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The manifold under consideration consists of the faithful normal states on a sigma-
finite von Neumann algebra in standard form. Tangent planes and approximate
tangent planes are discussed. A relative entropy/divergence function is assumed to
be given. It is used to generalize the notion of an exponential arc connecting one
state to another. The generator of the exponential arc is shown to be unique up to an
additive constant. In the case of Araki’s relative entropy, every self-adjoint element of
the von Neumann algebra generates an exponential arc. The generators of the
composed exponential arcs are shown to add up. The metric derived from Araki’s
relative entropy is shown to reproduce the Kubo–Mori metric. The latter is themetric
used in linear response theory. The e- and m-connections describe a dual pair of
geometries. Any finite number of linearly independent generators determines a
submanifold of states connected to a given reference state by an exponential arc.
Such a submanifold is a quantum generalization of a dually flat statistical manifold.

KEYWORDS

exponential arcs, quantum statistical manifold, quantum divergence function, Araki’s
relative entropy, dually flat geometry, Tomita–Takesaki theory, linear response theory,
Kubo–Mori theory

1 Introduction

The goal of the present paper is to show that the theory of quantum statistical manifolds can
be formulated without reference to density matrices. It is tradition to describe the statistical state
of a quantum model by a density matrix. In many cases this suffices, in particular when the
Hilbert space of wave functions is finite-dimensional. However, even simple models such as the
quantum harmonic oscillator or the hydrogen atom require an infinite-dimensional Hilbert
space. This involves handling of unbounded operators which cause considerable technical
complications. These complications are avoided in the present work.

A one-to-one correspondence between density matrices and quantum states is usually
accepted. The quantum states form the sample space of the statistical description. An alternative
description emerged in the past century, which introduced the notion of a mathematical state
on an algebra of observables which can be realized as an algebra of bounded operators on
Hilbert space. See for instance [1–5].

Equilibrium states of quantum statistical mechanics are described by the quantum analogue
of the probability distribution of Gibbs, which is a density matrix ρ of the form

ρ � 1
Z
e−βH,

withH a Hermitian matrix, β a parameter the inverse temperature, and Z a function of β used to
normalize density matrix ρ so that its trace equals 1. Models described in this way can belong to
a quantum exponential family. They possess an intriguing property called the
Kubo–Martin–Schwinger (KMS) condition [6]. The KMS condition describes a symmetry
property of the time evolution of quantum states. This symmetry coincides with the symmetry
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between left and right multiplication of operators, which is studied in
the Tomita–Takesaki theory [7]. [5] can be used as a reference text for
this theory.

The notion of a statistical manifold is studied in information
geometry ([8–12]). It is a manifold of probability distributions. The
quantum analogue is described in Chapter 7 of [11] as a manifold of k
by k density matrices. The book of Petz [13] reviews several aspects of
quantum statistics, including the basics of quantum information and
quantum information geometry.

The generalization of Amari’s dually flat geometry from statistical
models with a finite number of parameters to Banach manifolds of
mutually equivalent probability measures started with the work of
[14]. Non-commutative versions were formulated by [15–19].

The convex set M of faithful normal states on a σ-finite von
Neumann algebra is in general not a Banach manifold. The point of
view taken in the present work is that the setM should, by definition,
be a quantum statistical manifold. This raises the question of how to
transfer common notions of differential geometry and of Banach
manifolds to this quantum setting. The present work contributes to
this effort.

The relative entropy of Umegaki [20] is the starting point to
implement Amari’s dually flat geometry on the quantum manifold. It
should be noted that relative entropy is called a divergence function in
mathematical literature. Araki [21–23] generalizes Umegaki’s relative
entropy to the context of mathematical states on an algebra of
bounded operators on a Hilbert space. The use of Araki’s relative
entropy replacing that of Umegaki’s is the core of the present work.

Exponential arcs were introduced in [24, 25] and used in [26].
These arcs can be considered one-parameter exponential families
embedded in the manifold. The maximal exponential model
centered at a given probability distribution p equals the set of all
probability distributions connected to p by an open exponential arc.
Exponential arcs were studied in the quantum setting by [27]. Here,
the definition is generalized. The exponential arcs are used to define
quantum statistical manifolds as submanifolds of the manifold of all
quantum states.

The Radon–Nikodym Theorem plays an important role in
probability theory. For each measure absolutely continuous with
respect to the reference measure, there exists an essentially
unique probability distribution function. The problem that
arises in the non-commutative context is the non-uniqueness of
the Radon–Nikodym derivative. This leads to different definitions
of the relative entropy and of the exponential arcs. First attempts to
reformulate the theory of the quantum statistical manifold in terms
of states on a C*-algebra are found in [28,29] and in [27]. These two
approaches differ in the choice of the Radon–Nikodym derivative.
In the present work, the definition of an exponential arc is
generalized so that it depends explicitly on the choice of relative
entropy and in that way on the choice of the Radon–Nikodym
derivative.

The alternative approach of [30] relies on the Lie Theory for the
group of bounded operators with bounded inverse. The state space is
partitioned into the disjoint union of the orbits of an action of the Lie
group. Under mild conditions, it is shown that the orbits are Banach
manifolds. The restriction to bounded operators implies that the orbits
do not connect quasi-equivalent states when the Radon–Nikodym
derivatives are unbounded operators.

Sections 2–4 give a short introduction on KMS states, on the
theory of the modular operator, and on positive cones. Section 5 gives

a definition of the manifoldM under study as the convex set of faithful
normal states on a sigma-finite von Neumann algebra. The tangent
space consists of linear functionals on the algebra. Its extent depends
on the chosen topology, and it is not obvious how to find a good
compromise. Therefore, the notion of approximate tangent vectors is
considered in Section 6.

A dense subset of the manifoldM consists of states majorized by a
multiple of the reference state. This subset of states is mentioned in
Section 7 because it is easier to handle.

Section 8 gives a new definition of exponential arcs. It generalizes
existing concepts and is broad enough to cover different approaches.
The definition depends on the choice of a relative entropy/divergence
function. Such an exponential arc can be seen as a one-dimensional
sub-manifold and as a straightforward example of a quantum
statistical manifold. Duality properties well-known for models of
information geometry are elaborated in Section 9.

The important example of the algebra of n-by-n matrices is
considered in Section 10.

Starting with Section 11 the paper specializes to the case of Araki’s
relative entropy. It is shown in Section 13 that each self-adjoint
element h of the von Neumann algebra defines an exponential arc
defined relative to Araki’s relative entropy and starting at the reference
state ω. The initial derivative of the arc exists as a Fréchet derivative
and belongs to the tangent planeTωM. The inner product between two
such tangent vectors reproduces the metric which is used in the
Kubo–Mori Theory of linear response. This is shown in Section 14.
The exponential arcs are shown to be geodesics for the e-connection
which is, by definition, the dual of the m-connection.

Section 16 applies the results obtained so far to show that
manifolds generated by a finite number of exponential arcs have
the properties one expects from a quantum statistical manifold.

A few points of concern are discussed in the final Section 17.

2 KMS states

Equilibrium states of quantum statistical mechanics satisfy the
KMS condition. In the GNS representation, an equilibrium state
becomes a faithful state on a σ-finite von Neumann algebra of
operators on a complex Hilbert space. The state is defined by a
normalized cyclic and separating vector in the Hilbert space.

The state of a model of statistical physics can be described by a
mathematical state on a C*-algebra A. It can be represented by a
normalized vector Ω (a wave function) in a Hilbert space H. This is
known as the GNS (Gelfand–Naimark–Segal) representation theorem.
Observable quantities are represented by self-adjoint operators on H.
The quantum expectation 〈x〉 of operator x is then given by

〈x〉 � xΩ,Ω( ), (1)
with in the right-hand side the scalar product of the two vectors xΩ
and Ω. It should be noted that the mathematical convention is
followed that the scalar product (inner product) is linear in its first
argument and conjugate-linear in the second argument. In Dirac’s
bra-ket notation, it reads

〈x〉 � 〈Ω|xΩ〉.
For convenience, one works with a von Neumann algebra M of

bounded operators on the Hilbert space H. Observables of interest,
when unbounded, are represented by operators affiliated withM. The
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state ω on the C*-algebra extends to a vector state onM again denoted
ω. It is given by

ω x( ) � xΩ,Ω( ), x ∈ M.

