted kernels can reach
the same level around 195 keV, and the performance of the Gaussian kernel is
slightly better than other ones in the extrapolation validation for the whole range
of the extrapolation distances.
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1 Introduction

Nuclear mass is important for both nuclear physics [1] and astrophysics [2, 3]. During
the past decades, great progress has been made in mass measurements of atomic nuclei, and
about 2,500 nuclear masses have been measured to date [4]. Nevertheless, the masses of a
large number of neutron-rich nuclei involved in the r-process remain unknown from
experiments and cannot be measured even with the next-generation RIB facilities. Therefore,
theoretical predictions for nuclear masses are imperative at the present time. Global mass
model can be traced back to the von Weizsäcker mass formula based on the famous liquid
drop model (LDM) [5]. Lots of efforts have been made in pursuing different possible
extensions of the LDM, which are known as the macroscopic-microscopic models, such as
the finite-range droplet model (FRDM) [6] and theWeizsäcker-Skyrme (WS) model [7]. The
microscopic mass models based on the non-relativistic and relativistic density functional
theories (DFTs) have also been developed [8–17]. The root-mean-square (rms) deviation
between theoretical mass models and the available experimental data [4] range from about
3 MeV for the BW model [18] to about 300 keV for the WS ones [7], which is still not
sufficient for accurate studies of exotic nuclear structure and astrophysical nucleosynthesis
[19, 20]. What’s more, for neutron-rich nuclei far away from the experimentally known
region, the differences among the predictions of different mass models can be as large as
several tens MeV [6–11, 21–23].

Machine learning (ML) has been successfully applied in various fields of physics [24, 25].
For nuclear physics, ML applications can be traced back to early 1990s [26, 27], and recently,
it has been widely adopted to nuclear masses [28–41], charge radii [36, 42–45], decays and
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reactions [46–53], ground and excited states [54–58], nuclear
landscape [59, 60], fission yields [61–63], nuclear liquid-gas
phase transition [64], variational calculations [65, 66], nuclear
energy density functional [67], etc. In nuclear mass studies, ML
approaches, such as the radial basis function (RBF) approach [28, 29,
68–71], the Bayesian neural network (BNN) approach [31–33, 72],
and the kernel ridge regression (KRR) approach [36, 37, 41, 73], have
been employed to further improve the accuracies of nuclear mass
models. By training the machine learning network with the mass
model residuals, i.e., deviations between experimental and calculated
masses, machine learning approaches can significantly reduce the
corresponding rms deviation to below 200 keV.

The KRR approach was employed to improve nuclear mass
predictions for the first time in Ref. [36]. It is shown that the
extrapolation behavior of the KRR approach is quite different with
other approaches, e.g., the RBF approach. The RBF approach would
worsen the mass descriptions for nuclei at large extrapolation
distances, as the effects of the adopted linear kernel remain large
at such distances. However, the KRR approach can automatically
identify the limit of the extrapolation distance and avoid the risk of
worsening the mass description for nuclei at large extrapolation
distances, which is due to the decay behavior of the Gaussian kernel
as the increase of extrapolation distance. This reflects the
importance of kernel function in nuclear mass predictions with
kernel-based machine learning approaches.

There are many commonly-used kernel functions in the KRR
approach. The detail features of different kernels are different, which
can affect the performances of the KRR approach in nuclear mass
predictions. It is therefore necessary to study the effects of different
kernel functions on the performances of the KRR approach in the
practical applications of nuclear mass predictions.

In this work, the performances of the KRR approach for nuclear
mass predictions with different kernel functions, including Gaussian,
Laplacian, Matern, Cachy, Multiquadric, inverse Multiquadric,
Logarithm, power, and inverse power kernels, are compared. The
paper is organized as follows: In Section 2, the theoretical
framework of the KRR approach is introduced. The numerical
details are given in Section 3. In Section 4, the comparisons through
the leave-one-out cross-validation and extrapolation validation are
presented. Finally, a summary is given in Section 5.

