
Particle network EnKF for
large-scale data assimilation

Xinjia Li1 and Wenlian Lu1,2,3,4,5*
1School of Mathematical Sciences, Fudan University, Shanghai, China, 2Shanghai Center for
Mathematical Sciences, Fudan University, Shanghai, China, 3Shanghai Key Laboratory for
Contemporary Applied Mathematics, Fudan University, Shanghai, China, 4Institute of Science and
Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China, 5Key Laboratory of
Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education,
Shanghai, China

The Ensemble Kalman filter (EnKF) is a classic method of data assimilation. For

distributed sampling, the conventional EnKF usually requires a centralized

server to integrate the predictions of all particles or a fully-connected

communication network, causing traffic jams and low bandwidth utilization

in high-performance computing. In this paper, we propose a novel distributed

scheme of EnKF based on network setting of sampling, called Particle Network

EnKF. Without a central server, every sampling particle communicates with its

neighbors over a sparsely connected network. Unlike the existing work, this

method focuses on the distribution of sampling particles instead of sensors and

has been proved effective and robust on numerous tasks. The numerical

experiments on the Lorenz-63 and Lorenz-96 systems indicate that, with

proper communication rounds, even on a sparse particle network, this

method achieves a comparable performance to the standard EnKF. A

detailed analysis of effects of the network topology and communication

rounds is performed. Another experiment demonstrating a trade-off

between the particle homogeneity and performance is also provided. The

experiments on the whole-brain neuronal network model show promises for

applications in large-scale assimilation problems.

KEYWORDS

EnKF, data assimilation, gossip algorithms, decentralized sampling, large-scale
problem

1 Introduction

Data assimilation (DA) is the science of combining system observations with system

estimates from a dynamic model to obtain a new and more accurate system description

[1]. In DA, the Kalman filter [2] has been regarded as a very effective algorithm to solve

state-space representations when the state-space model is linear and Gaussian. As a

variant of the Kalman filter, the Ensemble Kalman filter (EnKF) [3] is introduced to deal

with the nonlinear state-space model, assuming that all probability distributions are

Gaussian. There have been numerous applications involving EnKF, such as physical

models of the atmosphere, oceans in geophysical systems [4, 5], and biological science [6].

With complex models and high variability of the dataset, there is a rising demand for

deploying DA algorithms in high-performance computing (HPC) in many fields, such as
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oceanography [7] and neuroinformatics [8–10]. As the system

model may be very large, only one computing node is insufficient

to compute all particles (samples) to deploy EnKF in HPC. In this

situation, the model of each particle can be deployed on more

than one node.

When deploying the EnKF in a centralized manner in HPC, a

central server is necessary to compute the average of all particles.

But there exists two potential challenges: First, computing power

or storage space problems may be caused by the scale of the

model and exchanged information. Second, traffic jams on the

central server may occur during communication [11].

As the main operator for the EnKF is Allreduce, we can

deploy it on a fully connected network and use direct all-to-all

communication [12] when the number of nodes is not large. As

the number of nodes increases, the time to each message hits a

floor value determined by the overhead in the switch latencies

because a minimum efficient packet size must be used, and it is

easy to miss this target size on a large network [13]. This scenario

reduces bandwidth utilization and increases the communication

cost, motivating industry to deploy the particles on a sparse

graph, namely a particle network setting for the EnKF, which is

an alternative solution for DA in HPC.

Related work in distributed optimization includes centralized

[14, 15] and decentralized algorithms (network setting) [16, 17].

Centralized algorithms assume that a central server is available to

integrate the information of all agents and send it back, whereas

each agent can only communicate with its neighbors over a local

network in decentralized algorithms. Some distributed variants

of the Kalman filter, such as the distributed Kalman filter

[18–23], distributed particle filter [24], and distributed EnKF

[25–27], have recently been introduced as filtering solutions for

sensor networks that are robust to link failure and scalable with

the network size. However, these methods are designed for sensor

networks, and each sensor node runs a local copy of the filter.

Thus, to the best of our knowledge, there is no method focusing

on particle networks for EnKF rather than sensors networks to

handle the problem of DA in HPC.

In this paper, we propose a decentralized EnKF, named

Particle Network EnKF for data assimilation in systems with

linear and nonlinear measurements. The most relevant work to

this current study is the decentralized filter distributing a

centralized Kalman filter based on average consensus filters

[22]. However, unlike the previous research on the distributed

filters, this paper focuses on the distribution of particles instead

of sensors from a new perspective, which has many significant

applications in large-scale computing.

The Particle Network EnKF deploys particles in a

decentralized way and performs reasonable calculations on

each node. The particles are distributed in a network and

maintain local estimates of global variables, such as the

average of predicted states and observations, which can be

obtained by communicating with their neighbors over several

communication rounds. Then, the algorithm calculates the

particles’ Kalman gains and update predicted states. In this

way, there is no need for a central server, and it has a lower

communication cost than the EnKF with a fully connected

network.

To illustrate the proposed method, we experiment on

various systems with the Particle Network EnKF, including

the Lorenz-63 system with known or unknown parameters

and the Lorenz-96 system with nonlinear measurement. The

Particle Network EnKF can achieve comparable performance

to the EnKF with fewer communication costs, even on a sparse

graph. Moreover, we analyze the effects of critical

hyperparameters on the Particle Network EnKF and

propose an indicator called the gossiping rate to indicate

the effects of network topology and communication rounds

on the precision and homogeneity.

To determine the trade-off between the paticle homogeneity

and precision of filtered states, we modify the Particle Network

EnKF, where the particle heterogeneity can be upper bounded

theoretically. Finally, we demonstrate the superior performance

of the Particle Network EnKF on a large-scale computing

application, the whole-brain neuronal network model, where

the EnKF fails, as the state update for each particle is

computationally intensive.

Contributions. Our contributions are summarized as

follows:

• We propose a novel decentralized EnKF called the Particle

Network EnKF. From a new perspective, we focus on the

distribution of particles instead of sensors as done in the

existing works, achieving comparable performance to the

EnKF with fewer communication costs, even on a sparse

network.

• We define an indicator called the gossiping rate, α, to

quantify the combined effects of the network topology and

multiple communication rounds. Moreover, we explore the

trade-off between the particle homogeneity and precision

of the filtered states.