The vector Ω is cyclic forM, which means that the subspaceMΩ
is dense in the Hilbert spaceH. It is also assumed in what follows that
the state ω is faithful, i.e., ω(x*x) = 0 implies x = 0. This implies that Ω
is a separating vector forM, i.e., xΩ = 0 implies x = 0 for any x inM,
and hence it is a cyclic vector for the commutantM′ ofM, the algebra
of all operators commuting with all of M.

Equilibrium states of statistical mechanics are characterized by the
KMS (Kubo–Martin–Schwinger) condition [6]. Roughly speaking,
this condition states that the quantum time evolution of the model
has an analytic extension into the complex plane. This is made more
precise in what follows.

The time evolution is described by a strongly continuous one-
parameter group t ∈ R ↦ ut of unitary operators which leave the
algebra M unchanged, i.e., x ∈ M implies that xt � ut* xut belongs to
M for all t. The operators ut are determined by a self-adjoint
operator H

ut � e−itH,

which is the generator of the time evolution in the GNS representation.
The time derivative of xt satisfies

i
d
dt
xt � xt,H[ ]−.

This equation has the same form as Heisenberg’s equation of
motion.

The KMS condition requires that for any pair x, y of operators in
M, there exists a complex function F(w), defined and continuous on
the strip −β ≤ Im w ≤ 0 and analytical inside with boundary values

F t( ) � xtyΩ,Ω( ) and F t − iβ( ) � yxtΩ,Ω( ), t ∈ R.

In the mathematics literature, the parameter β, which is the inverse
temperature of the model, is usually taken equal to 1 or -1.

An immediate consequence of the KMS condition being satisfied is
that the state ω is invariant. Indeed, take y equal to the identity
operator. Then, one has F (t—iβ) = F(t) for all t inR. If in addition, x is
self-adjoint, then F(t) is a real function. From the Schwarz reflection
principle, one then concludes that F(w) is a constant function. This
implies ω(xt) = ω(x) for all self-adjoint x and hence for all x. The GNS
theorem then guarantees that the vectorΩ can be taken to be invariant,
i.e., utΩ = Ω for all t.

3 The modular operator

The quantum-mechanical time evolution coincides with the
modular automorphism group of Tomita–Takesaki theory.

The KMS condition, when satisfied, expresses a symmetry which is
present in the context of non-commuting operators. The symmetry is
the inversion of the order of multiplication of operators. In non-
commutative groups, the modular function links left and right Haar
measures. The analogue in functional analysis is studied in the theory
of the modular operator, also called the Tomita–Takesaki theory [7].

The operator e−βH with H the generator of the quantum-time
evolution is traditionally denoted as ΔΩ. It is the modular operator of

the Tomita–Takesaki theory. It is in general an unbounded operator
such thatMΩ is in the domain of the definition of the square root Δ1/2

Ω
of ΔΩ. Hence, the expression

F w( ) � xΔiw/β
Ω yΩ,Ω( ), x, y ∈ M, (2)

is well-defined for 0 ≥ Im w ≥−β/2. The other half of the strip 0 ≥ Im
w ≥−β is covered by the Schwarz reflection principle. Indeed, if x and y
are self-adjoint, then one can show with the Tomita–Takesaki theory
that the map t↦F (t − iβ/2) is a real function. Hence, the principle can
be applied to obtain F(w) � F(w − iβ).

The unitary time evolution operator ut can be written as

ut � Δit/β
Ω .

The time evolution of an operator x in the Heisenberg picture is then
given by

xt � τΩt x � Δ−it/β
Ω xΔit/β

Ω .

The action t ↦ τΩt of the group R,+ is called the modular
automorphism group.

The modular conjugation operator J of the Tomita–Takesaki
Theory represents the symmetry which is at the basis of the theory.
It is a conjugate-linear operator satisfying J = J* and J2 � I. Operator x
belongs to the von Neumann algebraM if and only if JxJ belongs to the
commutant algebra M′. The latter is the space of operators
commuting with all operators in M. The product JΔ1/2

Ω is denoted
as SΩ and has the property of

SΩxΩ � x*Ω, x ∈ M.

4 Dual cones

The natural positive cone PΩ is needed in subsequent sections. One
reason for making use of it is that there exists a one-to-one
correspondence between normal states on M and normalized
vectors in PΩ.

Section 4 of [22]introduces the cones Vα
Ω, 0 ≤ α ≤ 1/2, of the

vectors inH. The self-dual cone V1/4
Ω is called the natural positive cone

and is denoted as PΩ.
By definition, Vα

Ω is the closure of the cone

Δα
ΩxΩ: x ∈ M, x≥ 0{ }.

The cone V1/2
Ω is used in [27] to introduce exponential arcs. It is

equal to the closure of the set

yΩ: y ∈ M′, y≥ 0{ }.
To see this note that

Δ1/2
Ω xΩ � JSΩxΩ

� Jx*Ω
� yΩ

with y = Jx*J. The latter is an arbitrary element of the commutantM′.
The following characterization of the natural positive cone PΩ is

found in Section 2.5 of [5].
Proposition 1: The cone PΩ � V1/4

Ω equals the closure of the set of
vectors
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xJxΩ: x ∈ M{ }. (3)
This result can be understood as follows. Take Φ in P of the form

(3), i.e., Φ = xJxΩ with x in M. Let

y � Δ−1/4
Ω xΔ1/4

Ω . (4)
This expression can be inverted to

x � Δ1/4
Ω yΔ−1/4

Ω

so that

Φ � xJxΩ � Δ1/4
Ω yΔ−1/4

Ω JΔ1/4
Ω yΔ−1/4

Ω Ω
� Δ1/4

Ω yJΔ1/2
Ω yΩ

� Δ1/4
Ω ySΩyΩ

� Δ1/4
Ω yy*Ω.

Assume now that one could prove that the operator y defined by
(4) belongs toM; then, the above calculation would show that Φ is of
the form Φ � Δ1/4

Ω aΩ with a = yy* a positive element ofM. The actual
proof of the proposition uses that τΩt x � Δ−it

Ω xΔit
Ω belongs to M.

The cone PΩ is independent [22] of the choice of the cyclic and
separating vector Ω in PΩ, and the isometry J is the same for all these
choices. For this reason, it is said to be universal.

From (3), it is easy to see that each vector in PΩ is an eigenvector
with eigenvalue 1 of the modular conjugation operator J. Indeed,
one has

xJxΩ � x JxJ( )Ω � JxJ( )xΩ � J xJxΩ( ).
Here, use is made of JΩ = Ω and the fact that the operators x and JxJ
commute with each other.

5 A manifold of quantum states

A manifold M of vector states on the von Neumann algebra M is
defined. Tangent vector fields are Fréchet derivatives of paths inM.

Introduce the notation ωΦ for the vector state defined by the
normalized vector Φ in H. It is given by

ωΦ x( ) � xΦ,Φ( ), x ∈ M.

A manifold M of states on the von Neumann algebra M is
defined by

M � ωΦ: Φ ∈ PΩ, normalized, cyclic and separating forM{ }.
The equilibrium state ω = ωΩ is taken as a reference point in M.

The subset PΩ of H is the natural positive cone introduced in the
previous section.

