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Fractional calculus is a branch of mathematics that develops from the usual
definitions of calculus integral and derivative operators, just as fractional
exponents emerge from integer exponents. The fractional derivative has been
successfully used to describe various fundamental processes, including coiling
polymer, viscoelasticity, traffic construction, diffusive transport, fluid dynamics,
electromagnetic theory and electrical networks. However, many researchers do
not use fractional derivatives to understand the physical properties of a non-
Newtonian fluid that flows over a moving plate. The present paper aims to
consider the couple stress Casson fluid between the parallel plates under variable
conditions. The flow regime is formulated in terms of partial differential equations.
Unlike the publishedwork, thismodel is fractionalized using Fick’s and Fourier’s Laws.
The system of dimensionless fractional PDEs is solved by using the joint applications
of Laplace and Fourier transforms. The influence of several physical parameters, such
as the Grashof number, Casson parameter, couple stress parameter etc., on velocity,
temperature, and concentration profiles are represented graphically and explained
physically. Furthermore, skin friction, Sherwood and Nusselt numbers are
numerically calculated and presented in tabular form. It is noted that the
influence of physical parameters on skin fraction is opposite to the influence on
velocity. Also, the Nusselt number decreases with increasing values of Pr and the
Sherwood number increases for decreasing values of Sc. The results show that the
velocity of the fluid is the decreasing function of the couple stress parameter and
Casson parameter while the increasing function of the permeability parameter and
Grashof numbers. It is also worth noting that, unlike the classical model, the present
study provides various solutions in the range of an in-between (0, 1], shown in Figures
2, 7, 8) which might be useful for the experimental and numerical solver to compare
their results.
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1 Introduction

In recent times, fractional calculus has been used in different areas
of science and engineering, including fractional control theory [1],
tumor growth data, robotics manipulation, image processing, Cyber-
physical systems (CPI) [2] and signal processing [3]. Rashid et al. [4]
used a generalized fractional operator and Raina’s function to develop
fractional integral equalities for convex functions. Huang et al. [5]
studied linear fractional difference equations and developed exact
solutions using Picard’s iteration method. The role of fractional
calculus has been illustrated by tackling the hysteresis phenomenon
found in biological sciences [6]. In addition, they also studied the SIR
compartmental model, which is extensively used in epidemiology, to
demonstrate the effectiveness of fractional calculus. Meng [7] analyzed
the non-linear behavior of ferroelectric polymers from both
perspectives, i.e. viscoelastic and dielectric, using the fractional
calculus approach. In [8], Lima and Yang developed Hadamard-
type integral inequalities and some related integral identities using
fractional operators.

Porous materials are widely used in different fields of science and
engineering. Some of the applications of porous medium include oil
recovery, logic tissues, fuel cell [9], diffusion and heat transfer rate
[10], groundwater flow, filtration and sedimentation operations [11].
A comprehensive review of previously published articles is made to
highlight the porous media performances in the combustion systems
[12]. Arif et al. [13] consideredMHDCasson nanofluid flow through a
porous medium, where engine oil (EO) is used as a base fluid. Two
nanoparticles, Molybdenum disulfide (Mos2) and Graphene oxide
(GO), are introduced to the base fluid to improve the heat transfer rate.
The Laplace transform is used to find exact solutions. Jawad et al. [14]
used couple stress hybrid nanoparticles as a medication carrier in a
permeable media. The mathematical model is solved by using the
HAM. Casson nanofluid model is studied in [15] used GO and TiO2 as
nanoparticles and Ethylene glycol as base fluid through the porous
medium. RKF-45 and adopting shooting methods are used to develop
numerical solutions to the problem. Harshad and Snehal [16] studied
micropolar fluid flow under the impact of a magnetic field through a
porous medium, and the equations are solved using Homotopy
Analysis Method.

Heat and mass transfer are concerned with determining the rate at
which heat is transmitted across a medium due to the difference in
temperature between the two mediums. It may be in the form of
conduction, convection, or radiation. Heat and mass transfer
utilisation include energy systems, automobiles, electronic device
cooling, steam electric power generation and diagnosing diseases.
Heat generation can be used in post-accident heat removal, fluids
undergoing the exothermic process, and cooling of electronic
components [17]. Considering the combined influences of heat and
mass transfer rate, Ismail et al. [18] analysed the joint thermal effects
of heat and mass distribution on unsteady flow with the Newtonian
heating effect. Vajjha and Das [19] has studied the cumulative impact
of heat and mass transport in the flow of nanofluids. Obalalu et al. [20]
used OHAM to examine solar radiation’s effect on unsteady squeezing
Casson fluid flow. Akolade et al. [21] studied the consequences of
varying mass diffusivity and viscosity on free convective unsteady flow
of Casson fluid. Zainab et al. [22] investigated heat transfer in Casson
fluid flow in a closed channel using a finite difference approach.
Kumam et al. [23] studied ternary hybrid nanofluid to enhance the
heat transfer rate. They use Laplace, and finite Fourier sine transforms

to find the exact solution. Furthermore, they discuss the different
shapes of nanoparticles that are useful in enhancing heat transfer rate.