• We test the Particle Network EnKF on the whole-brain

neuronal network model, where our method shows

promises for applications in large-scale assimilation

applications.

The paper is organized as follows. Section 2 reviews the

standard EnKF and presents the proposed Particle Network

EnKF. Section 3 illustrates the effectiveness of the proposed

method on the Lorenz-63 and Lorenz-96 systems and

discusses the effects of the network topology and multiple

communication rounds. Also, we explore the trade-off

between the particle homogeneity and precision in Section

4. In Section 5, we test the Particle Network EnKF on a

practical large-scale application (i.e., the whole-brain

neuronal network model). Finally, we summarize the work

in Section 6.
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2 Ensemble Kalman filter and particle
network EnKF

In this section, we review the preliminary knowledge of EnKF

and introduce the proposed Particle Network EnKF in detail. The

proposed method is designed for distributed sampling in lager-

scale DA problems, which is obviously different from previous

work for sensor networks.

2.1 Ensemble Kalman filter

The EnKF, a variant of the Kalman filter, is a typical method

to handle nonlinear systems in DA. The standard EnKF’s context

assumes a system [28] with m-dimensional state vector x and n-

dimensional observation vector y:

xk+1 � f xk( ) + wk

yk � g xk( ) + vk
(1)

where f and g are system function and measurement function

respectively, and wk and vk are Gaussian noises with covariance

matrix Q and R. If the measurement function g is linear, the

measurement formula can be simplified to

yk � Hxk + vk, (2)
where H ∈ Rn,m denotes the measurement matrix.

The EnKF employs an ensemble approach to address the

nonlinear system. Specifically, it uses the Monte Carlo

method to choose numerous state points in the

initialization step and conducts a prediction step and

update step iteratively.

Initialization Step. The filter starts by randomly drawing the

initial ensembles by independently sampling N particles

x+
1,0, x

+
2,0, . . . , x

+
N,0 from the initial distribution N (x0, P) where

P ∈ Rm,m and N is the multivariate Gaussian distribution.

Then, for time steps k = 1, . . ., K, the filter obtains estimates

of the state at the current time step k using the state estimates

from the last time step k − 1 in the prediction step and then

refines the state estimates with the current prediction and

observation in the update step.

Prediction Step. In the prediction step, the EnKF builds

the predicted states by drawing N independent samples from

the signal model and calculates the mean of the predicted

states:

x−
i,k � f x+

i,k−1( ) + wi,k−1

x−
k � 1

N
∑N
i�1

x−
i,k

where wi,k−1 is drawn from the distribution of the systemic noise

N (0, Q).
Update Step. In this step, the EnKF first calculates the

observations using the measurement function and obtains the

Kalman gain matrix Kk. Then, the predicted states is updated

according to the Kalman gain matrix. For each particle i, the

update step can be formulated as follows [29]:

y−
i,k � g x−

i,k( )
y−
k � 1

N
∑N
j�1

y−
j,k

Py
k � 1

N − 1
∑N
j�1

y−
j,k − y−

k( ) y−
j,k − y−

k( )T + R

Pxy
k � 1

N − 1
∑N
j�1

x−
j,k − x−

k( ) y−
j,k − y−

k( )T
Kk � Pxy

k Py
k( )−1

x+
i,k � x−

i,k + Kk yk + vi,k − y−
i,k( )

x+
k � 1

N
∑N
j�1

x+
j,k

(3)

where vi,k is drawn from N (0, R), and x+
k is the filtered state in

the time step k. In particular, if the measurement function is

linear, as in Eq. 2, the Kalman gain matrix is usually computed by

y−
i,k � Hx−

i,k

y−
k � 1

N
∑N
j�1

y−
j,k

P−
k � 1

N − 1
∑N
j�1

x−
j,k − x−

k( ) x−
j,k − x−

k( )T
Py
k � HP−

kH
T + R

Kk � P−
kH

T Py
k( )−1.

(4)

The update step for nonlinear measurement was proposed by

[29], which is completed by rewriting the Kalman gain in the

standard EnKF update step Eq. 4. The motivation of Eq. 3 is that

the measurement function g in standard EnKF must be linear,

which might cause concerns when the nonlinear measurement

function is challenging to be linearized [30]. The update step for

nonlinear measurement Eq. 3 has been widely used to manage

systems with nonlinear measurement functions.

The two update steps are equivalent when satisfying

P−
kH

T � 1
N − 1

∑N
j�1

x−
j,k − x−

k( ) y−
j,k − y−

k( )T

HP−
kH

T � 1
N − 1

∑N
j�1

y−
j,k − y−

k( ) y−
j,k − y−

k( )T.
(5)

Some work [30] has shown that the formula Eq. 5 holds ifN is

infinite and y−
k � g(x−k ).

2.2 Particle network EnKF

Although the EnKF is an effective method to estimate states

in many systems, we cannot use the classic EnKF on certain

occasions in real applications. For example, in the DA task for the

whole-brain neuronal network model, a single computing node
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cannot calculate all particles because the computing cost for each

particle is too expensive.

We propose the Particle Network EnKF, where each particle

can only obtain the information of its neighbors over a locally

connected network. We have no access to x−
k in the prediction

step, y−
k in the update step or the filtered state x+

k . In this

situation, the Particle Network EnKF, formulated as a variant

of the EnKF, considers these limits in distributed computing to

calculate the local Kalman gain matrix for every particle.

We assume that a connected network has local connectivity

across particles represented by an undirected graph G with N

nodes. The neighbors of a node i in G is the subgraph of G
induced by all vertices adjacent to i and the node i is also regarded

as a neighbor of itself. Then, correspondingly, a gossiping matrix

W ∈ RN,N exists to characterize information communications

between particles, and W satisfies

W1N � 1N
Wi,j � 0, if j ∉ Di

Wi,j � 1
Ni

, if j ∈ Di

(6)

where 1N ∈ RN denotes the vector with all coefficients of one,Di

is the set of neighbors of particle i and Ni � |Di|.
For a fully connected network, without extra

communication, the Particle Netowork EnKF degenerates to

the standard EnKF. However, when the network is very

sparse, the information of other particles is too little to obtain

a credible Kalman gain. Hence, we implement extra

communication rounds, where the communication round is

denoted by s.