The topology on the manifold M is that of the operator norm.
One has

‖ωΦ − ωΨ‖ � sup |ωΦ x( ) − ωΨ x( )|: x ∈ M, ‖x‖≤ 1{ }.
Several topologies can be defined on the algebraM. Particularly

relevant is the σ-weak topology. For what follows, it is important
to know that in the present context, a state ω on M is said to
be normal if and only if it is σ-weakly continuous and if and only if
it is a vector state. See for instance, Theorems 2.4.21 and
2.5.31 of [5].

Any tangent vector is a σ-weakly continuous linear functional on
the von Neumann algebraM. Let t↦γt be a Fréchet differentiable map
defined on an open interval of R with values in the manifold M. The
derivative

_γt �
d
dt
γt

is required to exist as a Fréchet derivative, i.e., it satisfies

‖γt − γs − t − s( ) _γt‖ � o t − s( ).
From the normalization, γt (1) = 1 for all t in the domain of the

map, one obtains _γt(1) � 0. From γt(x*) � γt(x), one obtains
_γt(x*) � _γt(x). Hence, the linear functional _γt is Hermitian.

There are several ways to define the tangent space TωM at the
point ω in M. Intuitively, a tangent vector is a derivative, defined in
some sense, of a path t↦γt in M passing through the point ω. The
states of the manifold M belong to the space M* of all σ-weakly
continuous linear functionals on the algebra M (see Proposition
2.4.18 of [5]). Hence, one expects that tangent vectors belong to
M* as well.

In this section, the requirement is made that the path t↦γt is
Fréchet-differentiable. This may be too restrictive. In what follows, we
adopt the definition that the tangent space TωM consists of all
Hermitian χ in M* , satisfying χ(1) = 0. It should be noted that it
is well-possible that for certain elements χ of this space, there is no
smooth curve passing through ω with the property that the derivative
at ω equals χ.

6 Approximate tangents

Approximate tangent vectors can be defined in an intrinsic manner.

An alternative definition of the tangent space starts from the
following observation.

Proposition 2: The set T ω defined by

T ω � λ ϕ − ψ( ): ϕ,ψ ∈ M, λ ∈ R andω � 1
2

ϕ + ψ( ){ }.
is a linear subspace of the tangent space TωM.

Proof:
Let ϕ and ψ be two states inM such that ω � 1

2 (ϕ + ψ). Construct a
Fréchet-differentiable path γ by

γt � 1 − t( )ψ + tϕ, t ∈ 0, 1( ).
The state γt belongs to the manifold M because the latter is a

convex set. In particular, one has ω = γ1/2 and ϕ − ψ � _γ1/2 is a tangent
vector. This shows that ϕ − ψ and hence also λ(ϕ − ψ) belongs to TωM.
One concludes that T ω ⊂ TωM.

Assume now that λ(ϕ − ψ) and λ′(ϕ′ − ψ′) both belong to T ω. We
have to show that

λ ϕ − ψ( ) + λ′ ϕ′ − ψ′( )
belongs to T ω. If λ = 0 or λ′ = 0, then the claim is clearly satisfied.
Without restriction, assume λ = 1.

If λ′ > 0, then choose

ϕ″ � 1
1 + λ′ ϕ + λ′ϕ′( ) and ψ″ � 1

1 + λ′ ψ + λ′ψ′( ).
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Both ϕ″ and ψ″ belong to M because the latter is a convex set. One
verifies that ϕ″ + ψ″ = 2ω and

1 + λ′( ) ϕ″ − ψ″( ) � ϕ − ψ + λ′ ϕ′ − ψ′( ).
This shows that the latter sum belongs to T ω.
In the case that λ′ < 0, one chooses

ϕ″ � 1
1 − λ′ ϕ − λ′ψ′( ) and ψ″ � 1

1 − λ′ ψ − λ′ϕ′( )
to reach the same conclusion. This finishes the proof that T ω is a linear
subspace of TωM.

We introduce the notations

Rω,ϵ � ⋃ T ϕ withϕ ∈ M such that ‖ϕ − ω‖< ϵ.
and

T approx
ω � ⋂

ϵ>0
Rω,ϵ.

The construction of T approx
ω is analogous to the construction of the

approximate tangent space in Chapter 3 of [31]. Clearly, T ω ⊂ T approx
ω .

Further properties are derived below.
Proposition 3: If γ is a Fréchet-differentiable path in M, then _γt

belongs to T approx
ω with ω = γt.

Proof:
Let γ be a Fréchet-differentiable path inM. Without restriction of

generality, assume that γ0 = ω. For any ϵ > 0 and δ > 0, there exists t ≠ 0
such that

‖ γt + γ−t( )/2 − γ0‖< ϵ.
and

‖ γt − γ−t( )/2t − _γ0‖< δ. (5)

Then, ϕ defined by

ϕ � 1
2

γt + γ−t( )
satisfies ‖ϕ—ω‖ < ϵ, and (γt—γ−t)/2t belongs toRω,ϵ. Hence, (5) shows
that the tangent vector _γ0 belongs to the closure ofRω,ϵ. Because ϵ > 0
is arbitrary, it also belongs to the intersection, which is T approx

ω .
Lemma 1: Rω,ϵ is a linear subspace of TωM.
Proof:
Take χ and ξ in Rω,ϵ. There exist ϕ and ψ in M such that χ ∈ T ϕ

and ξ ∈ T ψ with ‖ϕ—ω‖ < ϵ and ‖ψ—ω‖ < ϵ. Therefore, there exist real
λ, μ and states ϕ1, Φ2, Ψ1, Ψ2 in M such that

χ � λ ϕ1 − ϕ2( ) and ϕ � 1
2

ϕ1 + ϕ2( )
and

ξ � μ ψ1 − ψ2( ) and ψ � 1
2

ψ1 + ψ2( ).
If λ = 0 or μ = 0, then χ + ξ belongs to Rω,ϵ without further

argument. Assume, therefore, that λ ≠ 0 and μ ≠ 0. If λμ > 0, then χ + ξ

belongs to T π , with π = (1 − α)ϕ + αψ and α given by

α � μ

λ + μ
.

Indeed, let

π1 � 1 − α( )ϕ1 + αψ1,
π2 � 1 − α( )ϕ2 + αψ2.

Then both π1 and π2 belong to M and satisfy

π1 + π2 � 2 1 − α( )ϕ + 2αψ
� 2π

and

λ + μ( ) π1 − π2( ) � λ + μ( ) 1 − α

λ
χ + α

μ
ξ[ ]

� χ + ξ.

In addition,

‖π − ω‖ � ‖ 1 − α( ) ϕ − ω( ) + α ψ − ω( )‖
≤ ‖ 1 − α( ) ϕ − ω( )‖ + ‖α ψ − ω( )‖
< ϵ.

One concludes that in this case, χ + ξ belongs to Rω,ϵ.
The case that λμ < 0 is similar. That χ ∈ Rω,ϵ implies λχ ∈ Rω,ϵ is

straightforward. One can conclude thatRω,ϵ is a linear space. It clearly
is a subspace of TωM.

Proposition 4: T approx
ω is a closed linear subspace of TωM.

Proof:
The lemma shows thatRω,ϵ is a linear subspace of TωM, which is a

space closed in norm. Hence, also the norm closure ofRω,ϵ is a subset
of this space and therefore also of TωM.

7 Majorized states

The subset of states majorized by a multiple of the reference state ω
is considered.

Definition 1: A state ϕ on M is said to be majorized by a multiple
of the state ω if there exists a positive constant λ such that

ϕ x*x( )≤ λω x*x( ) for allx ∈ M.

Take a′ ≠ 0 in the commutant algebra M′ and let

Φ � 1
‖a′Ω‖a′Ω.

Then, the stateωΦ is majorized by a multiple of the stateω. Indeed,
one has for any positive x in M

ωΦ x( ) � xa′Ω, a′Ω( )
a′Ω, a′Ω( )

� a′*a′x1/2Ω, x1/2Ω( )
a′Ω, a′Ω( )

≤
‖a′*a′‖
a′Ω, a′Ω( )ω x( ).