Casson fluid has an infinite viscosity at zero shear rates and a zero
viscosity at infinite shear rates. e.g. concentrated fruit juices, jelly,
tomato sauce, soup, etc. Casson fluid has many applications in
engineering problems such as fluidisation, guided missiles, paint
and aerosol spraying, rain erosion, atmospheric fallout, etc. [24].
Shahrim et al. [25] examined the analytic solutions of the Casson
fluid flow generated by an accelerated plate using the Laplace
transform method. Shahanaz et al. [26] modeled MHD boundary
layer Casson flow and then solved it numerically using MATLAB
bvp4c program. Renu et al. [27] examined the cumulative effect of
inclined outer velocity and alignedmagnetic field in a Casson fluid and
used Runge-Kutta Fehlberg’s approach and shooting technique to
solve the problem numerically. Gohar et al. [28] formulated the
analytic solutions of the MHD Casson fluid flow with dust
particles using Caputo fractional derivatives definition by using
Laplace transform and finite Fourier sine transform. Anwar et al.
[29] considered MHD Casson fluid flow over vertical infinite parallel
plates through a porous medium and developed the analytic solutions
of the flow of electrically conducted fluid with the help of Laplace
transformation. Patel [30] studied MHD Casson fluid flow through a
porous medium with heat generation and also developed the
expression for Nusselt number, Sherwood number and Skin friction.

MHD has many applications such as MHD accelerator, power
generator, and fusion research [31]. H. R. Patel [32] studied the MHD
flow of Casson fluid through a porous medium with ramped wall
temperature and analysed the impacts of Hall current, heat generation,
thermal radiation, and chemical reaction on the flow. Patel [33]
studied the impacts of thermal radiations on the micropolar fluid
flow under a uniform magnetic field.

The fluids that contain randomly oriented and rigid particles are
called couple stress fluids. Blood, liquid crystals, lubrication, etc., are
couple stress fluids. The applications of couple stress fluids include
pumping phenomenon, blood in the microcirculatory system,
hydromagnetic, etc. [34]. Stoke [35] presented the concept of
couple stress theory in fluids for the first time. Farooq et al. [36]
considered the Reynolds viscosity model in which they studied non-
isothermal couple stress fluid flow between two parallel heated plates.
They analyzed four different types of flows depending on the plate’s
relative motion and produced exact solutions using the perturbation
technique. Ilyas et al. [37] utilized the Caputo-Fabrizio derivatives
definition to determine the analytic solutions of a generalized Couette
flow of couple stress fluid. They observed that the velocity behavior
obtained from both definitions is the same for unit time. Ali et al. [38]
considered couple stress nanofluid flow model and developed its exact
solution via AB fractional derivative definition along with Laplace and
finite Fourier sine transforms. Nagaraju and Mahesh [39] studied the
impact of the magnetic field, Dufour and Soret, on the asymmetric
couple stress fluid flow. The PDEs are converted into ODEs and then
solved using the Homotopy analysis method. Farooq et al. [40]
considered four separate flows, i.e., Plug, Poiseuille, Couette, and
modified Couette flow of couple stress fluids having variable
viscosity and then solved each with the help of the regular
perturbation method. In another paper, Farooq et al. [41]
investigated the generalized Couette couple stress fluid flow and
used OHAM and NIM to solve the differential equations of the
problem. The analytic solution of generalized Couette flow of
couple stress fluid has been derived by Arif et al. [42] with the
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help of Caputo-Fabrizio derivatives. The same authors presented
couple stress fluid solutions in a channel for heat transfer in
another paper [43]. Arif et al. [44] developed the solutions of
couple stress nanofluids flow in a channel using the newly defined
definition, i.e. AB fractional derivatives. Ali et al. [45] considered the
vicious free convective couple stress fluid flow in a channel. Engine oil
is used as a base fluid and developed the analytic solutions with the
help of the Laplace transform, and finite Fourier sine transforms.

Magnetohydrodynamics (MHD) is concerned with electrically
conducting fluids. MHD has many applications such as MHD
accelerator, power generator, and fusion research [31]. Harshad R.
Patel [32] studied the MHD flow of micropolar fluid, and the
governing equations are solved numerically. In addition, analytical
solutions are also developed to validate numerical results.

In the above literature, Casson fluid flow passing through a porous
medium has been discussed in detail. It has yet to examine couple
stress Casson fluid flow through a porousmedium in a channel. Unlike
the published work like Arif et al. [45], the classical model is
fractionalized using generalized Ficks and Fourier laws.
Additionally, the variable conditions on the plate are considered.
Exact solutions are obtained by using joint applications of Laplace
and Fourier transforms. The obtained general solutions satisfy all the
impose initial and boundary conditions. Furthermore, the obtained
general solutions are reduced to the published work as a limiting case
which agrees with the published work. This shows the validity of our
obtained general solutions. The obtained results are also shown by
different figures. The numerical skin fraction, Nusselt number, and
Sherwood number are shown in the tables.

2 Problem formulation

This article studied the unsteady incompressible flow of a couple
stress Casson fluid through a porous material in a channel. The

direction of the flow is considered along the x-axis. The distance
between the plates is d. The length of both the plates is infinite. The
fluid and both plates are at rest at time t1 = 0, with ambient
temperature and concentration T1 and C1, respectively. After time
t1 = 0+, the left plate at (y1 = 0) begins to oscillate with characteristic
velocity U and frequency ω, while the right plate at y = d stays at rest.
The temperature and concentration of the left plate are also raised to T
-1 + (T -d − T -1)At1 and C1 + (Cd − C1)At1, respectively as displayed in
Figure 1.

