
Coupled acoustic resonance for
wave control and sensing

Taehwa Lee*, Xiaopeng Li, Ziqi Yu, Tsuyoshi Nomura,
Ercan M. Dede and Hideo Iizuka

Toyota Research Institute of North America, ToyotaMotor North America, Ann Arbor, MI, United States

Coupled resonance enables many intriguing physical phenomena, leading to

wave control and sensing. This review discusses fundamental understanding of

coupled resonance by providing detailed comparison between lumped

parameter-based models including coupled mode theory (CMT) and

harmonic oscillator model (HOM). While reviewing recent progress in

research concerning coupled resonance, emerging research areas related to

coupled resonance are discussed.
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1 Introduction

Resonance phenomena are universal, which are observed for all different types of

systems based on vibrations or waves, concerning mechanical resonance, acoustic

resonance, electromagnetic resonance and etc [1]. Resonance enables small periodic

excitation to produce large amplitude oscillations when the excitation

frequency matches with a natural frequency of the system (i.e., resonance

frequency). Therefore, such resonant systems lead to many intriguing applications

for wave sensing and wave control [2]. Particularly, resonant sensors having amplified

responses at resonance provide high sensitivity and accuracy while effectively

rejecting ambient noises. Moreover, amplified oscillation energy at resonance can

be converted into other type of useful energy (e.g., electricity) [3–5]. On top of energy

amplification, resonance causes abrupt phase change with respect to the resonance

frequency, allowing wave interference for wave cancellation [6]. For

example, resonant oscillation can counteract unwanted reflection for wave

absorption [7–9].

Resonant metamaterials permit subwavelength unit structures for compact design

while enabling unprecedented control of waves [10], which is based on effective

parameters such as negative mass density, negative bulk modulus [11], or doubly

negative mass density and bulk modulus [12, 13]. Intriguing phenomena include

negative refraction [14], cloaking [15, 16] and super-lensing [17]. Also, other

interesting features demonstrated with resonant structures are sound tunneling (bull’s

eye) [18], and extreme impedance matching between media having large mismatch

[19–21].
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To increase the coverage area or maximize the interaction

between wave and resonators, multiple resonators are

implemented. Coupled resonances enable a rich of interesting

physics such an exceptional point (EP) in non-Hermitian

systems [22, 23], Fano resonance [24], electromagnetically-

induced transparency (EIT) [6], and Rabi splitting [24]. These

various resonance phenomena are realized depending on the

coupling strength relative to the leakage (or loss) rate. The

coupling strength characterizes energy exchange between the

constituent resonators while the leakage (loss) rate describes the

energy leakage (loss) in each resonator. To investigate the

characteristics of the coupled resonators, these system

parameters (coupling strength, leakage and loss rates), as

lumped parameters, are used in lumped parameter-based

models such as coupled mode theory (CMT) [25, 26] and

harmonic oscillator model (HOM) [27, 28]. The lumped

parameters used in these models permit to intuitively classify

physical phenomena, although other approaches including

impedance analysis [29], transfer matrix [30], and scattering

matrix [31] have been widely used to characterize overall system

performance.

In this review, fundamental aspects of resonance and

resonant coupling are discussed in the context of lumped

parameter-based models such as HOM and CMT. The

lumped parameter models are thoroughly compared and the

analytical formulas of the lumped parameters are summarized

for simple cases. Based on such fundamental understanding,

various interesting resonance phenomena are investigated, but

our discussion mainly focuses on critical coupling, exceptional

point, and Fano resonance. Lastly, emerging research areas

concerning resonant coupling are investigated for diverse

systems having non-local coupling, non-reciprocal coupling,

and time-modulated interaction.

2 Theory

Acoustic resonators enable the localization of energy spatially

and the amplification of acoustic energy at resonance. There are

three representative resonators such as Helmholtz, quarter-

wavelength, and membrane-type resonators, as illustrated in

Figure 1A. These resonators can be modeled as a spring-mass

system (i.e., harmonic oscillator). With and without intrinsic

damping, they can be lossy and lossless resonators. The acoustic

resonators promote flexibility in various designs by often

implementing a space-coiled approach [32–34]. Also, Mie

scattering resonators are constructed by using a plurality of

resonators integrated into a subwavelength scatterer,

exhibiting higher order resonance modes [35].