Based on the ideas above, we improve the EnKF algorithm to

the Particle Network EnKF both in the prediction and update

steps separately.

Prediction Step. In the prediction step, after s rounds of

communication, each particle i obtains its estimate xi−
k of the

global average x−
k .

For each particle i ∈ {1, 2, . . ., N}, the prediction step can be

formulated as follows.

x−
i,k � f x+

i,k−1( ) + wi,k−1
xi−
k( )0 � x−

i,k

xi−
k( )r � ∑N

j�1
Wi,j xj−

k( )
r−1, r � 1, 2, . . . , s

xi−
k � xi−

k( )s.
(7)

Update Step. In the update step, there is no central server

to compute the average of y−
i,k, i � 1, 2, . . . , N. Each particle i

integrates its neighbors’ predicted observations to obtain the

local estimate yi−
k of the global average y−

k , with s rounds of

communication. Then, every particle’s Kalman gain matrixKi
k

is calculated, which is a local estimate of the global Kalman

gain matrix Kk. With the local Kalman gain and observation

yk, the method updates each particle’s predicted state x−
i,k to

x+
i,k, which is the filtered state for the next prediction step. To

obtain the output, after s rounds of communication, x++
i,k is the

filtered state and local estimate of the global filtered state for

particle i at step k.

The update step can be formulated as follows:

y−
i,k � g x−

i,k( )
yi−
k( )0 � y−

i,k

yi−
k( )r � ∑N

j�1
Wi,j yj−

k( )
r−1, r � 1, 2, . . . , s

yi−
k � yi−

k( )s
Py,i
k � 1

Ni − 1
∑
j∈Di

y−
j,k − yi−

k( ) y−
j,k − yi−

k( )T + R

Pxy,i
k � 1

Ni − 1
∑
j∈Di

x−
j,k − xi−

k( ) y−
i,k − yi−

k( )T
Ki

k � Pxy,i
k Py,i

k( )−1
x+
i,k � x−

i,k +Ki
k yk + vi,k − y−

i,k( )

(8)

where Ki
k is the local Kalman gain of particle i at step k. For the

linear situation, the update step of the Particle Network EnKF

can be formulated as follows

y−
i,k � Hx−

i,k

Pi−
k � 1

Ni − 1
∑
j∈Di

x−
j,k − xi−

k( ) x−
j,k − xi−

k( )T
Py,i
k � HPi−

k H
T + R

Ki
k � Pi−

k H
T Py,i

k( )−1
x+
i,k � x−

i,k +Ki
k yk + vi,k − y−

i,k( ).

(9)

Output. After s rounds of communication, the Particle

Network EnKF outputs the final filtered state at step k for

each particle.

x++
i,k( )

0
� x+

i,k

x++
i,k( )

r
� ∑N

j�1
Wi,j x++

j,k( )
r−1, r � 1, 2, . . . , s

x++
i,k � x++

i,k( )
s

where x++
i,k is the filtered state for particle i at step k as an output.

Each particle holds its filtered states, and there are different N

filtered states at each step.

2.3 Gossiping rate

To quantify the combined effects of the network topology

and multiple communication rounds, we first review the

definition of the gossiping matrix W in Eq. 6, which

characterizes information mixing among neighboring

particles. We assume that the eigenvalues of W are λ1 >
λ2 ≥/ ≥ λN, where λ1 = 1 and λN > − 1 (see Lemma 2 in

Supplementary Appendix SA in Supplementary Material). As

presented in the following, the left eigenvector corresponding

to the largest eigenvalue (i.e., 1) of W determines the

convergence point of Ws when the number of

communication rounds s tends to infinity. Meanwhile, the
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maximum absolute value of the remaining eigenvalues

determines the convergence speed, which is a

critical indicator. We define a spectral quantity α

for the gossiping matrix W, called the gossiping rate, as

follows:

α � max |λ2|, |λN|{ }. (10)

The gossiping rate reflects the sparseness of the network.

For example, if the network is fully connected, where all the

elements of W are 1/N, the gossiping rate is zero.

Moreover, the multiple communication rounds per

iteration enhance the gossiping matrix W to Ws and

reducing the gossiping rate from α to αs, with s rounds of

communication.

Consensus analysis. Let x(s) � [x1(s), x2(s), . . . , xN(s)]T
and x(s + 1) = Wx(s). In the Patricle Network EnKF, xi(s) can

be (x−k )s in the prediction step, (y−
k )s in the update step or the

filtered state (x++
k )s in output.

By Perron Frobenius [31], the left eigenvector v �
[v1, v2, . . . , vN]T of W corresponding to eigenvalue λ1 = 1

satisfies vi ≥ 0, i = 1, 2, . . ., N and can be

normalized by ∑N
i�1vi � 1. We let V � [v, v, . . . , v]T ∈ RN,N,

and then define the asymptotic convergence factor as follows:

rasym W( ) � sup
x 0( )≠Vx 0( )

lim
s→∞

max
l

‖xl s( ) − Vxl 0( )‖2
‖xl 0( ) − Vxl 0( )‖2( )[ ]1/s

,

where xl(s) ∈ RN denotes l − th column of x(s) and ‖ ·‖2 is the
Euclidean norm. Each column of (Vx(0))T is the global weighted

average of {xi(0), i = 1, 2, . . ., N}. It is different from [32] because

the convergence point may not be (W − (1/N)11T)x(0) without

the symmetry of W. We have the following theorem and the

proof is provided in Supplementary Appendix SA in

Supplementary Material.

Theorem 1. Suppose that W satisfies Eq. 6, and the

corresponding graph is connected. Let λ1 > λ2 ≥ λ3 ≥/ ≥
λN be the eigenvalues of W, then for any x(0) ∈ RN,m,

lims→∞Wsx(0) = Vx(0), and rasym(W) = α.
Remark 1. Unlike previous works [32, 33], under our

assumptions, W may not satisfy 1TW = 1T. Moreover, existing

research usually assumes ρ1(W − (1/N)11T) < 1, where we prove

that W satisfies ρ1(W − V) < 1. Herein, ρ1(·) is the spectral radius
of a matrix.

Under a specific matrix norm, the gossiping rate αs of Ws

also indicates the distance between Ws and the convergence

point W∞ = lims→∞Ws. We have the following theorem, and

the proof is in Supplementary Appendix SA in Supplementary

Material.