2 Theoretical framework

The KRR approach is a powerful machine-learning approach for
non-linear regression and has been successfully applied in nuclear
mass predictions [36]. In this method, the KRR function is written as

S xj( ) � ∑m
i�1

K xj, xi( )wi, (1)

where xi ≡ (Ni, Zi) are locations of nuclei in the nuclear chart, m is
the number of training nuclei, wi are weight parameters to be
determined, K (xj, xi) is the kernel function, which measures the
correlations between nuclei. The weight parameters wi are
determined by minimizing the loss function defined as

L w( ) � ∑m
i�1

S xi( ) − y xi( )[ ]2 + λ‖w‖2, (2)

where w = (w1, . . . , wm). The first term of Eq. 2 is the variance
between the data y (xi) and the KRR prediction S(xi), and the second
is the penalty term that penalizes large weights to reduce the risk of
overfitting. The hyperparameter λ determines the strength of
penalty. Minimizing Eq. 2 yields

w � K + λI( )−1y, (3)
whereK is the kernel matrix with elementsKij =K (xi, xj), and I is the
identity matrix.

Nine kernel functions are adopted in the present study, i.e., the
Gaussian kernelK(r) = exp (−r2/2σ2), the Laplacian kernelK(r) = exp
(−r/σ), the Matern kernel K(r) = (1 + 3r/5σ) exp (−3r/5σ), the Cachy
kernel K(r) = 1/(1 + r2/σ), the Multiquadric (MQ) kernel
K(r) � ������

r2 + σ2
√

, the inverse MQ kernel K(r) � 1/
������
r2 + σ2

√
, the

Logarithm kernel K(r) = ln (rσ + 1), the power kernel K(r) = rσ, and
the inverse power kernel K(r) = 1/rσ, where the Euclidean norm
r � ‖xi − xj‖ �

��������������������
(Ni −Nj)2 + (Zi − Zj)2

√
is defined to be the

distance between two nuclei. The adjustable hyperparameter σ ≥
0 in each kernel plays an important role in the performance of the
corresponding kernel, and should be carefully tuned according to
the nuclear mass data.

3 Numerical details

The KRR function (1) is trained to reconstruct the mass
residuals, i.e., the deviations Mres (N, Z) = Mexp (N, Z) − Mth(N,
Z) between the experimental data Mexp and theoretical predictions
Mth for a given mass model. Once the weights wi are obtained, the
reconstructed function S (N, Z) can be calculated with Eq. 1 for every
nucleus (N, Z). The predicted mass for a nucleus (N, Z) is, thus, given
by MKRR = Mth(N, Z) + S(N, Z).

The experimental massesMexp are taken from the AME2020 [4],
while only those nuclei with Z, N ≥ 8 and experimental errors σexp <
100 keV are considered. There are totally 2340 data composing the
entire data set. The theoretical masses Mth are taken from the mass
table WS4 [7].

One of the hyperparameters, i.e., penalty strength λ, had been
carefully validated to be 0.3 for the KRR study of nuclear masses in
Ref. [36], which would be adopted in this study.

4 Results and discussion

The main purpose of this work is to compare the performances
of different kernel functions in the KRR approach for nuclear mass
predictions. The performances are illustrated by comparing the
accuracies of describing experimentally known nuclei and the
extrapolation abilities, through the leave-one-out cross-validation
and the extrapolation validation.

4.1 Leave-one-out cross-validation

The leave-one-out cross-validation is adopted to evaluate the
accuracy of the KRR approach with different given types of kernel
functions. In the leave-one-out cross-validation, for a given set of
hyperparameters (σ, λ), the mass prediction for each of the 2,340 nuclei
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is obtained by the KRR network trained on all other 2,339 nuclei. The
rms deviation Δrms between experimental and predicted masses of the
2,340 nuclei is calculated and regarded as a measure of the accuracy.