It is well-known that all states majorized by a multiple of the state
ω are obtained in this way. This is the content of the following
proposition.

Proposition 5: If the vector state ωΦ is majorized by a multiple of
the state ω, then there exists a unique element a′ of the commutantM′
such that Φ = a′Ω.

Proof:
An operator a′ is densely defined by
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a′xΩ � xΦ, x ∈ M.

It satisfies a′Ω = Φ. It is well-defined because xΩ = 0 implies

‖xΦ‖2 � ωΦ x*x( )≤ constantω x*x( ) � constant ‖xΩ‖2 � 0

so that xΦ = 0.
The operator a′ is bounded because

‖a′xΩ‖2 � ϕ x*x( )≤ constantω x*x( ) � constant ‖xΩ‖2.
The operator a′ commutes with any x in M because

a′x yΩ( ) � xyΦ � x a′yΩ( ) � xa′ yΩ( )
and Ω is cyclic for M.

The operator a′ is unique. Indeed, assuming b′ inM′ satisfies Φ =
b′Ω. Then, one has for all x in M

0 � x a′ − b′( )Ω � a′ − b′( )xΩ.
Hence, a′ − b′ vanishes onMΩwhich is dense in the Hilbert space

because Ω is cyclic for M. Because a′ − b′ is a bounded and hence
continuous operator, it vanishes everywhere so that a′ = b′.

Item (8) of Theorem 3 of [22] implies the following.
Proposition 6: If a vector state ωΦ, defined by a vector Φ in the

natural positive cone PΩ, is dominated by a multiple of the state ω,
then there exists a unique element a in the algebra M such that Φ =
aΩ and

ωΦ x( ) � ω a*xa( ), x ∈ M.

Proof:
Proposition 5 shows that a′ in the commutantM′ exists such that

Φ = a′Ω. BecauseΦ andΩ both belong to PΩ, one hasΦ = JΦ = Ja′JΩ.
Let a = Ja′J. From JM′J � M, it follows that a belongs toM. This

shows the existence.
The element a is unique because the correspondence between

vector states on M and vectors in PΩ is one-to-one and Ω is a
separating vector for M.

If M is a commutative algebra, then a*a is the Radon–Nikodym
derivative of the state ωΦ with respect to the reference state ω.

The subset of states of M majorized by a multiple of the state ω is
dense in M in the sense that for any state ϕ in M, there exists a
sequence (an)n of elements of M with the property that anΩ is a
Cauchy sequence and

ϕ x( ) � lim
n→∞

ω an*xan( ), x ∈ M.

See Propositions 1.5 and 2.5 of [32].
Proposition 7: A tangent vector χ belongs to the subspace T ω of the

tangent space TωM if and only if it is proportional to the difference of
two states ϕ and ψ in M, both majorized by a multiple of the state ω.

Proof:
If χ belongs to T ω, then by definition, there exist states ϕ and ψ in

M such that χ = λ(ϕ − ψ) and ϕ + ψ = 2ω. The latter implies that both ϕ
and ψ are majorized by 2ω.

Conversely, assume that ϕ and ψ in M are both majorized by a
multiple of the stateω and let χ = λ(ϕ − ψ). This implies the existence of
μ ≥ 1 and ] ≥ 1 such that ϕ ≤ μω and ψ ≤ ]ω.

Without restriction, assume that λ > 0.
Introduce

ϕ′ � ω + ρχ and ψ′ � ω − ρχ

with ρ still to be chosen. By construction, it holds that ϕ′ + ψ′ = 2ω and
ϕ′ − ψ′ = 2ρχ. Hence, if ϕ′ and ψ′ are states in M and ρ ≠ 0, then one
can conclude that χ belongs to T ω.

From

χ x*x( )≤ λϕ x*x( )≤ λμω x*x( )
and

χ x*x( )≥ − λψ x*x( )≥ − λ]ω x*x( ),
one obtains

ϕ′ x*x( ) ≥ 1 − ρλ][ ]ω x*x( ),
ψ′ x*x( ) ≥ 1 − ρλμ[ ]ω x*x( ).

Let ρ be equal to the inverse of the maximum of λμ and λ] to prove
the positivity of the functionals ϕ′ and ψ′. Normalization ϕ′(1) =
ψ′(1) = 1 follows from χ(1) = 0. The functions are σ-weakly continuous
as well. Hence, they are states inM. This ends the proof that χ belongs
to T ω.

8 Exponential arcs

[27] introduces the notion of an exponential arc in the Hilbert
space, inspired by the notion of exponential arcs in probability space
as introduced by [24, 25]. Here, a definition is given which depends
on the choice of a relative entropy.

In the present context, a divergence function D (ϕ‖ψ) is a real
function of two states ϕ and ψ in the manifold M. It cannot be
negative, and it vanishes if and only if the two arguments are equal. A
value of + ∞ is allowed. An energy function is an affine function h

defined on a convex subset of the set of normal states on the algebraM.
The following definition of an exponential arc in the manifold M

assumes that a divergence function D (ϕ‖ψ) is given.
Definition 2: An exponential arc γ is a path in the manifold

t ∈ 0, 1[ ] ↦ γt ∈ M

for which there exists an energy function h such that

• γt is in the domain of h;
• The divergence D (γs‖γt) between any two points of the arc is
finite;

• For any state ψ in the domain of h, one has

D ψ‖γt( ) � D ψ‖γ0( ) +D γ0‖γt( ) + t h γ0( ) − h ψ( )( ), 0≤ t≤ 1.
(6)

The energy function h is the generator of the exponential arc. The
arc is said to connect the state γ1 to the state γ0.

A subclass of energy functions is formed by the functions h for
which there exists a self-adjoint operator h in the von Neumann
algebra M so that

h ψ( ) � ψ h( ), ψ ∈ M. (7)
In such a case, h is called the generator as well. The exponential

arcs defined in [27] agree with the above definition with a generator
defined by an unbounded operator affiliated with the commutant
algebra M′.

Proposition 8: Expression (6) implies
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D γs‖γ0( ) +D γ0‖γs( ) � s h γs( ) − h γ0( )( ). (8)
and

D ψ‖γt( ) � D ψ‖γs( ) +D γs‖γt( ) + t − s( ) h γs( ) − h ψ( )( ). (9)
It should be noted that with s = 0, expression (9) reduces to (6).

Proof:
Take ψ = γs in (6) to find

D γs‖γt( ) � D γs‖γ0( ) +D γ0‖γt( ) + t h γ0( ) − h γs( )( ), 0≤ s, t≤ 1.

(10)
In particular, with s = t, this implies (8).
To prove (9), use (10) to write the right-hand side as

r.h.s. � D ψ‖γs( ) +D γs‖γ0( ) +D γ0‖γt( ) + t h γ0( ) − h ψ( )( )
− s h γs( ) − h ψ( )( ).

Next, eliminate D (γ0‖γt) and D (ψ‖γs) with the help of (6). This
gives

r.h.s. � D ψ‖γs( ) +D γs‖γ0( ) +D ψ‖γt( ) −D ψ‖γ0( ) − s h γs( ) − h ψ( )( )
� D γs‖γ0( ) +D ψ‖γt( ) +D γ0‖γs( ) + s h γ0( ) − h γs( )( )
� D ψ‖γt( ).

To obtain the last line, use (8).
Corollary 1: If t↦γt is an exponential arc with generator h

that connects γ1 to γ0, then for any s, t in [0, 1], the map ϵ↦γ(1−ϵ)s+ϵt
is an exponential arc with generator (t − s)h that connects γt to γs.

Corollary 2: If t↦γt is an exponential arc with generator h that
connects γ1 to γ0, then t↦γ1−t is an exponential arc with generator −h,
connecting the state γ0 to the state γ1.

The following two propositions deal with the uniqueness of an
exponential arc and of its generator.