The equation of continuity is identically satisfied for the velocity

�V � u y1, t1( ), 0, 0( ) (1)
i.e.,

zu

zx
+ zv

zy1
� 0. (2)

Governing equations for unsteady couple stress Casson fluid flow
using Boussinesq’s approximation [46] are.The linear momentum
equation with temperature and concentration terms is:

ρ
zu y1, t1( )

zt
� μ 1 + 1

β
( ) z2u y1, t1( )

zy2
1

− η
z4u y1, t1( )

zy4
1

+ �g ρBT( ) Ŧ − Ŧd( )

+ �g ρBc( ) C − Cd( ) − 1 + 1
β

( ) μϕ

k1
u y1, t1( ).

(3)
The thermal balance equation is:

ρCp( ) zŦ y1, t1( )
zt1

� −zq y1, t1( )
zy1

. (4)

The Fourier’s law:

q y1, t1( ) � −k zŦ y1, t1( )
zy1

. (5)

The mass balance equation:

FIGURE 1
Geometry of the flow.
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zC y1, t1( )
zt1

� −zS y1, t1( )
zy1

. (6)

The Fick’s law:

S y1, t1( ) � −D zC y1, t1( )
zy1

. (7)

The I.C and B.C for flow regime are [47]:

u y1 , 0( ) � 0, Ŧ y1 , 0( ) � Ŧ1 , C y1 , 0( ) � C1 ,
u 0, t1( ) � UH t1( )cos ωt1( ) Ŧ 0, t1( ) � Ŧ1 + Ŧd − Ŧ1( )At1 , C 0, t1( ) � C1 + Cd − C1( )At1 ,
u d, t1( ) � 0, Ŧ d, t1( ) � Ŧ1 , C d, t1( ) � C1 .

(8)

Here u, T -, and C are the symbols used to represent the
velocity, temperature, and concentration of the fluid respectively.
(ρCp), k1, �g, ρ, μ, D, K, ϕ, and η are the specific heat, permeability
of the porous medium, gravitational acceleration, density, dynamic
viscosity, mass diffusivity, thermal conductivity, porosity, and couple
stress parameter respectively.Introducing the non-dimensional
variables/symbols to transform Eqs. 3–8 dimensionless form:

y1* �
y1

d
, u* � u

U
, Ŧ* � Ŧ − Ŧ1

Ŧd − Ŧ1
, t1* � u0t1

d
,

C* � C − C1

Cd − C1
, q* � qd

k Td − T1( ), s* � sd

D Cd − C1( ).
(9)

Using the above dimensionless variables in Eq. 9 and 3–8 reduce to
(dropping ′′ *″ signs):

zu y1, t1( )
zt1

� 1 + 1
β

( ) z2u y1, t1( )
zy2

1

− λ
z4u y1, t1( )

zy4
1

+ GrŦ y1, t1( )
+GmC y1, t1( ) − 1 + 1

β
( ) 1

k2
u y1, t1( ).

(10)

zŦ y1, t1( )
zt1

� − 1
Pr

zq y1, t1( )
zy1

. (11)

q y1, t1( ) � −zŦ y1, t1( )
zy1

. (12)
zC y1, t1( )

zt1
� − 1

Sc

zS y1, t1( )
zy1

. (13)

S y1, t1( ) � −zC y1, t1( )
zy1

. (14)
u y1, 0( ) � 0, Ŧ y1, 0( ) � 0, C y1, 0( ) � 0,
u 0, t1( ) � H t1( )cos ωt1( ), Ŧ 0, t1( ) � t1, C 0, t1( ) � t1,
u 1, t1( ) � 0, Ŧ 1, t1( ) � 0, C 1, t1( ) � 0,

z2u 0, t1( )
zy2

1

� z2u 1, t1( )
zy2

1

� 0.

(15)

where, λ � η
d2μ, Gr � g(ρβT)d2

μU , Gm � g(ρβC)d2
μU , 1

k2
� ϕd2

k1
,

and λ, Gr and Gm, Pr, k2, and Sc are dimensionless couple stress
parameter, thermal and mass Grashof numbers, Prandtl number,
dimensionless parameter of porosity, and Schmidt number
respectively.To obtain the fractional model, using Caputo fractional
operator and Fick’s and Fouier’s Laws to Eqs 11–14 as given in [46], we
can write:

CDα
t1
Ŧ y1, t1( ) � 1

Pr

z2Ŧ y1, t1( )
zy2

1

. (16)

CDα
t1
C y1, t1( ) � 1

Sc

z2C − y1, t1( )
zy2

1

. (17)

3 Solution of the problem

This section contains the solutions of temperature, concentration,
and velocity distributions.

3.1 Temperature distribution

Apply Laplace transform to Eq. 16; we have:

sα1
�Ŧ y1, s1( ) � 1

Pr

d2�Ŧ y1, s1( )
dy2

1

. (18)

The transformed conditions for temperature distribution are stated
below:

�Ŧ y1, 0( ) � 0, �Ŧ 0, s1( ) � 1
s21

�Ŧ 1, s1( ) � 0. (19)

To find the solution of Eq. 18, applying finite Fourier sine transform
and using Eq. 19, we have:

�̃Ŧ k, s1( ) � L1
1

s21 sα1 + L2[ ], (20)

where the finite Fourier sine transform is defined as:

�̃Ŧ k, s1( ) � ∫ 1

0

�Ŧ y1, s1( )sin kπy1( )dy1; k � 1, 2, 3, . . . .

Also L1 � kπ
Pr

and L2 = L1 (kπ).Applying inverse Laplace and
Fourier transformations to Eq. 20; we have:

Ŧ y1, t1( ) � 1 − y1( )t1 − 2∑∞
k�1

L1t1. Eα,α+2 L2t
α
1( ) − 1

kπ
[ ]sin kπy1( ).