Acoustic devices consisting of a finite number of

resonators (e.g., linear or circular array) control incident

acoustic waves or maximize interaction with acoustic waves,

as shown in Figures 1B,C. Such coupled systems are

manifested as superscattering [36–38] and purcell effect

[39]. Moreover, periodic acoustic resonators composed of

unit cells are widely employed for various scenarios

(Figures 1D,E), although such a system should be truncated

to a finite number of resonators in a realistic situation.

Acoustic devices having periodic resonators are much larger

than the wavelength such that they are treated as a system

having an infinite number of resonators. The unit cell can

contain single or multiple resonators. Acoustic resonators in a

FIGURE 1
Types of coupled resonators. (A) Types of acoustic resonators (Type.I: Helmholtz, Type.II: quarter-wavelength, Type.III: membrane) with and
without loss. Finite number of resonators in a linear array (B) and circular array (C). Periodic structure for a single resonator in a unit cell (D) and two
resonators in a unit (E). Single resonator in a waveguide (F) and dual resonators in a waveguide (G).

Frontiers in Physics frontiersin.org02

Lee et al. 10.3389/fphy.2022.998253

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.998253


waveguide are highly related to duct systems, as illustrated in

Figures 1F,G. These resonators in a waveguide are regarded as

the same as the periodic systems (Figures 1D,E) when the

width of the waveguide (period in periodic resonators) is

smaller than the wavelength. Because of this similarity, the

periodic systems can be characterized by testing a unit device

in a waveguide (or impedance tube).

Various intriguing phenomena are enabled by coupled

resonances, which can be analytically characterized by

approaches using lumped parameters. These approaches

include the harmonic oscillator model (HOM) and coupled-

mode theory (CMT). Such lumped parameter-based approaches

provide physical insights into resonance coupling between a

resonator and waves or resonators. Both HOM and CMT are

systematically discussed and compared. In addition, coupling

rate and leakage rate, essential lumped parameters used for HOM

and CMT, are characterized for a simple case, providing a

tangible sense of coupled systems.

2.1 Coupled harmonic oscillator model

The coupled equations of motion is represented by [40].

m
d2

dt2
x1

x2
[ ] + d

dt
Γ1 + Δ1 K

K Γ2 + Δ2
[ ] x1

x2
[ ] + k1 0

0 k2
[ ] x1

x2
[ ]

� F1

F2
[ ],

(1)
where x is the displacement, m is the mass, k is the stiffness, Γ is

the leakage rate, Δ is the intrinsic loss, K is the resonance

coupling, F is the force, and the subscript 1 (2) indicates the

resonator 1 (2). Here, coupling of the two resonators is described

by the damping matrix having the off-diagonal term (K).

Resonance coupling can be also characterized by the stiffness

matrix having the off-diagonal term (stiffness coupling, Q or

q = Q/m).

For e−iωt and no external forces (F1(2) = 0), eigenvalues and

eigenvectors are determined from

ω2
1 − iω γ1 + δ1( ) −iωκ

−iωκ ω2
2 − iω γ2 + δ2( )[ ] x1

x2
[ ] � ω2 x1

x2
[ ], (2)

where γ = Γ/m, δ = Δ/m, κ = K/m, ω1(2) �
������
k1(2)/m

√
. The units of

γ, δ, and κ are given as 1/s. The quadratic eigenvalue problem of

Eq. 2 is solved to find scalar eigenvalues.

To gain insight from Eq. 2 and compare it with CMT, we

assume operating frequencies close to the resonance frequencies.

With the assumption of ω1 ≈ ω and ω2 ≈ ω, Eq. 2 is approximated

as [41].

ω1 − i γ1 + δ1( ) −iκ
−iκ ω2 − i γ2 + δ2( )[ ] x1

x2
[ ] � ω

x1

x2
[ ], (3)

The 2 × 2 Hamiltonian is expressed by

H � ω1 − i γ1 + δ1( ) κ′
κ′ ω2 − i γ2 + δ2( )[ ], (4)

where κ′ = −iκ. For two resonators having stiffness coupling (q =

Q/m), κ′ is given by κ′ = q/ω1(2).

