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As a result of its wide range of applications, FSI has grabbed the attention of

researchers and scientists. In this study we consider an incompressible, laminar

fluid flowing through the bifurcated channel. The wavy walls of the channel are

considered elastic. Moreover, a magnetic field is applied towards the axial

direction of the flow. Using a two-way fluid-structure interaction, an

Arbitrary Lagrangian-Eulerian (ALE) formulation is used for coupling the

problem. The problem is discretized using P2 and P1 finite element methods

to approximate the displacement, pressure, and velocity. The linearized system

of equations is solved using Newton’s iterative scheme. The analysis is carried

out for the Reynolds number and Hartman number. The ranges of the studied

parameters are Reynolds number 300≤Re≤ 1000 and Hartmann number

0≤Ha≤ 10. The hemodynamic effects on the bifurcated channel and elastic

walls are calculated using velocity, pressure, wall shear stresses (WSS), and loads

at the walls. The study shows there is an increase in boundary load as the values

of the Hartman number increase hence WSS increases. On the other hand, an

increase in the Reynolds number increases the resistance forces hence velocity

and WSS decrease. Also, numerical values of WSS for rigid and elastic walls are

calculated. Studies showed that WSS decreases for the FSI case when compare

to CFD (computational fluid dynamic) case.
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Introduction

Cardiovascular disorders are now the leading cause of death

worldwide, accounting for around a quarter of all deaths in the

modern era [1–3]. Cardiovascular problems include

atherosclerosis, carotid aneurysm, and deep vein thrombosis,

which cause heart attack, stroke, and embolism all stem from

platelet aggregation [4]. Recent years have seen a large number of

theoretical and experimental studies on arterial blood flow [4].

To better understand how the cardiovascular system’s

physiological blood flow might be diagnosed, researchers are

eager to examine how blood flows through an aortic artery

bifurcation. The evaluation of blood flow through different

types of geometries under different flow sites is highly

essential because the leading cause of death in the world by

arterial diseases is connected with the flow problems in the blood

arteries. Viscosity, size, and form of arteries, as well as flow

characteristics such as laminar, pulsatile, and turbulent all, have a

significant impact on how blood moves through the vessels [5].

Numerous theoretical and experimental investigations on arterial

blood flow have been conducted recently. Blood flow

hemodynamics strongly depends upon the non-Newtonian

characteristics, flow behavior, and shape of the artery. Fojas

et al.[6] study the two-dimensional carotid artery model with

bifurcation. An arbitrary Lagrangian-Eulerian (ALE) technique

was used to solve the system of nonlinear equations.

Comparisons were made between the findings of the

hemodynamic simulations and the Doppler ultrasonography

measurements of physiological blood velocity.

A literature review shows that many experiments were

performed to measure the velocity field in bifurcation [7, 8],

and the pressure drop model was proposed [9, 10]. Mekheimer

[11] Proposed a theoretical investigation of a mixture of blood

and synovial with heat distribution, volume fraction and

concentration effects through stenosed concentric tubes. They

concluded synovial fluid which has less friction than other fluids,

can help to speed up the blood flow in the area of atherosclerosis.

Flow past in a branching tube was analyzed by [12]. Yung et al.

[13] numerically investigated the flow in bifurcation. For

analytical and numerical research, basic “Y” type bifurcations

with sharp corners were taken as assumptions, but experimental

articles did not specify specific geometry employed in

experiments. Thus, it is only possible to study the correlation

between these theoretical and experimental results qualitatively.

For the first time [14, 15], conducted thorough experiments to

explore the primary and secondary flow field in a single

bifurcation with smoothed corners and precisely defined

geometric parameters. Numerical simulation performed by

Zhao et al. [16] showed agreement between experimental and

computational results by [14, 15].