Proposition 9: Let ω and ϕ be two states in M. Fix an energy
function h. There is at most one exponential arc t↦γt with generator h
that connects ϕ to ω.

Proof:
Assume both t↦γt and t↦δt are exponential arcs connecting the

state ϕ to the state ω. Subtract (6) from the same expression with γt
replaced by δt and take s = 0. This gives

D ψ‖δt( ) −D ψ‖γt( ) � D ω‖δt( ) −D ω‖γt( ). (11)
Take ψ equal to δt. Then, one obtains

0≥ −D δt‖γt( ) � D ω‖δt( ) −D ω‖γt( ).
On the other hand, with ψ = γt, one obtains

0≤D γt‖δt( ) � D ω‖δt( ) −D ω‖γt( ).
The two expressions together yield

D ω‖δt( ) −D ω‖γt( ) � 0.

This implies D (γt‖δt) = 0. By the basic property of a divergence,
one concludes that γt = δt.

Proposition 10: If the exponential arc t↦γt has two generators h
and k, then these generators differ by a constant on their common
domain of definition.

Proof:
It follows from (6) that

h γs( ) − h ψ( ) � k γs( ) − k ψ( ), s ∈ 0, 1[ ] (12)
for all states ψ in the intersection of the domains of h and k. This
implies that a constant c exists so that

k ψ( ) � h ψ( ) + c

for all ψ in the common domain.
The requirement (6) is a stability condition. The generator h is a

perturbation which shifts the state γ0 to the state ψ. This interpretation
will become clear further on. The effect on the relative entropy of the
shift along the arc t↦γt is linear. In the standard case, the relative
entropy is based on the logarithmic function. This justifies calling the
path t↦γt an exponential arc.

It should be noted that the Pythagorean relation [33, 34]

D ψ‖γt( ) � D ψ‖γs( ) +D γs‖γt( )
is satisfied for all ψ with the same energy as the state γs, i.e., with

h ψ( ) � h γs( ).
If the divergence function is interpreted as the square of a pseudo-

distance, then the aforementioned relation states that for an arbitrary
state ψ, the point γs of the arc which has the same energy is the point
with minimal distance.

9 The scalar potential

The exponential arc has a dual structure similar to that found in
information geometry [10, 11].

Given an exponential arc t↦γt with generator h, introduce the
potential Φγ defined by

Φγ t( ) � D γ0‖γt( ) + th γ0( ).
Its Legendre transform is given by

Φγ* α( ) � sup αt − Φγ t( ): 0≤ t≤ 1{ }.
Proposition 11: For any exponential arc t↦γt with generator h,

one has

(a) The function t ↦ h(γt) is strictly increasing;
(b) Φγ(t) � Φγ(s) +D(γs‖γt) + (t − s)h(γs);
(c) The line t ↦ Φγ(s) + (t − s)h(γs) is tangent to the potentialΦγ at

the point t = s; this implies that the potential Φγ(s) is a strictly
convex function, continuous on the open interval (0, 1);

(d) The following identity holds:

Φγ s( ) +Φγ* h γs( )( ) � sh γs( ), s ∈ 0, 1[ ].

Proof:

(a) Take ψ = γt in (6). This gives

0 � D γt‖γs( ) +D γs‖γt( ) + t − s( ) h γs( ) − h γt( )( ).
Because divergences cannot be negative, this implies that

t ↦ h(γt) is non-decreasing. Assume now that h(γs) � h(γt).
Then, it follows that

0 � D γt‖γs( ) � D γs‖γt( ).
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The latter implies that s = t. One concludes that s < t implies a strict
inequality h(γs)< h(γt).

(b) From the definition of the exponential arc, one obtains

D γs‖γt( ) + t − s( )h γs( ) � D ψ‖γt( ) −D ψ‖γs( ) + t − s( )h ψ( ).
Take ψ = γ0 in this expression to find

D γs‖γt( ) + t − s( )h γs( ) � D γ0‖γt( ) −D γ0‖γs( ) + t − s( )h γ0( )
� Φγ t( ) −Φγ s( ).

(c) From (b), one obtains

Φγ t( ) − th γs( )≥Φγ s( ) − sh γs( ), 0≤ t≤ 1 (13)
because D (γs‖γt) ≥ 0 with equality if and only if s = t. This implies that
t ↦ Φγ(s) + (t − s)h(γs) is a line tangent to the potentialΦγ(s). By (a),
the slope of this line is a strictly increasing function of s. Hence, the
potential Φγ(s) is a strictly convex function, continuous on the open
interval (0, 1).

(d) (13) implies that

Φγ* h γs( )( ) � suptth γs( ) − Φγ t( )
≤ sh γs( ) −Φγ s( ).

On the other hand, one can use (b) to obtain

Φγ s( ) +Φγ* h γs( )( ) ≥ Φγ s( ) + th γs( ) −Φγ t( )
� th γs( ) − D γs‖γt( ) + t − s( )h γs( )[ ]
� −D γs‖γt( ) + sh γs( ).

The optimal choice t = s yields the lower bound sh(γs).
A dual parameter η of the exponential arc γ, dual to the parameter

t, is the value h(γt) of the generator h. By item (a) of the proposition, it
is a strictly increasing function of t. It is almost equal everywhere to the
derivative _Φγ(t) of the value of the potential along the path.

10 The matrix case

If ρ and σ are two density matrices, then the obvious definition of an
exponential arc connecting σ to ρ is

t ↦ σt � exp(log ρ + t(log σ − log ρ) − ζ(t))
with normalization ζ(t) given by

ζ(t) � log Tr exp(log ρ + t(log σ − log ρ)).
It is shown below that the corresponding states given by

ϕt(x) � Tr σtx, x ∈ A

form an exponential arc for the relative entropy of Umegaki [20] in
the GNS-representation of the state σ0.

Fix a non-degenerate density matrix ρ of size n-by-n. It is a
positive-definite matrix with trace Tr ρ equal to 1.

Umegaki’s relative entropy for the pair of density matrices σ, τ is
given by

D σ‖τ( ) � Tr σ log σ − log τ( ).
Assume now a map

t ↦ σt � exp log ρ + th − ζ t( )( ) (14)

with normalization ζ(t) and with h given by

h � log σ − log ρ.

This is the obvious definition of an exponential arc in terms of density
matrices. The corresponding potential is

Φσ t( ) � D σ0‖σt( ) + th σ0( )
� ζ t( )

with

h τ( ) � Tr τh � Tr τ log σ − log ρ( ).
The map (14) is also an exponential arc in the sense of Definition

2. To see this, consider any density matrix τ and calculate

D τ‖σt( ) −D τ‖σs( ) −D σs‖σt( ) � Tr τ log τ − logσt( )
−Tr τ log τ − logσs( )
−Tr σs logσs − logσt( )

� − t − s( )Tr τ − σs( )h
� t − s( ) h γs( ) − h τ( )( ).

This is of the form (6) except that the relative entropy is expressed
in terms of density matrices in M instead of vector states in the GNS
representation of the state defined by the density matrix ρ.

An explicit construction of the GNS representation is possible. See
for instance, the appendix of [28]. Let ω = σ0 denote the state
determined by the density matrix ρ

ω A( ) � Tr ρA

for any n-by-n matrix A with entries in C. Such a matrix A is
represented on the Hilbert space H � Cn ⊗ Cn by the operator
A ⊗ I, where I is the n-by-n identity matrix. The von Neumann
algebra M is the space of operators A ⊗ I.

The matrix ρ can be diagonalized. This gives the spectral
representation

ρ � ∑
i

piei,

where (ei)i is an orthonormal basis in Cn. Let

Ω � ∑
i

��
pi

√
ei ⊗ ei.

It is a normalized vector in H. One readily verifies that

ω A( ) � A ⊗ IΩ,Ω( )
for any n-by-n matrix A. In this way, any density matrix ρ defines a
vector Ω inH. The vector Ω is cyclic and separating forM if ρ is non-
degenerate. Hence, there is a one-to-one correspondence between
non-degenerate density matrices and states in the manifold M. It is
then straightforward to replace the density matrices by states in the
expressions obtained in the first part of this section.