(21)
where Ec,d(z) represent the Mittag- Leffler function and is given as:

Ec,d z( ) � ∑∞
k�1

zk

Γ ck + d( ).

Also

L−1 sc−d1

sc1 − γ
( ) � td−11 Ec,d γtc1( ).

3.2 Concentration distribution

To find the solution of concentration distribution, apply Laplace
transform to Eq. 17, we have:

sα1 �C y1, s1( ) � 1
Sc

d2 �C y1, s1( )
dy2

1

. (22)

The transformed conditions for concentration distribution are stated
below:

�C y1, 0( ) � 0, �C 0, s1( ) � 1

s21
, �C 1, s1( ) � 0. (23)

To find the solution of Eq. 22, applying finite Fourier sine transform
and using Eq. 23, we have:
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�̃C k, s1( ) � L3
1

s21 sα1 + L4[ ]. (24)

where L3 � kπ
Sc

and L4 = L3 (kπ).Applying Inverse Laplace and
Fourier Transformations to above Eq. 24; we can write:

C y1, t1( ) � 1 − y1( )t1 − 2∑∞
k�1

L3t1. Eα,α+2 L4t
α
1( ) − 1

kπ
[ ]sin kπy1( ).

(25)

3.3 Velocity distribution

To find the solution of velocity distribution, taking Laplace
transform of Eq. 10; we have:

�u y1, s1( ) � 1 + 1
β

( ) z2�u y1, s1( )
zy2

1

− λ
z4�u y1, s1( )

zy4
1

+ Gr
�Ŧ y1, s1( )

+Gm
�C y1, s1( ) − 1 + 1

β
( ) 1

k2
�u y1, s1( ).

(26)

The transformed conditions for velocity distribution are stated below:

�u y1, 0( ) � 0, �u 0, s1( ) � s1
s21 + ω2

, �u 1, s1( ) � 0. (27)

Now applying the finite Fourier sine transform to Eq. 26 and
incorporating Eq. 27, we have:

�u y1, s1( ) s1 + R2( ) � s1
s21 + ω2

R1 + Gr
�̃Ŧ k, s1( ) + Gm

�̃C k, s1( ). (28)

Using Eqs 20, 24; we have:

�u y1, s1( ) � s1
s1 + R2( ) s21 + ω2( )R1 + Gr

s21 s1 + R2( ) sα1 + L2( )L1

+ Gm

s21 s1 + R2( ) sα1 + L4( )L3. (29)

Decomposing rational factors of Eq. 29 by partial fraction, we get:

�u y1, s1( ) � R1R2

R2
2 + ω2

s1
s21 + ω2( ) − R1R2

R2
2 + ω2

s1
s1 + R2

( )
+ R1ω

2

R2
2 + ω2

1

s21 + ω2( )
+Gr

R2
2

L1 − 1
s1
+ 1

s21
+ 1
s1 + R2

( ) 1
sα1 + L2

+Gm

R2
2

L3 − 1
s1
+ 1

s21
+ 1
s1 + R2

( ) 1
sα1 + L4

. (30)

Equivalent form of Eq. 30 is:

�u y1, s1( ) � 1
kπ

.
s1

s21 + ω2( ) + R1R2

R2
2 + ω2

s1
s21 + ω2 −

1
s1 + R2

( )
+ R1ω

2

R2
2 + ω2

ω

s21 + ω2 −
R2
2 + ω2

R1 kπ( )
s1

s21 + ω2( )
+ 1

R2
2

− 1
s1
+ 1

s21
+ 1
s1 + R2

( ) Gr

sα1 + L2
L1 + Gm

sα1 + L4
L3( ).

(31)
Taking Inverse Laplace transform, Eq. 31 can be written as:

~u k, t1( ) � H t1( )cos ωt1( ) 1
kπ

+ R1R2

R2 + ω2 cos ωt1( ) − e−R2t1( )
+ R1ω

2

R2
2 + ω2 sin ωt1( ) − R2

2 + ω2

R1 kπ( ) cos ωt1( )( )
+∫ t1

0

1

R2
2

−1 + t1 − τ( ) + e−R2 t1−τ( )( ) GrL1τ
α−1Eα,α −L2τ

α( )(
+GmL3τ

α−1Eα,α −L4τ
α( ))dτ.

(32)
Inverting finite Fourier sine transform of Eq. 32; we have:

u y1, t1( ) �H t1( ) 1−y1( )cos ωt1( )
+ 2∑∞

k�1

R1R2

R2
2 +ω2 cos ωt1( ) − e−R2t1( )sin kπy1( )

+ 2∑∞
k�1

R1ω
2

R2
2 +ω2 sin ωt1( ) − R2

2 +ω2

R1 kπ( ) cos ωt1( )( )sin kπy1( )
+ 2∑∞

k�1
∫t1

0

1

R2
2

−1+ t1 − τ( ) + e−R2(t1−τ)( ) GrL1τ
α−1Eα,α −L2τ

α( )(
+GmL3τ

α−1Eα,α −L4τ
α( ))dτsin kπy1( ),

(33)
where R � (1 + 1

β), R1 = R (kπ) + λ(kπ)3 and R2 � KπR1 + R
k2
.

4 Special cases

This section contain different special cases which are derived from
the general solution developed in Eq. 33 by substituting different
values to the parameters.