Magnetohydrodynamics (MHD) is the study of fluids with

magnetic characteristics. Human blood flow in the vascular

system is greatly influenced by the use of MHD. Magnetic

devices have been developed for a variety of applications,

including medication transporters, cancer treatment, cell

separation, etc. In medical research, the theory of

electromagnetic field was first introduced by Kolin [17]. Later,

Korchevskii, Marochnik [18] offered the opportunity to control

the blood flow in the arterial lumen system by spreading a

magnetic field. Ahmed et al. [19] proposed a unique model of

unsteady MHD fluid flow and heat transfer across carbon

nanotubes utilizing variable viscosity. MHD effects on blood

flow in bifurcated arteries with minor stenosis in the parent

lumen were studied by Srinivasacharya and Rao [20]. They used

the finite difference method to solve the resulting set of equations

numerically. The hemodynamics effects like flow rate, shear

stresses are calculated for the involved parameter. Abdelsalam

et al.[21] investigated the effects of chemical interaction and laser

radiation with MHD and electroosmotic flow of non-Newtonian

hybrid fluid in a sinusoidal channel. The aim of the research is to

help restrict the growth of bacteria, promote oxygen binding to

the blood, transfer oxygen to organs, and activate white blood

cells. Mekheimer et al. [11] used a vertical micro channel to

investigate the effect of diamond and copper nanoparticles on the

electro-magneto-hydro dynamically regulated peristaltic

pumping of a couple stress fluid. They found the

irreversibility process enhanced with the sphere shaped

particles also, MHD reduced the bolus size. Further

investigation on MHD flows and their applications can be

seen in the articles [22–25] and references therein.

Researchers are eager to examine how blood flows through

an aortic artery bifurcation to better understand how the

cardiovascular system’s physiological blood flow might be

diagnosed. Blood flow across diverse geometries and flow sites

are critical since arterial diseases are the leading cause of death in

the globe, and because flow problems in the blood arteries are the

primary cause of death. The blood flow is greatly affected by

physical properties such as viscosity, vessel size and shape, and

flow behaviour, such as laminar or pulsatile. Many vascular

disorders can be linked back to abnormal blood flow

dynamics in the arteries. Having a better knowledge of these

dynamics could help in both healthy and pathological conditions.

The hemodynamics of blood flow cannot be predicted accurately

if we assume rigid walls. So this study is not effective in many

practical cases. Therefore, FSI is taken into account [26]. FSI

between blood and wall artery is difficult to model. Both

modeling and computing efficiency is advancing rapidly in

this discipline. Taking into consideration the FSI for the

vessels and blood can be achieved by introducing a 2D or 3D

elastic structure, utilizing a Lagrangian [27], Eulerian [28], or

ALE (Arbitrary Lagrangian-Eulerian) framework [29]. Zhao et al.

[30] studied the blood flow in the aortic arch using FSI. The

system of equations is formed using the ALE frame. They studied

the elasticity and wall stress in the aorta wall. Studies show that

difference in the elastic characteristics of the different layer is

responsible for the pathological state. Methods et al. [31]
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performed an FSI simulation in a patient-specific artery using the

ALE concept. The fluid flow pattern and WSS were given special

consideration in their study. In [32] the hemodynamics

characteristic of blood flow using FSI were discussed. The

coupling of the non-linear system of the equation with FSI is

performed using the Gauss-Seidel iterative algorithm. Recently

Shahzad et al. [33] studied the hemodynamics effects of non-

Newtonian fluid flowing in the bifurcated artery. The theoretical

model for stenosed bifurcated artery was constructed. They used

an ALE technique to study the elastic wall behavior for non-

Newtonian fluid.

In this study, a fluid-structure interaction simulation is

performed for the bifurcated channel. The walls of the

channel are considered wavy and elastic. The magnetic field is

applied toward the axial direction of the flow. How Re and Ha

affect the hemodynamics of the channel were studied. In the next

section, physical configuration and mathematical modeling are

performed. After that solution methodology is explained. The

result and discussion section highlighted the major outcomes of

the study. The conclusion based on the results is highlighted in

the last section.