There are mainly two advantages of the leave-one-out cross-
validation. First, it avoids the randomness caused by the random
sampling in the validation-set method. Second, it matches the idea
that when one wants to predict the mass of an unknown nucleus,
information of all the other nuclei with experimentally known
masses would be considered to build the model.

In Figure 1, the Δrms between the KRR predictions with different
kernels and the experimental data are shown as functions of the

corresponding hyperparameter σ, respectively. The minima of the
Δrms between the experimental data and the theoretical nuclear
mass predictions, as shown in Figure 1 for every kernels, are listed
in Table 1, together with the corresponding hyperparameters σ.

As can be seen in both Figure 1; Table 1, if the hyperparameters σ
are adjusted to proper values respectively, the KRR approach with most
of the kernels can reduce the Δrms to similar level around 195 keV,
except for the one with inverse power kernel, which reduces the Δrms to
220 keV.Note that for theMQkernelK(r) � ������

r2 + σ2
√

, the predictions
with smaller σ gives smaller Δrms, which indeed reduces to be the linear
kernelK(r) = rwhen σ= 0. It is also noted that theΔrms increases rapidly

FIGURE 1
The Δrms between the KRR predictions with different kernels (A-I for nine different kernels) and the experimental data as functions of the
corresponding hyperparameter σ.

TABLE 1 The minima of the Δrms (in unit of keV) and the corresponding hyperparameters in the leave-one-out cross-validation for the KRR approach with different
kernels.

Kernels Gaussian Laplacian Matern Cachy MQ Inverse MQ Logarithm Power Inverse power

σ 2.2 2.4 3.2 1.2 0 0.7 0.2 0.6 0.1

Δrms (all) 195 195 195 194 198 193 191 193 220

Δrms (ee) 203 202 203 198 203 198 197 199 225

Δrms (eo) 180 180 180 180 188 179 177 178 211

Δrms (oe) 173 172 172 173 179 172 170 171 203

Δrms (oo) 219 221 221 220 220 219 217 220 240
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as the decrease of the hyperparameter σ of the logarithm kernel
approaching small values. This is because that the Logarithm kernel
K(r) = ln (rσ + 1) would approach to a constant ln (2) and lose the
predicted power, when the σ is taken as a small value.

It is found that the predictions of the even-odd (eo) and odd-even
(oe) nuclei are more accurate that the predictions of the even-even (ee)
and odd-odd (oo) nuclei, which holds true for all the kernels. This is

because the KRR prediction generates a smooth nuclear mass surface,
which tends to average the predictions of all the nuclear masses.
Generally speaking, the ee nuclei are most bound and the oo nuclei
are least bound, while the eo and oe nuclei are in-between. Therefore, the
smoothKRRprediction tends to have better descriptions of the eo and oe
nuclei. If one want to well capture the odd-even effects and improve the
nuclear mass predictions in the framework of KRR approach, the
adopted kernel function should be remodulated to include the odd-
even effects [37]. As is known, the shell effects commonly have an energy
change of about 10MeV between a magic nucleus and its mid-shell
isotopes. Therefore, it is naturally believed that the shell effects can be
captured by the KRR approach with precision of 195 keV.

The results from the leave-one-out cross-validation indicate that
the KRR approach with different kernels can reach similar
accuracies in interpolation or very short extrapolation, if proper
values of hyperparameters are adopted. Therefore, in the
applications of predicting nuclear masses for the nuclei that very
close to the experimentally known region, the choices of different
kernel functions may hardly affect the prediction accuracy.

4.2 Extrapolation validation

In order to examine the extrapolation abilities of the KRR
approaches with different kernels, the set of nuclei with known
masses is redivided as shown in Figure 2. For each isotopic chain of
Z ≥ 26, the eight most neutron-rich nuclei are removed out from the

FIGURE 2
Nuclei in the training set (gray) and eight test sets (other colors)
for examining the extrapolation power for the neutron-rich nuclei.
The inset zoom in the region from Z = 26 to 29.