4.1 Couple stress casson fluid model without
porous medium

By substituting 1
k2
� 0 in Eq. 26; we have:

�u y1, s1( ) � 1 + 1
β

( ) z2�u y1, s1( )
zy2

1

− λ
z4�u y1, s1( )

zy4
1

+ Gr
�Ŧ y1, s1( )

+ Gm
�C y1, s1( ). (34)

Applying finite Fourier sine transform to Eq. 34 and incorporating Eq.
27; we have:

�u y1, s1( ) s1 + R3( ) � s1
s21 + ω2

R1 + Gr
�Ŧ k, s1( ) + Gm

�̃C k, s1( ). (35)

Using Eqs. 20, 24, and after performing the steps as done in velocity
distribution, the final solution is given by:

u y1, t1( ) � H t1( ) 1 − y1( )cos ωt1( ) + 2∑∞
k�1

R1R3

R2
3 + ω2 cos ωt1( ) − e−R3 t1( )sin kπy1( )

+2∑∞
k�1

R1ω
2

R2
3 + ω2 sin ωt1( ) − R2

3 + ω2

R1 kπ( ) cos ωt1( )( )sin kπy1( )
+2∑∞

k�1
∫ 1

0

1

R2
3

−1 + t1 − τ( ) + e−R3 t1−τ( )( ) × GrL1τ
α−1Eα,α −L2τ

α( )(
+GmL3τ

α−1Eα,α −L4τ
α( ))dτsin kπy1( ).

(36)

where R3 = KπR1
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4.2 Couple stress model

In this section, we derived the solution only for couple stress fluid
flow by taking β → ∞ or 1

β → 0, then Eq. 26 reduce to:

�u y1, s1( ) � z2�u y1, s1( )
zy2

1

− λ
z4�u y1, s1( )

zy4
1

+ Gr
�Ŧ y1, s1( ) + Gm

�C y1, s1( )
− 1
k2

�u y1, s1( ).
(37)

Applying finite Fourier sine transform and incorporating the
conditions defined in Eq. 27; we have:

�u k, s1( ) s1 + R5( ) � s1
s21 + ω2

R4 + Gr
�̃Ŧ k, s1( ) + Gm

�̃C k, s1( ). (38)

Using Eqs. 20, 24; we have:

�u k, s1( ) � 1
kπ

.
s1

s21 + ω2( ) + R4R5

R4R
2
5 + ω2

s1
s21 + ω2 −

1
s1 + R5

( )
+ R4ω

2

R2
5 + ω2

ω

s21 + ω2 −
R2
5 + ω2

R4 kπ( )
s1

s21 + ω2( )
+ 1

R2
5

− 1
s1
+ 1

s21
+ 1
s1 + R5

( ) Gr

sα1 + L2
L1 + Gm

sα1 + L4
L3( ).

(39)

Applying inverse transformations and after simplification, the final
result is:

u y1, t1( ) � H t1( ) 1 − y1( )cos ωt1( )
+ 2∑∞

k�1

R4R5

R2
5 + ω2 cos ωt1( ) − e−R5t1( )sin kπy1( )

+ 2∑∞
k�1

R4ω
2

R2
5 + ω2 sin ωt1( ) − R5 + ω2

R4 kπ( ) cos ωt1( )( )sin kπy1( )
+ 2∑∞

k�1
∫1

0

1

R2
2

−1 + t1 − τ( ) + e−R5 t1−τ( )( ) × GrL1τ
α−1Eα,α −L2τ

α( )(
+GmL3τ

α−1Eα,α −L4τ
α( ))dτsin kπy1( ).

(40)
where R4 = (kπ) + λ(kπ)3 and R5 � KπR4 + 1

k2
.

4.3 Casson fluid model

To obtain the Casson fluid model, put λ = 0 in Eq. 26; we have:

�u y1, s1( ) � 1 + 1
β

( ) z2�u y1, s1( )
zy2

1

+ Gr
�Ŧ y1, s1( ) + Gm

�C y1, s1( )
− 1 + 1

β
( ) 1

k2
�u y1, s1( ). (41)

Applying finite Fourier sine transform and incorporating the
conditions defined in Eq. 27; we have:

�u k, s1( ) s1 + R7( ) � s1
s21 + ω2

R6 + Gr
�̃Ŧ k, s1( ) + Gm

�̃C k, s1( ). (42)

Using Eqs. 20, 24, and simplifying we get:

�u k, s1( ) � 1
kπ

.
s1

s21 + ω2( ) + R6R7

R2
7 + ω2

s1
s21 + ω2 −

1
s1 + R7

( )
+ R6ω

2

R2
7 + ω2

ω

s21 + ω2 −
R7 + ω2

R6 kπ( )
s1

s21 + ω2( )
+ 1

R2
7

− 1
s1
+ 1

s21
+ 1
s1 + R7

( ) Gr

sα1 + L2
L1 + Gm

sα1 + L4
L3( ).

(43)

Applying inverse transformation; we have:

u y1, t1( ) � H t1( ) 1 − y1( )cos ωt1( ) + 2∑∞
k�1

R6R7

R2
7 + ω2 cos ωt1( ) − e−R7 t1( )sin kπy1( )

+2∑∞
k�1

R6ω
2

R2
7 + ω2 sin ωt1( ) − R2

7 + ω2

R6 kπ( ) cos ωt1( )( )sin kπy1( )
+2∑∞

k�1
∫1

0

1

R2
7

−1 + t1 − τ( ) + e−R7 t1−τ( )( ) × GrL1τ
α−1Eα,α −L2τ

α( )(
+GmL3τ

α−1Eα,α −L4τ
α( ))dτsin kπy1( ).