Physical configuration and
mathematical modeling

The coordinate system and the geometry of the problem are

shown in Figure 1. The wall of the channel is considered wavy

with width w � 0.08cm. The total length of the channel is

L � 6cm. The geometrical elements that influence the fluid

dynamics in branching geometries are: change in cross-

sectional area from mother to daughter branch, shape change

in bifurcation module, flow driven at a bifurcation, and flow path

curvature in the bifurcation module. Further, we suppose that

walls of the bifurcated channel are constructed of linear elastic

and isotropic material with a particular Young’s modulus and

Poisson ratio. Which we defined as [34]

v � λl
2(λ + μm), E � μ(3λl + 2μm)

λl + μm
,

μm � E

2(1 + v), λl � vE

(1 + μm)(1 − 2v)
(1)

where λl, Lame coefficient; μm, Shear modulus; E, Young’s

Modulus; v, Poisson ratio.Where E � 5 × 105 and value of v �
0.49.

We consider the incompressible, two–dimensional, viscous,

biomagnetic fluid flowing through the bifurcated channel. The

walls of the bifurcated channel are considered wavy. The upper

wall and lower walls move with velocity 1. The parabolic inlet

with Umax � 0.3 is considered at the inlet. While at outlet

boundaries pressure is assumed zero. The low magnetic

Reynolds approximation is assumed [35].

Lagrangian and Eulerian descriptions are commonly used in

continuum mechanics to describe solid and fluid motion,

respectively. With regards to fluid and solid domains mixing

(fluid structure interaction), ALE is a more generic approach. For

the fluid-structure interaction, we can write the governing

equations in two dimensions as [34].

FIGURE 1
Geometry of the wavy bifurcated channel.

FIGURE 2
Coarse mesh for the discused problem.

TABLE 1 Grid convergence for various refinement levels at Re =
200 and Ha = 0.

Refinement level WSS on
the upper wall

Absolute error

1 0.473018 —

2 0.470492 0.0025

3 0.473178 0.0027

4 0.475150 0.0047

5 0.476230 0.0011

6 0.476365 0.0001
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TABLE 2 WSS comparison for CFD and FSI case.

Ha Re = 300 Re = 500 Re = 800

CFD case FSI case CFD case FSI case CFD case FSI case

0 0.342855 0.334139 0.221536 0.218223 0.157072 0.155413

2 0.347158 0.338239 0.222788 0.219411 0.156423 0.154701

4 0.360056 0.350603 0.228537 0.224991 0.15612 0.154361

6 0.38257 0.372627 0.239482 0.235677 0.16016 0.158443

8 0.414214 0.403517 0.256632 0.252632 0.168657 0.166945

10 0.451058 0.439229 0.278059 0.273645 0.180917 0.179107

FIGURE 3
Velocity contours for Re 300 (left) and 500 (right).
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Continuity equation

zu

zx
+ zv

zy
� 0 (2)

Momentum equations

ρ((u − us) zu
zx

+ (v − vs) zu
zy

) � −zp
zx

+ μ(z2u
zx2

+ z2u

zy2
) − σpB2pu

(3)

ρ((u − us) zv
zx

+ (v − vs) zv
zy

) � −zp
zy

+ μ(z2v
zx2

+ z2v

zy2
) (4)

The governing equation for the solid displacement is given by

∇ϱs � 0 (5)

where u, v, velocity component; us, vs, mesh coordinate velocity;

σ, electrical conductivity of the fluid; ρ, density of the fluid; μ,

viscosity of the fluid; ϱs, solid stress tensor; B, magnetic field

strength.

The elastic deformation of the walls caused by the fluid and

pressure forces can be represented in terms of the Kirchhoff stress

tensor as [36].