FIGURE 3
Comparison of the extrapolation power of the KRR approach with different kernels (A-I for nine different kernels) for eight test sets with different
extrapolation distances.
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training set, and they are classified into eight test sets respectively,
corresponding to the different extrapolation distances from the
remain training set in the neutron direction. This is the similar
as the division in Refs. [36], but for Z ≥ 26. The rms deviations Δrms

between the experimental and predicted masses of the eight test sets
would be taken as a measure to compare the extrapolation abilities.

Figure 3 shows the Δrms of the eight test sets for the KRR approach
with different kernels adopting the corresponding hyperparameters
listed in Table 1, in comparison with the ones for theWS4 mass model.
First of all, for the case of short extrapolation, i.e., extrapolation distance
smaller than four, the KRR approach with all of the adopted kernels can
reduce the Δrms obtained by theWS4mass model. For the test sets with
large extrapolation distances, i.e., extrapolation distance larger than
four, the KRR approach with the MQ, logarithm, and power kernels
obviously worsen the WS4 predictions. This is due to the fact that the
corrections for the MQ, logarithm, and power kernels increase with the
increasing of the Euclidean norm r. While, for the other six kernels, the
corrections decrease with the increasing of the Euclidean norm r, which
give them the abilities to reduce the risk of worsening the mass
descriptions for nuclei at large extrapolation distances. The detail
discussions can be seen in Ref. [36], where the Gaussian kernel is
taken as an example.

The extrapolation performances of the KRR approach with the
six kernels that the corrections decrease with the increasing of the
Euclidean norm r are similar, except for the inverse power kernel.
They can improve the mass predictions of the nuclei with
extrapolation distance smaller than five, and reduce the risk of
worsening mass predictions at large extrapolation distances. Among
these adopted kernels, the performance of the Gaussian kernel is
slightly better than other ones in the extrapolation validation for the
whole range of the extrapolation distances. Therefore, the Gaussian
kernel, which is commonly used in machine-learning, can be also
taken as a default choice in the nuclear mass predictions.

5 Summary

The performances of different kernel functions, i.e., Gaussian,
Laplacian, Matern, Cachy, Multiquadric, inverse Multiquadric,
Logarithm, power, and inverse power kernels, in nuclear mass
predictions with the KRR approach in describing experimentally
known nuclei and extrapolating to neutron-rich nuclei are
compared. The comparison is performed through the leave-one-out
cross-validation and the extrapolation validation. From the leave-one-
out cross-validation, it is found that the KRR approach withmost of the
kernels can reduce the Δrms to similar level around 195 keV. From the
extrapolation validation, it is found that the performances of the kernel
functions strongly depend on its increasing/decreasing behaviors with
respect to the Euclidean norm r. For the case that the kernel functions
decrease with the increasing of the Euclidean norm r, the corresponding
KRR predictions can reduce the risk of worsening the mass predictions
for nuclei at large extrapolation distances. Among these adopted
kernels, the performance of the Gaussian kernel is slightly better
than other ones in the extrapolation validation for the whole range
of the extrapolation distances. Therefore, it is suggested to be taken as
the default choice in the nuclear mass predictions.

In the present study, only the masses are considered as the
outputs to train the ML models, and thus the obtained ML models

are unable to predict other nuclear properties. However, the
predictions of different nuclear properties by ML models at the
same time can be achieved by the idea of multi-task learning. Multi-
task learning (MTL) is a subfield of machine learning, in which
multiple related learning tasks are solved at the same time by
exploiting commonalities and differences across tasks. It has been
successfully applied in nuclear physics, e.g., in the description of
giant dipole resonance key parameters [58] and in the description of
nuclear masses and separation energies [41]. It would be interesting
to apply different kernels in the MTL framework in future works, in
that case the performances and reliabilities of different kernels can
be evaluated on additional nuclear properties.
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