11 The relative modular operator

Araki [35] introduces the relative modular operator ΔΦ,Ψ for any
pair of vectors Φ and Ψ in the natural positive cone P.

Assume thatΦ and Ψ are vectors in P which are separating for the
algebra M. Then, a conjugate–linear operator is defined by
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xΨ ↦ x*Φ, x ∈ M.

It is well-defined because by assumption, xΨ = 0 implies that x = 0 so
that also x*Φ = 0. It is a closable operator. Indeed, assume the sequence
xnΨ converges to 0. Then, one has for any y in the commutant M′ that

xnΨ, yΦ( ) � yΨ, xn*Φ( )
converges to 0. By assumption, Ψ is separating forM so that it is cyclic
for the commutantM′. Hence, if the sequence xn*Φ converges, then it
converges to 0. This shows the closability of the operator.

Let SΦ,Ψ denote the closure of this operator. It satisfies

SΦ,ΨxΨ � x*Φ, x ∈ M.

Its inverse equals SΨ,Φ.
The relative modular operator ΔΦ,Ψ is defined by

ΔΦ,Ψ � SΦ,Ψ* SΦ,Ψ.

Important properties of the relative modular operator are

ΔΦ,Φ � ΔΦ and SΦ,Ψ � JΔ1/2
Φ,Ψ.

where J is the modular conjugation operator for the vector Φ.

12 Araki’s relative entropy

Araki [22, 23] uses the relative modular operatorΔΦ,Ψ to define the
relative entropy/divergence D (ϕ‖ψ) of the corresponding states
ϕ = ωΦ and ψ = ωΨ by
D(ϕ‖ψ) � ((logΔΦ,Ψ)Φ,Φ).

Proposition 12: The divergence D (ϕ‖ψ) satisfies D (ϕ‖ψ) ≥ 0 with
equality if and only if ϕ = ψ.

Proof:
Let

ΔΦ,Ψ � ∫ λdEλ

denote the spectral decomposition of the operator ΔΦ,Ψ. From the
concavity of the logarithmic function, it follows that

D ϕ‖ψ( ) � − logΔ−1
Φ,Ψ( )Φ,Φ( )

� −∫ logλ−1d EλΦ,Φ( )
≥ −log∫ λ−1d EλΦ,Φ( )
� −log Δ−1/2

Φ,ΨΦ,Δ−1/2
Φ,ΨΦ( )

� −log Ψ,Ψ( )
� 0.

This shows that the divergence cannot be negative.
If ϕ = ψ, then one has

D ϕ‖ϕ( ) � logΔΦ( )Φ,Φ( ) � 0

because ΔϕΦ = Φ.
Finally, D (ϕ‖ψ) = 0 implies that Φ is in the domain of log ΔΦ,Ψ

and that log ΔΦ,ΨΦ = 0. The latter implies that

Ψ � Δ−1
Φ,ΨΦ � Φ.

This shows that D (ϕ‖ψ) = 0 vanishes only when Φ = Ψ.
Theorem 2.4 of [35] shows that

logΔΦ,Ψ + J logΔΨ,ΦJ � 0.

Because Φ belongs, by assumption, to the natural positive cone P,
it satisfies Φ = JΦ. Hence, one has also

D ϕ‖ψ( ) � − logΔΨ,Φ( )Φ,Φ( ).

13 A theorem

Each self-adjoint element h of the von Neumann algebraM defines
an exponential arc with a generator equal to the energy function
defined by h.

[21] constructs for each self-adjoint operator h inM a vectorΦh in
the natural positive cone P and calls h the relative Hamiltonian.
Inspection of the explicit expression used in [21] shows that

Φh � Ω +XhΩ +O h2( ) (15)
with operator X given by

X � ∫1/2

0
duΔu

Ω.

The vector Φh defines a state ϕh by

ϕh x( ) � e−ξ h( ) xΦh,Φh( ), x ∈ M.

Here, ξ(h) is the normalization

ξ h( ) � log Φh,Φh( ).
Theorem 3.10 of [35] implies that the state ϕh obtained in this way

satisfies for all ψ in M

D ψ‖ϕh( ) � D ψ‖ω( ) − ψ h( ) + ξ h( ). (16)
Take ψ = ϕh and ψ = ω to find that the normalization ξ(h) is

given by

ξ h( ) � ϕh h( ) −D ϕh‖ω( ) � ω h( ) +D ω‖ϕh( ).
Consider now the path γ defined by γt = ϕth. Then, (16) becomes

D ψ‖γt( ) � D ψ‖ω( ) − tψ h( ) + ζ t( ). (17)
with

ζ t( ) � tγt h( ) −D γt‖ω( ) � tω h( ) +D ω‖γt( ) � ξ th( ).
From this last expression, one obtains

0≤D γt‖ω( ) +D ω‖γt( ) � t γt h( ) − ω h( )[ ].
From (15), we infer that γt converges to ω as t ↓ 0. Hence, D (γt‖ω)

and D (ω‖γt) converge to 0 faster than t. This implies that the
derivative _ζ(0) exists and equals ω(h). This also implies that

d
dt

∣∣∣∣∣∣∣t�0D ψ‖γt( ) � ω h( ) − ψ h( ). (18)

Elimination of ζ(t) from (17) yields

D ψ‖γt( ) � D ψ‖ω( ) +D ω‖γt( ) + t ω h( ) − ψ h( )( ).
This shows that γ is an exponential arc connecting γ1 to γ0 = ω.

Proposition 13: One has
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_γ0 x( ) � TΩhΩ, TΩ x − ω x( )[ ]*Ω( ) (19)
with the operator TΩ given by

TΩ � ΔΩ − 1
logΔΩ

( )1/2

. (20)

It should be noted that this operator TΩ was introduced in [36].
Proof:
From (15), one obtains

_γ0 x( ) � d
dt

∣∣∣∣∣∣∣t�0γt x( ) � xXhΩ,Ω( ) + xΩ, XhΩ( ) − _ζ 0( )ω x( ). (21)

Write

xXhΩ,Ω( ) � ∫1/2

0
du xΔu

ΩhΩ,Ω( )
� ∫1/2

0
du Δu/2

Ω hΩ,Δu/2
Ω x*Ω( )

and

xΩ, XhΩ( ) � ∫1/2

0
du xΩ,Δu

ΩhΩ( )
� ∫1/2

0
du Δu/2

Ω JΔ1/2
Ω x*Ω,Δu/2

Ω JΔ1/2
Ω hΩ( )

� ∫1/2

0
du JΔ 1−u( )/2

Ω x*Ω, JΔ 1−u( )/2
Ω hΩ( )

� ∫1

1/2
du JΔu/2

Ω x*Ω, JΔu/2
Ω hΩ( )

� ∫1

1/2
du Δu/2

Ω hΩ,Δu/2
Ω x*Ω( ).

The two contributions to (21) can now be taken together. One
obtains

_γ0 x( ) � ∫1

0
du Δu/2

Ω hΩ,Δu/2
Ω x*Ω( ) − _ζ 0( )ω x( )

� TΩhΩ, TΩx*Ω( ) − _ζ 0( )ω x( ).
Take x = 1 to see that

_ζ 0( ) � TΩhΩ, TΩΩ( ) � ω h( )
so that it follows (19).

In summary, one can infer
Theorem 1: Let ω inM be a vector state with cyclic and separating

vector Ω. Choose the divergence function equal to the relative entropy
of Araki as defined by (15). For each self-adjoint element h in M, an
energy function h is defined by h(ϕ) � ϕ(h) and there exists an
exponential arc γ with generator h connecting some state γ1 of M
to the state γ0 = ω. For any state ψ inM, the derivative ofD (ψ‖γt) at t =
0 exists and is given by ω(h) − ψ(h). The derivative of the exponential
arc at t = 0 satisfies (19).