(44)

where R6 = R (kπ) and R7 � KπR6 + R
k2
.

5 Limiting cases

In this section, limiting cases are derived from general solutions
and compared with already published work.

5.1 Classical couple stress casson fluid model

To obtain, the classical model for couple stress Casson fluid, taking
α → 1, Gr → 0, and Gm → 0 in Eq. 33, we have:

u y1, t1( ) � H t1( ) 1 − y1( )cos ωt1( ) + 2∑∞
k�1

R1R2

R2
2 + ω2 cos ωt1( ) − e−R2 t1( )sin kπy1( )

+2∑∞
k�1

R1ω
2

R2
2 + ω2 sin ωt1( ) − R2 + ω2

R1 kπ( ) cos ωt1( )( )sin kπy1( ).
(45)

By considering ω → 0, 1β → 0 and 1
k2
→ 0; the above Eq. 45 reduce to:

u y1, t1( ) � H t1( ) 1 − y1( ) + 2∑∞
k�1

1
kπ

e−R2t1 sin kπy1( ). (46)

The result obtained in Eq. 46 is similar to Eq. 62 derived by Arif et al.
[45] for p = 0, that shows the correctness of the present study.

5.2 Couple stress casson fluid model without
thermal and concentration

Considering Gr→ 0 and Gm→ 0 in general solutions given in Eq.
33; we have:

u y1, t1( ) � H t1( ) 1 − y1( )cos ωt1( ) + 2∑∞
k�1

R1R2

R2
2 + ω2 cos ωt1( ) − e−R2 t1( )sin kπy1( )

+2∑∞
k�1

R1ω
2

R2
2 + ω2 sin ωt1( ) − R2

2 + ω2

R1 kπ( ) cos ωt1( )( )sin kπy1( ).
(47)

Again, By considering ω → 0, 1
β → 0 and 1

k2
→ 0; the above Eq. 47

reduce to:

u y1, t1( ) � H t1( ) 1 − y1( ) + 2∑∞
k�1

1
kπ

1 − e−R2t1( )sin kπy1( ). (48)

Equation 48 is similar to Eq. 63 for p = 0 obtained by Arif et al. [45],
that shows the validity of our general solutions.

5.3 Casson fluidmodel without concentration
and porous medium

Considering λ → 0, Gm → 0 and 1
k2
→ 0 in Eq. 33; we have:
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u y1, t1( ) � H t1( ) 1 − y1( )cos ωt1( ) + 2∑∞
k�1

R8R9

R2
2 + ω2 cos ωt1( ) − e−R9 t1( )sin kπy1( )

+2∑∞
k�1

R8ω
2

R2
9 + ω2 sin ωt1( ) − R2

9 + ω2

R8 kπ( ) cos ωt1( )( )sin kπy1( )
+2∑∞

k�1
∫t1

0

1

R2
9

−1 + t1 − τ( ) + e−R9(t1−τ)( )
× GrL1τ

α−1Eα,α −L2τ
α( )( )dτsin kπy1( ),

(49)

where R � (1 + 1
β), R8 = R (kπ) and R9 = KπR8. By considering the

boundary condition for temperature profile as T (0, t1) = t1, Eq. 49
reduce to:

u y1 , t1( ) � H t1( ) 1 − y1( )cos ωt1( ) + 2∑∞
k�1

R8R9

R2
9 + ω2 cos ωt1( ) 1 − R2

9 + ω2

R8R9kπ
( ) − e−R9 t1( )sin kπy1( )

+2∑∞
k�1

∫t1

0

1

R2
9

−1 + e−R9 t1−τ( )( ) GrL1τ
α−1Eα,α −L2τ

α( )( )dτsin kπy1( ).
(50)

5.4 Skin friction

The Skin friction on the left plate for couple stress Casson fluid
flow in dimensional form is:

τxy1 � μ 1 + 1
β

( ) zu y1, t1( )
zy1

|y1�0 − η
z3u y1, t1( )

zy1
3

|y1�0. (51)

FIGURE 2
Variation in Velocity distribution against α when t1=1, Gr =30, Gm =10, Pr =15, Sc =0.3, λ =1000, β =0.2, k2=5, and ω =50.

FIGURE 3
Variation in Velocity distribution against Gr (A) and Gm (B) when α =0.3 t1=1, Pr =15, Sc =0.3, λ =1000, β =0.2, k2=5, and ω =50.

Frontiers in Physics frontiersin.org07

Ahmad et al. 10.3389/fphy.2023.1031042

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1031042


FIGURE 4
Variation in Velocity distribution against Pr (A) and Sc (B) when α =0.3 t1=1, Gr =30, Gm =10, λ =1000, β =0.2, k2=5, and ω =50.

FIGURE 5
Variation in Velocity distribution against β (A) and λ (B) when α =0.3 t1=1, Gr =30, Gm =10, Pr =15, Sc =0.3, k2=5, and ω =50.

FIGURE 6
Variation in Velocity distribution against k2 (A) and ω (B) when α =0.3 t1=1, Gr =30, Gm =10, Pr =15, Sc =0.3, β =0.2, and λ =1.
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FIGURE 7
Variation in Temperature distribution against α (A) and Pr (B).

FIGURE 8
Variation in Concentration distribution against α (A) and Sc(B).