τ � Jϱs
ϱs � J−1FSFT

where F � (1 + ∇ds), J � det(F), S is related by the strain ϵ as
S � C(E, ]): (ϵ), and

ϵ � 1
2
(∇ds + ∇dT

s + ∇dT
S∇ds)

where S, second Piola-Kirchhoff stress tensor; E, Young’s

modulus; υ, Poisson’s ratio; ds, solid displacement vector.

Making use of the dimensionless variables listed bel

u � �u

u0
, v � �v

u0
, x � �x

h
, y � �y

h
, us � us

u0
, ϱ � �ϱs

�E
, p

� �p

ρu2
0

, Re � ρ h u2
0

μ
, Ha � σ B2h

μ
(6)

where h, channel height; u0, inlet velocity; Re, Reynolds number;

Ha, Hartmann number.

By taking a dimensionless parameter into account and

omitting bar sign for simplicity, we can rewrite Eqs 2–5 as

zu

zx
+ zv

zy
� 0 (7)

ρ((u − us) zu
zx

+ (v − vs) zu
zy

) � −zp
zx

+ 1
Re

(z2u
zx2

+ z2u

zy2
)

− Ha2

Re
pu (8)

FIGURE 4
Streamlines for various Hartmann numbers at Re = 300.
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ρ((u − us) zv
zx

+ (v − vs) zv
zy

) � −zp
zy

+ 1
Re

(z2v
zx2

+ z2v

zy2
) (9)

∇ϱs � 0 (10)

At the inlet, a parabolic velocity profile is assumed as

u(x, y) � 3Umax y (1 − y). Pressure determines the outflow

boundary conditions. The outlet’s pressure is set to zero.

Solution methodology

To address the FSI problem, the interdependent system of

partial differential Eqs 8–10 are solved with the ALE

approach, based on FEM. Galerkin finite element method

[35] was used to transform and discretize the equations. This

approach combines the ability to move the boundary domain,

FIGURE 5
Streamlines for various Reynolds numbers at Ha = 0.

FIGURE 6
Velocity profile for various cut lines defined.
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holding a moving domain with a moving procedure. The ALE

approach is explained in greater detail in the articles [37–41].

A solution accuracy is improved by applying hybrid mesh

which consists of rectangular and triangular elements. The

requirements for the nonlinear iteration’s convergence are

stated as ∣∣∣∣∣∣∣∣
χn−1 − χn

χn+1

∣∣∣∣∣∣∣∣< 10−6

where χ is the general component of the solution. Figure 2

depicts the coarse level grid of the problem. The key steps to

study the structural analysis of the domain using FEM are

discretization, meshing, and mesh refinement. FEM schemes

are used to address the complex fluid flow problems by

dividing the domain into subdomains or elements. Since

discretization of the domain into finite elements is a key

step so meshing is performed at multiple levels but for

optimization, only a coarse level is presented (see

Figure 2). The first and second-order polynomial space (P1

and P2) is generated in the form of a hybrid grid consisting of

quadrilateral and triangular elements to approximate the

domain. Grid independence tests are performed to confirm

that the results produced are independent of the number of

mesh elements. The numerical values of WSS for the upper

wall at Re = 200 and Ha = 0 are calculated for various

refinement levels and shown in Table 1 (coarse to

extremely fine). With the improvement of refinement

FIGURE 7
WSS vs. Ha for variation of Re.

FIGURE 8
Boundary load for different Ha.
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levels, the absolute error decreases and is minimum for

extremely fine level. Therefore, the study is conducted at

an extremely fine level.

Results and discussion

A two–dimensional theoretical model for bio-magnetic

flow in a bifurcated channel with elastic wavy walls is

proposed. The magnetic field is applied to the axial

direction of the flow. The nonlinear differential equations

are transformed into a dimensionless form by utilizing

appropriate scales. The system of equations is discretized

using ALE and is solved using the FEM approach. The

numerical solution is obtained for the various values of the

parameters involved. Results for various values of Ha and Re

are produced to gain a physical understanding of the

situation. The results are demonstrated by the mean of

streamlines, velocity surfaces, displacements, and WSS.