Further properties hold for the exponential arc of the above
theorem.

Proposition 14: For any exponential arc γ constructed in Theorem
1, the derivative _γ0 is a Fréchet derivative.

Proof:
Let Ξ(h) denote the remainder of order h2 in (15), i.e.,

Φh � Ω +XhΩ + Ξ h( ).
Then one can use (19) for

γt x( ) − γ0 x( ) − t _γ0 x( ) � e−ζ t( ) xΦth,Φth( ) − ω x( ) − t xXhΩ,Ω( )
− t xΩ, XhΩ( ) + tω h( )ω x( )

� e−ζ t( ) − 1 + tω h( )[ ]ω x( ) + t e−ζ t( ) − 1[ ]
× xXhΩ,Ω( ) + xΩ, XhΩ( )[ ]
+ e−ζ t( ) xΞ th( ),Ω( ) + xΩ,Ξ th( )( )[
+t2 xXhΩ, XhΩ( )
+t xΞ th( ), XhΩ( )
+t xXhΩ,Ξ th( )( )
+ xΞ th( ),Ξ th( )( )].

This yields

‖γt − γ0 − t _γ0‖ ≤ |e−ζ t( ) − 1 + tω h( )|
+2t|e−ζ t( ) − 1|‖XhΩ‖
+2e−ζ t( )‖Ξ th( )‖
+e−ζ t( ) ‖Ξ th( )‖ + t‖XhΩ‖[ ]2.

Each of the terms in the right-hand side of this expression is of
order less than t as t tends to 0. Hence, _γ0 is a Fréchet derivative.

Proposition 15 (Additivity of generators): If the state ϕ is
connected to the state ω by the exponential arc with generator h
and ψ is connected to ϕ by the exponential arc with generator k, then ψ
is connected to ω by the exponential arc with generator h + k and ω is
connected to ψ by the exponential arc with generator −h.

For the proof, see Proposition 4.5 of [21].

14 The metric

Eguchi [37] introduced the technique of deriving the metric of the
tangent space by taking two derivatives of the divergence.
Application here yields the metric which is used in the
Kubo–Mori theory of linear response [38, 39].

Consider two exponential arcs t↦γt and s↦ηswith respective generators
h and k. They connect the states γ1 and η1 to the reference state ω. The
tangent vectors at s = t = 0 are _γ0 and _η0. They belong to the tangent space
TωM. The scalar product between them is by definition given by

_η0, _γ0( )ω � − z

zs

z

zt

∣∣∣∣∣∣∣s�t�0D ηs‖γt( ).
Assume now that these exponential arcs are those constructed in

Theorem 1. Then, one has

_η0, _γ0( )ω � −z
zs

∣∣∣∣s�t�0 ω h( ) − ηs h( )( )
� _η0 h( )
� TΩkΩ, TΩ h − ω h( )( )Ω( )
� TΩ k − ω k( )( )Ω, TΩ h − ω h( )( )Ω( ),

(22)

with the operator TΩ defined by (20). It should be noted that in most
applications, one assumes that the expectations ω(h) of the generator h
and ω(k) of the generator k vanish. Then, the result obtained here
coincides with that used in [36]. In what follows, a non-vanishing
expectation of the generators is taken into account.

Let us now discuss some technical issues. The scalar product is
well-defined by (22). This follows from

Lemma 2: If two exponential arcs with initial pointωwith generators h,
respectively k, both inM, have the same initial tangent vector, then one has

TΩ h − ω h( )( )Ω � TΩ k − ω k( )( )Ω.
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Proof:
Let γ and η be two exponential arcs with generators h, respectively

k inM, such that γ0 = η0 = ω. Without restriction, assume that ω(h) =
ω(k) = 0 and _γ0 � _η0. Then, (19) implies that

TΩ h − k( )Ω, TΩx*Ω( ) � 0, x ∈ M.

Take x = h − k. Then, it follows that TΩ(h − k)Ω = 0.
This lemma shows that the map

_γ0 ↦ TΩ h − ω h( )( )Ω (23)
is one-to-one and identifies the tangent vector _γ0 with the vector TΩhΩ
in the Hilbert space H.

Expression (22) defines a bilinear form. This follows from.
Lemma 3: The map (23) is linear.
Proof:
Let γ be an exponential arc with generator h inM. Then, t↦γϵt is

an exponential arc with generator ϵh for any ϵ in [−1, 1] and the
tangent vector is ϵ _γ0. Hence, (23) maps ϵ _γ0 onto ϵTΩhΩ.

Next, consider a pair of exponential arcs γ and ηwith generators k,
and h, respectively, in M and with γ0 = η0 = ω. Let θ denote the
exponential arc with generator h + k. It exists by Theorem 1. The state
θt can then be written as

θt x( ) � xΦth+tk,Φth+tk( )
with Φth+tk being the unique element in the natural positive cone
representing the state θt. Now, use (15) to write

θt x( ) � ω x( ) + t

2
∫1

0
du xΔu/2

Ω h + k( )Ω,Ω( )
+ t

2
∫1

0
du xΩ,Δu/2

Ω h + k( )Ω( ) + o t( ).

This implies

_θ0 � _γ0 + _η0.

Both observations together prove the linearity of map (23).
Proposition 16: Expression (22) defines a non-degenerate scalar

product on the space of tangent vectors of the form _γ0 with γ an
exponential arc as constructed in Theorem 1.

Proof:
The two lemmas show that (22) is a well-defined bilinear form.

Positivity of the form is clear. The symmetry follows from (22). It
remains to be shown that it is non-degenerate.

Assume that ( _γ0, _γ0) � 0. This implies

TΩ h − ω h( )( )Ω � 0,

with h the generator of γ. The operator TΩ is invertible—see the proof
of Lemma II.2 of [36]. Hence, it follows that

h − ω h( )( )Ω � 0.

Because O is separating for M, it follows that h is a multiple of the
identity. The latter implies that _γ � 0.

15 Dual geometries

The geodesics of the e-connection are the exponential arcs. In the
m-connection, the geodesics are made up by convex combinations of
a pair of states. The m- and e-connections are each others’ dual with
respect to the metric of Section 14.

Consider two states ω and ϕ in the manifoldM. The tangent vector

_γt �
d
dt
γt � ϕ − ω, 0< t< 1,

is independent of t. Hence, it is a geodesic for the connection in which all
parallel transport operators are taken equal to the identity operator. It
should be noted that the tangent spaceTωM coincides with the space of σ-
weakly continuous linear functionals χ, satisfying χ(1) = 0 and hence it is
the same everywhere . This connection is by definition the m-connection.

For t in (0, 1), the tangent vector _γt belongs to the subspace T γt of
the tangent space TωM which is introduced in Section 6. Conversely,
every vector χ in T γt is the tangent vector of an m-geodesic passing
through the point γt. However, this does not imply that through
parallel transport Π(γt↦γs), the space T γt maps onto the space T γs.

The transport operators Π* of the dual geometry are defined by

Π ϕ ↦ ω( )V,Π* ϕ ↦ ω( )W( )ω � V,W( )ϕ.

In this expression, V andW are vector fields and (·,·)ω is the scalar
product defined in the previous section and evaluated at the point ω of
the manifold M.

It can be shown that any exponential arc γ is a geodesic for this
dual geometry. To do so, we have to show that

Π* γs ↦ γt( ) _γs � _γt.

The tangent vector _γt at t = 0 is given by (19). Its value for arbitrary t is
given by the following proposition.

Proposition 17: Let γ denote an exponential arc γ with generator h
belonging toM. LetΦt be the normalized vector in the natural positive
cone P representing the state γt. The derivative _γt is given by

_γt x( ) � TΦthΦt, TΦt x − γt x( )[ ]*( )Φt), x ∈ M. (24)
Proof:
The state γ1 is connected to ω by the exponential arc with

generator h and γt is connected to ω by the exponential arc with
generator th. Let

ψs � γ 1−s( )t+s.