FIGURE 9
Geometry of the problem.
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In dimensionless form Eq. 51 is given as:

τxy1 � 1 + 1
β

( ) zu y1, t1( )
zy1

|y1�0 − λ
z3u y1, t1( )

zy1
3

|y1�0. (52)

5.5 Nusselt number

The Nusselt number can be stated as:

Nu � zŦ y1, t1( )
zy1

|y1�0. (53)

5.6 Sherwood number

The Sherwood number can be stated as:

Sh � zC y1, t1( )
zy1

|y1�0. (54)

6 Results and discussion

In this article, we analyzed the impact of some physical
parameters on the flow of a couple stress Casson fluid through a
porous medium with Caputo time-fractional derivatives between
parallel plates, such as thermal and mass Grashof number (Gr), and
(Gm), Schmidt number (Sc), Prandtl number (Pr), Casson parameter
(β), couple stress parameter (λ), and porosity parameter (k2).
Generalized Fick’s and Fouier’s Laws are utilized to construct the
fractional model and then Laplace and Fourier transforms are used
to solve the model. In addition, the effects of the parameters
mentioned above on Nusselt numbers, Sherwood numbers, and
skin friction are evaluated and tabulated. The impact of physical
parameters on velocity, temperature and concentration distributions
are depicted in (Figure 2-Figure 8).

Figure 9 shows the geometry of the problem. Figure 2 shows
multiples solutions for different values of the (α) in the form of
integral curves. This result is worth noting for the numerical solvers
and experimentalists to best fit their results with one of the integral curves.
Figure 3 illustrate the contribution of Gr and Gm on the flow of couple
stressCasson fluid. Both Gr and Gm accelerate the flow as we increase the
values of these parameters. The enhancement of thermal buoyancy force
is the physical theory behind this. Because these parameters are directly
proportional to buoyancy forces and inversely proportional to viscous
forces, a rise in Gr and Gm indicates that buoyancy forces have subdued
the viscous forces, decreasing the resistance offered, and thus, the velocity
of the fluid increases. The only difference is that inGr the buoyancy forces
increase due to thermal volumetric expansion, whereas in Gm, buoyancy
forces increase due to solutal volumetric expansion. The impact of the Pr
on velocity is captured in Figure 4A. The velocity distribution decreases
for increasing values of the Pr, which is physically true. As the Pr is directly

FIGURE 10
Comparison of obtained results with the results of Arif et al. [45]
with Figure 3A for α =0.7 t1=2, Gr =1.5, Gm =1.5, Pr =1000, Sc =2, β →∞,
k2→∞, ω =0 and λ =50.

TABLE 1 Nomenclature.

Symbol Description Symbol Description

η Couple stress parameter (kg.m.s) CSCF Couple stress Casson fluid

β Casson parameter CF Casson Fluid

CS Couple Stress ρ Density (kg.m−3)

λ Dimensionless Couple stress parameter g Gravitational acceleration (m.s−2)

Gm Mass Grashof number D mass diffusivity (m2.s)

Pr Prandtl Number FAFL Fick’s and Fourier’s Laws

μ Dynemic viscosity (kg.m−1.s−1) Sc Schmidt Number

K Thermal Conductivity (k−1) Gr Thermal Grashof number

α Fractional Parameter βT Co. efficient of thermal coefficient (k−1)

βC Concentration coefficient (kg−1.m3) ϕ Porosity

k1 Permeability of the fluid (m2) Cp Specific heat constant (m.s−2.k−1)

d Distance between plates(m) D Mass Diffusivity (m2.s−1)

K Thermal conductivity (k−1) �q Local heat fluid density (kg.s−3)

s Diffusion flux (kg.m−2s−1) t1 time variable(s)
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proportional to kinematic viscosity and inversely proportional to thermal
diffusivity, an increase in the Pr means kinematic viscosity dominates the
thermal diffusivity, which causes more resistance to the flow and hence,
the velocity of the fluid decreases. The influence of Sc on the velocity
profile of couple stress Casson fluid is captured in Figure 4B. The figure
clearly shows that the velocity distribution is a decreasing function of Sc,
which is physically correct. Sc has a direct relationship with viscous forces
and an inverse relationship with mass diffusion. By increasing the values
of Sc means that viscous forces dominates the mass diffusion, which
causes a decrease in velocity of fluid. Figure 5A displays the couple stress
Casson fluid velocity with variation in the β. From the graph, it is clear that
the velocity distribution is the decreasing function of β. Physically this
behavior of β is true. As β is directly proportional to dynamic viscosity and
inversely to yield stress, by increasing the β, the dynamic viscosity
increases, generating resistance to the flow and the velocity of flow
decreases. As λ has a direct relationship with inertial forces and
inverse relation with viscous forces, increasing the values of λ means
that inertial forces will dominate the viscous forces, which causes a
decrease in the fluid’s velocity, which can be seen in Figure 5B.
Figure 6A shows the influence of k2 on the velocity regime. From the
figure, it is clear that the velocity distribution is the increasing function of
k2. The physics behind this is that increasing the permeability means
increasing the interconnectivity of the pores, consequently increasing the
velocity flow rate. Figure 6B shows the impact of ω on velocity
distribution. Form the figure, it is clear that the velocity is decreases
for increasing values ω.