Theorem 2. Under the condition of Theorem 1, there exists a

matrix norm ‖ ·‖ such that αs = ‖Ws − W∞‖.

3 Experiment on the Lorenz-63 and
Lorenz-96 systems

In this section, we demonstrate the effectiveness of the

Particle Network EnKF on the Lorenz-63 system with known

and unknown parameters and Lorenz-96 system with nonlinear

measurement function.

3.1 Experiment on the Lorenz-63 system
with known parameters

In this section, we demonstrate the effectiveness of the

Particle Network EnKF on the Lorenz-63 system with known

parameters. Some experiments show the effects of the network

topology and multiple communication round, which can be

presented uniformly by the gossiping rate. The comparison of

communication costs with the EnKF illustrates that our

method achieves communication-efficiency on sparse

networks.

The Lorenz-63 system [34] is formulated as follows:

_x � σ y − x( ),
_y � x ρ − z( ) − y,
_z � xy − βz,

where σ = 10, ρ = 28, and β = 8/3. Given the initial state

[x0, y0, z0]T, noisy points of the Lorenz-63 system can be

generated using Euler’s method. x is observable, and the

measurement function is linear. We use both the update step

for linear measurements Eq. 9 and that for nonlinear

measurements Eq. 8.

In practice, 1,000 noisy points of the Lorenz-63 system are

available. The interval between steps of the Euler method h is

0.01. The states are [x,y,z]T with a system noise covariance Q =

0.3 ×I3×3, and the initial states in this experiment are [1.0,3.0,5.0]
T. The parameters are [σ,ρ,β]T without any noise. The observation

noise covariance R is 4, and the states are filtered at every

time step.

For both the EnKF and the Particle Network EnKF, the

number of particles N is 50. We randomly sample the initial

points of a multivariate Gaussian distribution with mean [1.5,2,6]
T and covariance matrix p = 2 × I3 × 3. Then, we repeat each

experiment 100 times to obtain credible results. As a baseline, the

EnKF reduces the root mean square error (RMSE) of signal from

2.01 to 0.865 ± 0.012 with the nonlinear update step (3) and

0.863 ± 0.012 with the linear update step (4).

We generate a connected random communication graph

using an Erdős-Rényi (ER) graph [35, 36] with the probability

of connectivity of p = 0.2. For the proposed method, the

communication round s is 3. The mean RMSE for all particles

is 0.872 ± 0.014, and the top-1 RMSE is 0.865 ± 0.014 using the

nonlinear update step while 0.874 ± 0.015 and 0.868 ± 0.015 by

the linear update step. Therefore, even randomly choosing a
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particle for a sparse graph, the Particle Network EnKF can reduce

the signal error to a comparable level to the EnKF.

If the measurement function is linear, the two update steps

with linear and nonlinear measurement have similar

performance, while the latter is more generalized. In the

following experiments, we only present the results of the

Particle Network EnKF with the nonlinear update step (3).

3.1.1 Effects of the network topology
The network topology is a vital factor determining the

performance of the Particle Network EnKF. Hence, we

experiment to demonstrate how different network topologies

affect the performance with only one communication round,

including ER graphs with different probabilities of connectivity p

and Watts-Strogatz (WS) graphs [37] using the rewriting

probability of 0.3 and a different mean degree k.

Regardless of the type of network topology, the mean RMSE

steadily degrades with increasing connections (Figures 1A,B).

However, a denser network leads to higher communication costs.

The proposed method can achieve comparable performance to

the EnKF even on a sparse network.

As mentioned above, the Particle Network EnKF has no

access to the global average of all particle outputs, and every

particle i holds its filtered state x++i,k at each step k. The particle

homogeneity is another crucial metric of the Particle Network

EnKF, denoted by the standard deviation (std) of x++
i,k . In all

network topologies, a denser graph achieves better homogeneity

(Figures 1C,D). As the time step increases, the homogeneity

remains relatively stable.

3.1.2 Effects of multiple communication round
For each particle of the sparse network, the information from

its neighbors is often scarce, limiting reasonable estimates of the

global average. For example, a significant gap exists between the

WS graphs with k = 2 and k = 6 (Figure 1B) due to the lack of

information exchanged in the sparse graph. To improve the

performance of the Particle Network EnKF with sparse graphs,

we use multiple communication rounds in the prediction and

update steps within every time step. We generate four graphs and

experiments to demonstrate the effects of multiple

communications including ER graphs, WS graphs, random

regular (RR) graphs [38] with different degree d, and

Barabási-Albert (BA) graphs [39] with different values of m.

To be deployed in HPC and reduce computing and storage

costs, our Particle Network EnKF acquires the neighbors’

information instead of the detailed global information, which is

FIGURE 1
Mean RMSE and standard deviation of x++i,k , i � 1, 2, . . . ,N for two network topology types. The RMSE for the EnKF is the baseline. (A,B) show the
Mean RMSE of all particles for the Particle Network EnKF and the RMSE for EnKF as the baseline for the ER and WS graphs, respectively. (C,D) display
the Standard deviation of x++i,k (i = 1, 2, . . ., N) at each step k to demonstrate the effects of the network topology on homogeneity.
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the reason why EnKF is better than our Particle Network EnKF at

the beginning of communicating on sparse networks as Figure 2A

shows. However, with the communication round s between particles

increases, the acquired information is more complete, which helps

the Particle Network ENKF approach ENKF to achieve better

particle homogeneity and reduce the mean RMSE.

FIGURE 2
Mean and standard deviation of all particles with different communication rounds s. (A) Shows the Mean RMSE of particles and (B) is the plot the
mean of {stdk, k = 1, 2, . . ., K} to display the homogeneity performance.

FIGURE 3
Mean RMSE and mean standard deviation of state x on the Lorenz-63 system. Colors represent different network types, and shapes represent
communication rounds s. The markers for s = 1, 2, 3, 4, 5 are a circle, left triangle, filled X, hexagon, and square respectively. (A,B) display the mean
RMSE of state x along with the gossiping rate. (C,D) are plots of the mean std to illustrate the influence of the gossiping rate on the homogeneity.
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We apply the standard deviation stdk of {x++
i,k , i �

1, 2, . . . , N} at each step k to illustrate the homogeneity

between particles. As particles communicate more frequently

with their neighbors, the Particle Network EnKF can achieve

better performance under homogeneity (Figure 2B). However,

more communication rounds mean more communication costs.