It follows from Proposition 8 that s↦ψs is an exponential arc with
generator (1 − t) h connecting γt to γ1. Application of (19) to the latter
arc gives

_ψ0 x( ) � d
ds

∣∣∣∣∣∣∣s�0ψs x( ) � 1 − t( ) TΨhΨ, Tψ x − ω x( )( )*Ψ( ) (25)

with Ψ = Φt. This implies (24) because _ψ0 � (1 − t) _γt.
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Theorem 2: Any exponential arc γ with generator h in M is a
geodesic for the dual of the m-connection with respect to the metric
introduced in Section 14.

Proof:
Let t↦ϕt be an exponential arc with generator k in M such that

ϕ0 = γt. Fix t in [0, 1] and let Φt denote the normalized element of the
natural positive cone P representing the state γt. Let η be an
exponential arc with generator k starting at γt, i.e., η0 = γt. Because
Π(γs↦γt) is the identity, the definition of the dual transport operator
yields

_η0,Π* γs ↦ γt( ) _γs( )γt � _η0, _γs( )γs� TΦt k − γt k( )( )Φt, TΦt l − γt l( )( )Φt( ),
with l the generator of the arc s↦γ(1−s)t+s. It equals l = (1 − t)h. This last
expression equals

� _η0, _γt( )γt.
By proposition 16, the scalar product (·, ·)γt is non-degenerate.

Therefore, one can conclude that

Π* γs ↦ γt( ) _γs � _γt.

This shows that the exponential arc γ is a geodesic for the dual of
the m-connection.

16 Finite-dimensional submanifolds

A finite set of linearly independent generators is shown to define a
finite-dimensional submanifold in which all states are connected to
the reference state by an exponential arc. The submanifold defined
in this way is a dually flat quantum statistical manifold.

Let ω be the reference state of M. It is a vector state with a cyclic
and separating vector Ω. Choose an independent set of self-adjoint
operators h1, . . . , hn inM. By Theorem 1, there exists an exponential
arc γ with generator h = θihi connecting some state γ1 inM to the state
γ0 = ω. A parameterized family of states ωθ, θ ∈ Rn is now defined by
putting ωθ = γ1. These states form a submanifold of M.

From the definition of an exponential arc, one obtains
immediately that for any ψ in M

D ψ‖ωθ( ) � D ψ‖ω( ) +D ω‖ωθ( ) + θi ω hi( ) − ψ hi( )( ). (26)
Take ψ = ωθ in this expression to find

θiω hi( )≤D ω‖ωθ( ) + θiω hi( ) � θiωθ hi( ) −D ωθ‖ω( )≤ θiωθ hi( ).
(27)

Hence, the quantity θiω(hi) is maximal if and only if ωθ equals the
reference state ω.

Proposition 18: Dual coordinates ηi are defined by

ηi � ωθ hi( ).
They satisfy

zηi
zθj

� zi, zj( )
θ

with (·,·)θ equal to the scalar product (·, ·)ωθ
introduced in Section 14

and with basis vectors zi equal to zωθ/zθ
i.

Proof:

Introduce the path γ(i) defined by

γ i( ): t ↦ ωθ+tgi.

It satisfies

z

zθi
ωθ � zi � _γ i( ) 0( ).

By definition, ωθ+gi is the end point of the exponential arc with
generator (θj + gj

i )hi. From Proposition 15, it then follows that γ(i) is
an exponential arc with generator hi connecting ωθ+gi to ωθ. These arcs
γ(i) are used in the calculation that follows.

The definition of the scalar product at the beginning of Section 14
gives

zi, zj( )
ωθ

� _γ i( ) 0( ), _γ j( ) 0( )( )
ωθ

� − z

zs

z

zt

∣∣∣∣∣∣∣s�t�0D γ i( )
s ‖γ j( )

t( )
� −z

zs

∣∣∣∣s�0 z

zθj
D γ i( )

s ‖ωθ( )
� z

zs

∣∣∣∣s�0γ i( )
s hj( )

� zi hj( )
� zηj

zθi
.

Corollary 3: There exists a potential Φ(θ) such that

ηi �
zΦ
zθi

. (28)

This follows because the scalar product is symmetric so that

zηj

zθi
� zi, zj( )

θ
� zj, zi( )

θ
� zηi
zθj

.

This symmetry is a sufficient condition for the potential Φ(θ) to
exist.

Consider the following generalization of the potential introduced
in Section 9.

Φ θ( ) � D ω‖ωθ( ) + θiω hi( ). (29)
Apply (18) to the exponential arc γ(i) which connects ωθ+gi to ωθ

to find

z

zθi
D ω‖ωθ( ) � ωθ hi( ) − ω hi( ).

This implies that Φ(θ) satisfies (28).
One can conclude that the selection of an independent set of self-

adjoint operators h1, . . . , hn in M defines a parameterized statistical
model θ↦ωθ of states on the von Neumann algebra M. An obvious
basis in the tangent plane TωθM is formed by the derivative operators
zi. The scalar product (zi, zj)ωθ

introduced in Section 14 starting from
the relative entropy of Araki defines a Hessian metric on the tangent
planes. Exponential arcs are geodesics for the e-connection which is
the dual of the m-connection.

17 Discussion

• The manifoldM under consideration consists of vector states on a
sigma-finite von Neumann algebra M in its standard
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representation. Such amanifold has nice properties described by the
Tomita–Takesaki Theory and hence is an obvious study object
when exploring quantum statistical manifolds in an infinite-
dimensional setting. Particular attention is given in the present
work on the definition of the tangent planes. This is also a point of
concern in the commutative context of manifolds of probability
measures. See, for instance, the approach of [14]. A convenient
choice for the tangent space TωM at the state ω in the manifoldM
is to take it equal to the space of all σ-weakly continuous Hermitian
linear functionals χ on M vanishing on the identity operator I.
However, it is well-possible that the equivalence class of smooth
curves through ω with initial tangent equal to a given χ is empty.
Approximate tangent planes are considered an alternative in
Section 6. They form a subspace of TωM as defined previously.
Nevertheless, the initial tangent vectors of Fréchet-differentiable
paths starting atω belong to the approximate tangent space. It is not
clear whether the initial tangents of exponential arcs are dense in the
approximate tangent space with respect to the inner product of
Section 14. Further research is needed at this point.

• A new definition of exponential arcs is given. It depends on the
choice of a divergence function/relative entropy defined on pairs
of points in the manifold and on the choice of a generator which
is a linear functional defined on a domain in the manifold. It is
general enough to cover different approaches that one can follow
to solve the non-uniqueness problem of the Radon–Nikodym
derivative in the context of non-commutative probability.
Nevertheless, one can prove in full generality nice properties
such as uniqueness of the generator, existence of scalar potential,
and Pythagorean relations. The additivity of generators when
composing exponential arcs is shown in the specific context of
Araki’s relative entropy. See Proposition 15.

• The second half of the paper focuses on the relative entropy of
Araki. Only exponential arcs with bounded generators
belonging to the von Neumann algebra are considered. This
suffices to reach the goal of replacing the existing approach
based on density matrices and Umegaki’s relative entropy.
However, the solution of the problem mentioned previously
regarding the extent of the tangent spaces most likely requires
the handling of unbounded generators.

• The scalar product of Bogoliubov presented in Section 14 is used
extensively in Linear Response Theory, also known as
Kubo–Mori theory. Its link with the KMS condition of

Section 2 is not highlighted in the present text. It is tradition
in the Kubo–Mori theory and more generally in statistical
mechanics to focus on a small number of variables. It is
shown in Section 16 that the selection of a finite number of
variables defines a quantum statistical manifold supporting
Amari’s dually flat geometry.
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