Figure 7A `describes the multiple solutions of the temperature
profile as discussed in Figure 2. The impact of Pr on temperature
distribution can be seen in Figure 7B. The figure shows that the
temperature profile decreases as the value of Pr increases. Physically,
this is valid since by increasing Pr the thermal forces become weaker
and thus, a decrease in temperature occurs. Figure 8A shows the
integral curves of concentration profile for different values of
fractional parameter α. The impact of different values of α on the
concentration profile is similar to that of the temperature and velocity
profiles. Figure 8B depicts the concentration profile for various values
of Sc, which illustrates that the concentration profile remains the same
over time and a reduction for increasing values of Sc. As Sc has a direct
relationship with viscous forces and an inverse relationship with mass
diffusion. When the values of Sc rise, the viscous forces of the fluid rise,
which cause to decrease in concentration profile. Figure 10 shows the
comparison of the general solution with Arif et.al [45] graphically
which confirm the accuracy of our solutions.

Table 1 consists of nomenclature box. Skin friction has so many
applications in engineering, specifically civil engineering. Skin
friction, Nusselt, and Sherwood numbers have many applications
in engineering. Engineers can calculate an object’s overall frictional
drag and the rate of convectional heat transfer over its surface by
calculating skin friction. For instance, turbine blades are forced to
operate in high-temperature gas, which might cause damage from
the heat. Turbine blades must undergo a heat transfer study
throughout the design phase. In this case, engineers estimate skin
friction on the turbine blade’s surface to estimate heat transfer
through the surface. Table 2 shows the effects of several physical
parameters on skin friction. Table. 2 shows the influence of β on skin
friction. As β is the ratio of dynamic viscosity to yield stress.
Increasing values of β increases the dynamic viscosity enhancing
the skin friction and this physical behavior is supported by the effect
of β on the velocity. Similarly, Sc has a direct relationship to viscosity,

TABLE 2 Skin friction of the couple stress Casson fluid at the left plate for α =0.3.

t1 β Sc Pr λ Gm Gr k2 ω Sf

1 0.3 0.3 15 100 10 30 5 50 108.586

− 0.4 − − − − − − − 108.366

− − 0.4 − − − − − − 120.458

− − − 20 − − − − − 117.005

− − − − 110 − − − − 108.82

− − − − − 11 − − − 105.411

− − − − − − 35 − − 106.703

− − − − − − − 6 − 107.987

− − − − − − − − 55 83.983

TABLE 3 Nusselt number of the couple stress Casson fluid at the left plate
for α =0.3.

t1 Pr Nu

1 10 3.351

1.1 − 3.635

− 11 3.513

TABLE 4 Sherwood number of the couple stress Casson fluid at the left plate
for α =0.3.

t1 Sc Nu

1 0.3 1.108

1.1 − 1.215

− 0.4 1.143

TABLE 5 Comparison of Skin friction with Nadeem et. al [48].

α β Pr t1 Nu Nu [48]

0.4 0.5 7 5 2.447 2.845

0.8 − − − 4.005 4.061

− 1.5 − − 2.047 2.305

− − 1.4 − 2.879 2.908

− − − 10 1.304 1.339

TABLE 6 Comparison of Nusselt number with Nadeem et. al [48].

α Pr t1 Nu Nu [48]

0.4 7 5 −1.688 −1.587

0.8 − 1.215 −0.907 −0.672

− 14 1.143 −2.271 −2.244

− − 10 −1.529 −1.381
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so by increasing the value of Sc, viscous forces increases and thus the
skin friction also rises. Again Pr depends on viscous forces, so the
skin friction increases as we increase Pr. As λ is proportional to the
fluid’s inertial forces, an increase in λ increases the inertial forces,
which causes an increase in the skin friction, as illustrated in Table. 2.
By raising Gr and Gm, the buoyancy forces rise, lowering the
viscosity of the fluid, and, as a result, the skin friction is also
reduced. The same phenomenon can be seen in the table. Finally,
by increasing k2, skin friction reduces. The physics behind this is that
resistive forces of the medium decrease which cause to decrease the
skin friction.

Table. 3 shows the variation in the values of the Nusselt number due
to the variation in the values of different physical parameters. Nusselt
number decreases for increasing values of Pr. The physics behind this is
that by increasing Pr, the momentum diffusivity overcomes the thermal
diffusivity, which causes to reduce the thermal boundary layer thickness
and hence Nusselt number decreases. Values of Sherwood number are
displayed in Table. 4. Sherwood number is the increasing function of Sc.
As Sc has direct relationship with viscous forces and inverse relationship
with the mass diffusion, increasing the Schmidt number generates a rise
in viscous forces, hence the Sherwood number increases. Table. 5 and
Table. 6 shows the comparison of solutions in terms of skin friction and
Nusselt number. The skin friction and Nusselt numbers values are
compared with Nadeem et al. [48].

7 Conclusion

In this article, we developed the exact solutions of couple stress
Casson fluid flow through the porous medium using the modern
approach of Fick’s and Fourier’s laws with the help of Caputo time-
fractional derivatives definition and integral transformations. The effect of
different physical parameters on temperature, concentration and velocity
profile is depicted graphically and explained physically. The final remarks
of the present study are given below.

1) Unlike the previous publish work, in this article the classical model
are transformed to fractional model using generalized Ficks’s and
Fourier’s Laws.

2) Unlike the classical model, the fractional model provides multiple
solutions for different values of α, where α lies in between (0,1].

3) TheCasson parameter β decreases the velocity for its increasing values.
4) The velocity of the couple stress Casson fluid increases for

increasing values of k2, Gm and Gr, while the behavior of the

velocity profile for increasing values of λ, Pr, Sc, andω is opposite to
that of k2, Gm and Gr.

5) The influence of different physical parameters on skin friction is
quite the opposite of the influence on the velocity, which is a good
agreement with the basic idea of skin friction.
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