Hence, a trade-off exists between performance and

communication costs. For example, we should choose more

communication rounds, for instance, s = 5, for a very sparse

network, an RR graph with d = 4, whereas for a denser network,

BA graph with m1 = 9, two communication rounds is enough to

obtain good performance.

3.1.3 Combined effects of network topology and
multiple communications

In this section, we illustrate that the combined effect of the

network topology and multiple communication rounds both

intrinsically reduce αs, which is discussed in Theorem 1 and

Theorem 2. In detail, a denser network indicates a smaller α

value, whereas more communication rounds indicate a larger

value of s.

We randomly generate four graph types (i.e., ER graphs with

p = 0.1, 0.2, . . ., 1.0; WS graphs with p = 0.3, k = 2, 4, . . ., 20; RR

graphs with r = 2, 4, . . ., 20; and BA graphs with m1 = 1,

2, . . ., 10).

The effects on the RMSE. When the communication round s

is 1, only a single communication occurs. As α rises, the network

becomes sparser, the RMSE becomes larger (Figure 3A). When s

communication rounds occur between particles, the gossiping

matrix W of the graph becomes Ws and the gossiping rate α

reduces to αs (Figure 3B). Moreover, as 0 ≤ α < 1, more

communication rounds lead to a smaller gossiping rate. The

RMSE decreases with multiple communication rounds as the

gossiping rate decreases.

In general, the Particle Network EnKF can improve

performance by designing a denser network or executing

more communication rounds. Both two methods reduce the

gossiping rate αs. To obtain a better trade-off between

performance and communication, given a connected network,

we can obtain the gossiping rate α and then empirically choose a

proper s to get a good performance with fewer communication

costs.

The Effects on homogeneity. If the communication round

is set to be one, a smaller gossiping rate α indicates better

homogeneity (Figure 3C). Nevertheless, a slight gap exits

between different topologies. For example, the WS graphs

achieve better homogeneity than the ER and BA graphs

with the same gossiping rate. When the gossiping rate α

becomes αs with multiple communication rounds, the

particles have a better homogeneity as the gossiping rate

declines. The gap between different network topologies

under the same gossiping rate shrinks as the network

becomes denser (Figure 3D).

3.1.4 The communication cost compared to
EnKF

In this section, we compare the communication cost of the

Particle Network EnKF and EnKF to show our method can

achieve communication-efficiency on sparse networks.

When deployed the EnKF algorithm on any connected

network with N nodes, whose topology is known, it needs

N(N − 1) communications. As for particle Network EnKF,

every node only collects the information from its neighbors.

Thus, the communication cost of a node is proportional to its

degree and the communication round s. Table 1 shows the

TABLE 1 The communication cost of EnKF and our method with
different communication round s for some networks.

Algorithms Communication cost

EnKF 2,450

ER with p = 0.2, s = 4 920

ER with p = 0.4, s = 2 1,908

WS with p = 0.3, k = 10, s = 4 2,000

WS with p = 0.3, k = 18, s = 2 1,800

RR with r = 10, s = 4 2,000

RR with r = 18, s = 2 1,800

BA with m = 5, s = 4 1,800

BA with m = 9, s = 2 1,476

FIGURE 4
The logarithm of the ratio of communication cost between
EnKF and our proposed method with different αs. As the sparsity of
the network increases (i.e., αs > 0.1), the communication cost of
EnKF is much more than the Particle Network EnKF.
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communication cost on the network with N = 50 nodes in some

experiments on Lorenz-63.

Figure 4 shows the logarithm of the ratio of the

communication cost between EnKF and our method with

different αs on a network with α. For most networks that are

not too dense (i.e., αs > 0.1), the Particle Network EnKF is

significantly communication-efficient than EnKF, as it does not

require the particles to send their information to all the other

nodes.

3.2 Experiment on the Lorenz-63 system
with unknown parameters

In this section, we explore the ability to assimilate the

parameters [σ,ρ,β]T of the Particle Network EnKF. The dataset is

the same as that in Section 3.1, and only x is observable. The

difference is that we assume the parameters [σ,ρ,β]T are unknown,

and the variables to be estimated are [x,y,z,σ,ρ,β]T instead of [x,y,z]T.

The system noise covariance Q and measurement

covariance R are diag{0.3, 0.3, 0.3, 0, 0, 0} and 4,

respectively. The number of nodes is also set to be 50. We

randomly sample the initial points of a multivariate Gaussian

distribution with mean [1.5,2,6,8,30,3]T and covariance

matrix p = 3 × I6 × 6. We test 3, 000 steps to filter the

noise of states and assimilate the parameters. In this work,

for the EnKF, if the standard deviation of the latest

20 consecutive parameters [pT−l+1, pT−l+2, . . ., pT](p ∈ {σ, ρ,

β}) is less than the threshold ϵ = 1e − 3, the parameter p

converges. If all parameters converge, then the EnKF

converges. The particle network EnKF converges only if all

parameters of all particles converge. As the algorithm

converges, for every parameter, the estimated error is

defined as ϵp � |pend − p̂|, where p ∈ {σ, ρ, β}, pend is the

estimate of p at the last step, σ̂ � 10, ρ̂ � 28, and β̂ � 8/3.

In the prediction stage, we fix p as pend and predicted [x,y,z]T

for 25 steps. The RMSEs between the predicted xpre, ypre, zpre and

true x̂, ŷ, ẑ are denoted as ϵprex , ϵprey , ϵprez respectively. In this stage,

the prediction is only effective in the short term due to the lack of

measurement.

The EnKF reduces the signal error (RMSE = 2.010) to 0.984 ±

0.014. All experiments converge before 3,000 steps. The mean

steps T to converge, called the mean converged steps, is

1,647 ± 129.

For the Particle Network EnKF, we randomly generate a

BA graph withm1 = 8. If the communication round is set to be

one, 6 out of 100 experiments have not converged before 3,

000 steps. However, if we increase the communication rounds,

all 100 experiments converge before 3, 000 steps for these

parameters. Specifically, the mean converged steps

corresponding to s = 2, 3, 4, 5 are 1,619 ± 360, 1,190 ±

274, 1,080 ± 248, and 1,034 ± 221. The Particle Network

EnKF achieves similar performance with the EnKF in the filter

and prediction stages (Table 2). Increasing the

communication rounds makes the algorithm converge

faster but has no significant improvement in filtering the

noise.