In Table 2 WSS are calculated for the variation of

Reynolds and Hartmann number. Also, a comparison is

made for CFD (rigid wall) and FSI (elastic wall) cases.

WSS decreases for the FSI case as compared to the CFD

case where the walls of the channel are considered rigid. WSS

decreases when the viscous forces inside the channel increase

i. e for increasing Reynolds number. The magnetic field has

opposite effects on WSS as compared to Re. WSS is minimum

for pure hydrodynamic cases i.e., Ha = 0, but when the value

of Hartmann number increases the pressure at the walls

increases hence WSS increases (see Table 1).

Figure 3 shows the variation of velocity magnitude for

various values of Hartmann number at Re = 300 (left) and 500

(right). Due to an increase in viscous forces the velocity

magnitude inside the channel decreases. Therefore, an

increase in Reynolds number retards the velocity. On the

other hand velocity magnitude inside the channel is

maximum for the pure hydrodynamic case. An increase in

magnetic field strength give rise to WSS, as a result, velocity

magnitude inside the channel decreases. Due to the elastic

nature of the walls, a reasonable distortion can be observed

for the variation of Hartmann number (see Figure 3). In

Figure 4 streamlines are drawn for various values of the

Hartmann number. Recirculation near the walls is

maximum for the pure hydrodynamic case (Ha = 0). As

Hartmann varies, the recirculation pattern decreases. The

fluid exerts more pressure on the wall, which results in to

increase in WSS. In Figure 5 streamlines for the variation of

Reynolds number are drawn and observed near the

bifurcation region. As increase in Reynolds number

increases the viscous forces which consequently retards the

flow and thereby reduced the flow velocity. This can also be

observed by the recirculation pattern of the fluid near the

walls (see Figure 5). Figure 6 plots the velocity profile for the

expanded and contracted region for the variation of

Hartmann number. An increase in Hartmann’s number

reduces the velocity. Moreover, due to the parabolic inlet,

a parabolic profile of velocity is observed.

Mechanical properties of the bifurcated channel are very

important because they are directly related to recirculation

area, flow pattern, WSS, etc. Due to the elastic behavior of

wavy walls, a noticeable deformation can be seen for the

variation of Hartmann number, which results in to decrease

in the recirculation which gives rise to the wall shear stress.

Figure 7 plots the WSS against the Hartmann number for the

variation of Re. Also, a comparison is made between the CFD

and FSI cases. A significant decrease in WSS for the FSI case.

A boundary load is simulated in Figure 8. A significant

change in the load at the boundary is observed for the

variation of the Hartmann number. At Ha = 0, due to

parabolic inlet velocity, there is a negligible load at the

boundary. But it gradually starts increasing for variation of

Ha. A noticeable change can be seen at Ha = 10.

Conclusion

A fluid-structure interaction study of two–dimensional

biomagnetic flow in a bifurcated channel is conducted. The

walls of the channel are assumed elastic. The magnetic field

is applied to the axial direction of the flow. The nonlinear

differential equations are transformed into a dimensionless

form by utilizing appropriate scales. The system of

equations is discretized using ALE and is solved using the

FEM approach. The major findings of the study are

highlighted as.

• WSS is higher for CFD (rigid wall) case as compared to FSI

(elastic wall) case.

• WSS decreases for increasing values of Reynolds number.

• Compared to the pure hydrodynamic scenario, the

magnetic field reduces the gain in velocity.

• There is an increase in the recirculation patterns near the

walls of the channel for the variation of Hartmann number.

Hence pressure exerted by the fluid on the wall increases.

• The magnetic field increases the boundary load as

compared to the pure hydrodynamic case.

• The magnetic field increases the WSS and hence the risk of

atherosclerosis reduces.
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