In the experiments on the Lorenz-63 system with unknown

parameters, neither the EnKF nor the Particle Network EnKF can

precisely estimate the parameters [σ,ρ,β]T. In this section, we also

analyze the possible causes.

For the Particle Network EnKF, as the time step

increases, the estimates of the three parameters converge

to a relatively stable value (Figure 5). However, the

convergence point for each experiment is not always the

same but is scattered in a certain range. For example, σ is

between 7 and 10.5 where the ground truth is 10. The result

of EnKF has a similar property.

The EnKF and Particle Network EnKF have a

commonality in parameter estimate tasks for the Lorenz-

63 system. Thus, we only test the EnKF to determine a

reasonable explanation for this phenomenon. If we regard

the EnKF as an optimization problem, does it fall into some

local optima? To evaluate it, we design an experiment fixing

σ and ρ to the ground truths, varying β within certain

limitations. Then, we assume that all three parameters

are known and implement the EnKF on the Lorenz-63

system with known parameters to get the RMSE of all

states [x,y,z]T.

Overall, there is an interval around the ground truth of the β,

which allows the algorithm to obtain reasonably good x, y, z with a

small RMSE (Figure 6A). However, there are many local optima, into

which the EnKF or our Particle Network EnKF may fall (Figure 6B).

TABLE 2 Detail results of the Lorenz-63 system with unknown
parameters.

aEnKF bs = 2 bs = 4

T 1, 647 ± 129 2, 079 ± 380 1, 000 ± 246

ϵfx 0.98 ± 0.01 1.00 ± 0.02(0.98) 1.00 ± 0.03(0.99)

ϵfy 2.50 ± 0.24 2.58 ± 0.20(2.56) 2.58 ± 0.23(2.58)

ϵfz 3.92 ± 1.19 3.72 ± 1.12(3.68) 3.77 ± 0.85(3.76)

ϵσ 1.23 ± 0.88 1.55 ± 0.77(0.84) 1.50 ± 0.79(0.84)

ϵρ 2.34 ± 1.57 2.01 ± 1.34(0.80) 2.02 ± 1.01(0.91)

ϵβ 0.33 ± 0.20 0.33 ± 0.18(0.02) 0.36 ± 0.18(0.02)

ϵprex 3.93 ± 0.76 4.16 ± 0.87(3.85) 4.25 ± 0.92(4.20)

ϵprey 3.61 ± 0.88 3.83 ± 0.97(3.46) 3.95 ± 1.02(3.89)

ϵprez 5.49 ± 1.19 5.90 ± 1.24(5.35) 5.94 ± 1.42(5.85)

aThe format of the EnKF is “mean ± std”.
bThe format of the Particle Network EnKF is “mean ± std of mean-RMSE (mean top-1-

RMSE)”.
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3.3 Experiments on the Lorenz-96 system
with nonlinear measurement function

Sections 3.1 and Section 3.2 present the comparable

performance of the proposed Particle Network EnKF to ENKF

with fewer communication costs on the low-dimensional Lorenz-

63 system in filtering noise and estimating parameters. The

Particle Network EnKF with update step (8) can also handle

systems with nonlinear measurement functions. Hence we apply

the Particle Network EnKF on another common system, the

Lorenz-96 system [40], which can be formulated as follows:
_xi � xi+1 − xi−2( )xi−1 − xi + F, i � 1, 2, . . . , m

satisfying F = 8, x−1 = xm−1, x0 = xm, and xm+1 = x1.

The Lorenz-96 system represents a simplified weather system

and is a commonmodel in DA. The complexity of the model can be

adjusted bym in the system.We consider high dimensional Lorenz-

96 system with m = 40 [28, 40], and three variables are observable:

x1, x2, and x40. We solve the Lorenz-96 system using a fourth-order

Runge-Kutta time integration scheme with a time step of 0.05 [41],

which is 6 h in the real world time if the time scale is 5 days [40].

Assume that 1, 000 noisy points of the Lorenz-96 system are

available. The states are [x1, x2, . . . , x40]T with noise. The noise

covarianceQ is 0.001 × I40 × 40, and R is 4 × I3 × 3. The initial states

are [1.0,1.0,. . .,1.0]T.

FIGURE 5
The estimated parameters [σ,ρ,β]T for the Particle Network EnKF with an ER graph. Only the results of particle 0 are shown.

FIGURE 6
Fix σ, ρ and vary β to estimate x, y, z. (A,B) plot the RMSE of the state x with different scaling.
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We test three measurement functions when generating data

and filtering noise: 1) The linear measurement function (linear),

g1(x) = [x1, x2, x40]; 2) the rectified linear unit (ReLU)

measurement function, g2(x) = max(0, x); and 3) a nonlinear

measurement function g3(x) � sign(x) × ��
x

√
. In the

experiments, if the measurement function is linear, the mean

RMSE of measurements [x1, x2, . . . , x40]T is 1.97.

We randomly sample the initial points of the multivariate

Gaussian distribution with mean x̂0 whose first 20 elements are

1.5, the last 20 elements are 0.5, and the covariance matrix p =

10 × I40 × 40. For both the EnKF and the Particle Network EnKF,

the number of nodes is set to N = 100.

We test the EnKF and the Particle Network EnKF on the ER

graph with p = 0.3 and communication rounds s = 3. We repeat

each experiment for 50 times.

As a baseline, the EnKF reduces the measurement noise to

1.098 ± 0.014, 1.330 ± 0.018, and 1.376 ± 0.016, respectively for

the linear, ReLU, and the nonlinear (i.e. g3(x)) measurement

function. For the Particle Network EnKF, the RMSE values are

1.097 ± 0.013,1.330 ± 0.013 and 1.363 ± 0.018. The Particle

Network EnKF achieves comparable performance on the

assimilation of the high-dimensional system with nonlinear

measurements.

4 Trade-off between homogeneity
and RMSE

In this section, we explore the trade-off between homogeneity

and RMSE by modifying the update step (8). The experiments

and theories reveal that the heterogeneity of the updated particles

{x+
i,k, i � 1, 2, . . . , N} is essential for the Particle Network EnKF

to perform well in the following steps.

When the local Kalman gainKi
k is obtained in the update step

(8), we add communication rounds to the prediction states to

demonstrate the trade-off between the homogeneity and RMSE

of the particles. Using the local average predicted state

(f(x+x
i,k−1))s1 with s1 communication rounds, we can rewrite

the last equation in the update step (8) as follows:

x+x
i,k � f x+x

i,k−1( )( )
s1
+ wi,k−1 + Ki

k yk + vi,k − y−
i,k( ) (11)

where (f(x+x
i,k−1))r � ∑N

j�1Wi,j(f(x+x
i,k−1))r−1, r � 1, . . . , s1,

and (f(x+x
i,k−1))0 � f(x+x

i,k−1). We keep the communication

rounds as s when calculating Ki
k and y−

i,k, and in the output step.

There is a trade-off between homogeneity and RMSE. By

replacing x−
i,k with (xi−

k )s1, the particles achieve better

homogeneity in the filtering process. A larger s1 leads to

better homogeneity. However, it destroys the randomness of

sampling, leading to an increase in the RMSE.

We offer a mathematical theory regarding the

homogeneity for the Particle Network EnKF with Eq. 11

and demonstrate that the difference between particles in

each time step can be upper bounded under some conditions

where the gossiping rate α and communication rounds s1 are

two essential factors.

In this section, the following notation is needed. The symbol

⊗ denotes the Kronecker product, and 0 is a zero matrix.

Moreover, λmin(A) is the smallest eigenvalue value of a

symmetric matrix A. For a positive define matrix A ∈ Rn,n, we

define a vector norm ‖ ·‖A such that for a vector z ∈ Rn, we have

‖z‖A = ‖A1/2z‖2.
With s1 communication rounds, Eq. 11 can be described as

follows:

xi,k+1 � f xi,k( ) +∑N
j�1

bi,jf xj,k( ) + ϵi,k, (12)

where xi,k+1 � x+x
i,k+1 ∈ Rm, and ϵi,k � Ki

k(yk + vi,k − y−
i,k) + wi,k−1.

Suppose that B = (b)ij ∈ RN,N. Then, we have B � Ws1 − I, which

has a unique largest real eigenvalue 0 (see Lemma 2 in

Supplementary Appendix SA in Supplementary Material).

Let �xk � ∑N
p�1vpxp,k, δxi,k � xi,k − �xk, and

δf(xi,k) � f(xi,k) − f(�xk). We define v as the left eigenvector

of W corresponding to eigenvalue 1, as that in Theorem 1, and

∑N
i�1vi � 1. Thus, v is also the left eigenvector of B corresponding

to eigenvalue 0.

Then we can rewrite the system Eq. 12 as follows:

δxi,k+1 � δf xi,k( ) − ∑N
p�1

vpδf xp,k( ) +∑N
j�1

bijδf xj,k( ) + ϵi,k

−∑N
q�1

vqϵq,k. (13)

Let xk � [xT
1,k, . . . , x

T
N,k]T, f(xk) � [f(x1,k)T, . . . , f(xN,k)T]T,

k � [ϵT1,k, . . . , ϵTN,k]T, V = [v,v,. . .,v]T, B = B ⊗ Im, V = V ⊗
Im, I = IN ⊗ Im, δxk � [δxT

1,k, . . . , δx
T
N,k]T, and

δf(xk) � [δf(x1,k)T, . . . , δf(xN,k)T]T. Then Eq. 13 can be

rewritten as

δxk+1 � I + B − V( )δf xk( ) + I − V( )ϵk. (14)

We present the following theorem, and the proof is

given in Supplementary Appendix SB in Supplementary

Material.

Theorem 3. The gossiping rate α ofW is defined as Eq. 10. The

communication round s1 is defined as in Eq. 11. Define a matrix

p = diag{N1, N2, . . ., NN}, where Ni is the number of neighbors of

particle i. If there exists a positive definite matrix T ∈ Rm,m and

constants 0 < γ < 1 and {ηk} such that

‖f x( ) − f y( )‖T ≤ γ‖x − y‖T (15)

for any x, y ∈ Rm, and

‖ I − V( )ϵk‖P⊗T ≤ ηk. (16)
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Then, For any k ≥ 1, i, j = 1, 2, . . ., N, we have

‖xi,k − xj,k‖2 ≤ 2Mk/ ����������
Nminλmin T( )√

(17)

where Mk � (αs1γ)k−1‖x1‖P⊗T + ∑k−2
r�0(αs1γ)rηk−1−r and Nmin =

miniNi.

Remark 2. For a fixed system, the network topology influences

the upper bound of heterogeneity through the gossiping rate α and

Nmin. A denser network reduces α and increases Nmin, leading to

better heterogeneity.

Remark 3. For a fixed system and network topology, the

number of communication rounds s1 in Eq. 11 is an essential

factor for the particle homogeneity. We conducted an experiment

in the following paragraphs to verify the theory.

The Effects of Different Q. According to Eq. 11, increasing

the system noise Q can directly reduce the particle homogeneity.

We test different Q values to determine the influence of the

system noise in the filtering. The ground truth of Q is 0.3 × I3 × 3

when we generate the dataset. The communication round s is 2,

and the graph is an ER graph with p = 0.2. We fix the

communication rounds s1 to 2 in Eq. 11.

With higher homogeneity than the raw algorithm, Particle

Network EnKF with Eq. 11 loses some randomness and performs

worse in the RMSE of state x (Figure 7A). By increasing the

system noise, which directly influences wk in Eq. 11, the particles

become more heterogeneous, and the algorithm performs better

in filtering. The experiment implies a trade-off between the

particle homogeneity and the RMSE of the filtered states. In

the experiments, the best Q is 0.8 × I3 × 3. Too much randomness

may also enlarge the RMSE of the state x and destroy the particle

homogeneity.

The Impact of Different Communication Rounds.We use the

exact system noise (Q = 0.3 × I3 × 3) in the filtering algorithm and

vary s1 in Eq. 11. By fixing s to 2 and increasing s1, we verify the

trade-off between the homogeneity of the particles and RMSE.

When s1 = 0, the Particle Network EnKF with Eq. 11 degrades

to the raw algorithm. With s1 = 1, the discrepancy of the particles

drops sharply whereas the RMSE has a large gap with the raw

algorithm (Figure 7B). The experiment indicates that the particle

randomness is an essential factor for good filtering performance.

As s1 grows, homogeneity is enhanced, and the filtering

performance worsens.

5 Experiment on the whole-brain
neuronal network model

In this section, we experiment on a whole-brain neuronal

network model, including 92 brain blocks and 10, 000, 904

neurons. The experiment reveals that the Particle Network

EnKF show promises for applications in large-scale computing

problems.

5.1 The whole-brain neuronal network
model

We assume a whole-brain neuronal network model,

composed of basic computing units and a network structure.

The basic computing units are neurons and synapses, and the

spike signals transmitted between the neurons by synapses are

actional potentials (i.e., spikes). Each neuron model receives

postsynaptic currents as input and describes the generating

scheme of the time points of the action potentials as the

output. The network model provides synaptic interactions

between neurons by a directed multiplex graph.

FIGURE 7
RMSE and standard deviation of state x with a different values of Q and s1. (7A) Shows the results with different Q values when filtering and (B)
shows the results with different s1 values in Eq. 11. A smaller Q or larger s1 indicates better particle homogeneity.
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We consider the leakage integrate-and-fire (LIF) model to be

a neuron. A capacitance-voltage equation describes the

membrane potential of neuron i, Vi, when it is less than a

given voltage threshold Vth,i, we have

Ci
_Vi � −gL,i Vi − VL( ) +∑

u

Isyn,i + Iext,i, Vi <Vth,i, (18)

where Ci is the capacitance of the neuron membrane, gL,i denotes

the leakage conductance, VL represents leakage voltage, Isyn,i is

the synaptic currents and Iext,i is the external stimulus. WhenVi =

Vth,i at t � tin, the neuron registers a spike at time point tin, and

the membrane potential is reset atVrest during a refractory period

Vi t( ) � Vrest, t ∈ tik, t
i
k + Tref[ ].

Afterward, Vi is again governed by Eq. 11.

We consider an exponentially temporal convolution to be

this map

Iu,i � gu,i Vu − Vi( )Ju,i
_Ju,i � −Ju,i

τui
+∑

k,j

wu
ijδ t − tjk( )

where gu,i is the conductance of the synapse type u of neuron i,Vu

represents the voltage of the synapse type u, τui is the time-scale

constants of the synapse type u of neuron i, wu
ij is the connection

weight from neuron j to I of the synapse type u, δ(·) represents the
Dirac-delta function, and tjk denotes the time point of the kth

spike of neuron j. We consider at least four synapse types: AMPA,

NMDA, GABAA and GABAB.

We simulate the brain of a human based on prior

knowledge, and divide the brain into 92 blocks [42], where

LGN is from [43]. We propose a network model of hierarchical

random graphs with constraints and multiple edges, to

represent the neuron pairwise synaptic connections. To

generate the neuronal connectivity, we divide the

10,000,904 neurons into 92 brain blocks where the number

is proportional to the gray volume obtained by the sMRI. The

ratio of the number of excitation neurons to that of the

inhibitory neurons is 4:1. The in-degree of each neuron is

100, where 50% are from the excitation neurons out of this

block, 30% are from excitation neurons within this block, and

the others are from the inhibitory neurons within this block.

For each neuron, the probability of connecting to other blocks

is determined by the diffusion tensor imaging (DTI) data.

Once the mean fire rate of each block is obtained,

the measured blood oxygenation level dependent

(BOLD) responses can be calculated [44] for each brain block.

5.2 The experiments on signal filtering

In this experiment, only one BOLD signal is measurable for

each brain block. The measurement variance is 1e − 6. In this

experiment, we use an ER graph with p = 0.3 and repeat each

experiment 10 times to obtain stable results.

Each brain block model must be run on 1.5 NVIDIA GeForce

GTX 1080 Ti GPUs. We also use sparsity to optimize the

communication between nodes, according to the generated

random graph. For N = 30 particles, 45 GPUs are used in the

experiments.

FIGURE 8
The results of the filtering bold signal for blocks 0 and 91. For the Particle Network EnKF, we only depict the performance of particle 0 as an
example. (A) shows the result for the brain block 0 and (B) shows the result for the brain block 91.

TABLE 3 Mean and top-1 RMSE of the parameter gAMPA,i.

s Mean RMSE Top-1 RMSE

1 1.763e − 3 ± 7.733e − 4 1.740e − 4 ± 7.726e − 4

2 1.365e − 3 ± 5.561e − 4 1.357e − 3 ± 5.550e − 4

3 1.628e − 3 ± 5.103e − 4 1.625e − 3 ± 5.104e − 4

4 1.316e − 3 ± 6.076e − 4 1.314e − 3 ± 6.074e − 4

5 1.198e − 3 ± 5.270e − 4 1.196e − 3 ± 5.275e − 4
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The Particle Network EnKF reduces the noise of

measurements (RMSE = 1.436e − 3) to 4.745e − 4 ± 7.559e −

5 with a communication round and 4.294e − 4 ± 6.931e − 5 with

multiple communication rounds where s = 3. The Particle

Network EnKF reduces the measurement noise to a low level

for all 92 brain blocks (Figure 8).

The ground truth of the parameter to assimilate gAMPA,i is

1.027e − 2. Table 3 lists the detailed mean and top-1 RMSE of

the parameters for the particles. The proposed method

estimates the parameters with a small relative error. The

results reveal that the Particle Network EnKF shows

promises for applications application in large-scale

computing problems.

6 Conclusion

We propose a particle-based distributed EnKF, called Particle

Network EnKF in this paper. It assumes that the particle of the

EnKF has no access to global information and can only

communicate with its neighbors over a network. In this way,

there is no central node to store and calculate states from all

particles, and the network can be very sparse. Hence, the

proposed method can address the limitation of storage space

or low bandwidth utilization in large-scale computing. Moreover,

it can achieve comparable performance to the EnKF with fewer

communication costs in filtering the states and assimilating the

parameters. In theory, denser networks and more

communication rounds improve the performance by changing

the gossiping matrix, which is indicated by the gossiping rate.

The proposed method is very practical and effective in large-scale

calculations and avoids the bandwidth and storage space

limitations.
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