2.2 Coupled mode theory

For two resonators, coupled-mode equations in the time

domain are represented by [25].

d

dt
a1
a2

[ ] � −i ω1 − i γ1 + δ1( ) κ
κ ω2 − i γ2 + δ2( )[ ] a1

a2
[ ] + f1

f2
[ ],

(5)
where a is the mode amplitude (|a|2 is the resonant mode energy)

and f1(2) �
�����
2γ1(2)

√
S1(2). The CMT is validated for weak

coupling (i.e., ω1(2) ≫ γ1(2), κ).

With a1(2) ∝ e−iωt, the Hamiltonian is represented by

H � ω1 − i γ1 + δ1( ) κ
κ ω2 − i γ2 + δ2( )[ ] (6)

It is found that Eq. 6 is identical to Eq. 4 of HOM with the

approximation. The eigenvalues of this Hamiltonian are ω± �
(ω1 + ω2)/2 − iξ ±

��������
(κ)2 + χ2

√
where ξ = (γ1 + δ1 + γ2 + δ2)/2 and

χ = α + iβ with α = (ω1 − ω2)/2 and β = (γ1 + δ1 − γ2 − δ2).

Although the Hamiltonian matrices of CMT and HOM are

exactly the same, the definitions of γ and κ can be slightly

different because a1(2) of CMT and x1(2) of HOM represent

the mode amplitude and the displacement, respectively. This

will be discussed in the following section.

2.3 HOM versus CMT

The two models can be used to describe any coupled

resonators. From Eqs 1, 5, it is noted that HOM is expressed

by the second order differential equation whereas CMT is

characterized with the first time derivative. For a single

resonator having no intrinsic loss (δ = 0), the equations of

motion and mode amplitude for HOM and CMT are

described respectively by

xHOM| | � f

ω2
0 − ω2( ) − γωi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, and (7)

|aCMT| � f′
ω0 − ω( ) − γ′i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (8)

Here, f is given by F/m (N/kg) and f′ is set to be αf/ω0 so as to

compare the two models in the same units. γ′ is given by αγ, as

the leakage rate of CMT is adjusted from that of HOM. For α = 1,
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γ′ = γ. Figure 2 shows a comparison between the two models for

two damping values γ = 0.03ω0 and 0.3ω0. For a low leakage rate

of γ = 0.03ω0 and no adjustment (γ = γ′), HOS shows a significant

difference from CMT, as shown in Figure 2A. With a proper

adjustment of α = 0.5, CMT exhibits an excellent agreement with

HOS [42]. This indicates γCMT � 1
2γHOM, and such a difference is

explained by CMT being constructed by the mode amplitude

while HOM by the displacement. For a high leakage rate of γ =

0.3ω0, CMT considerably deviates from HOM even with an

optimum adjustment of α = 0.5, as shown in Figure 2B. This

comparison indicates that CMT is only valid for a relatively low

leakage rate, as this is assumed when CMT is derived.

The two models are further compared for coupled

resonators. The eigenvalues of two resonators are

calculated, as the real part of the eigenvalues is plotted as a

function of the coupling rate κ in Figures 2C,D. For simplicity,

the coupled system consists of lossless and lossy resonators

having identical resonance frequency (ω1 = ω2) and reciprocal

stiffness coupling (Q1 = Q2 = Q). While CMT uses γCMT �

1
2γHOM � 1

2
Γ
m and κCMT � 1

2κHOM � 1
2

Q
mω0

, HOM solves the

quadratic eigenvalue problem without any approximation.

For low damping (γ = 0.03ω0), the CMT result matches

well with the HOM result, as plotted in Figure 2C. The

eigenvalues collapse when κCMT � 1
2γCMT, which is

consistent with typical exception point condition. Such a

good agreement between CMT and HOM is not guaranteed

for high damping (γ = 0.3ω0), as shown in Figure 2D. Note

that in addition to the disagreement, the eigenvalues of HOM

do not collapse although ω1 = ω2. We find that for high

damping, the eigenvalue coalescence in HOM occurs for a

de-tuned resonance of Δω = |ω1 − ω2| = 0.01ω0.

This indicates that CMT is a good approximation for

relatively low dampings. Although CMT-based results deviate

from those of HOM for relatively high damping, CMT provides

an physical insight into the coupled system. The lumped

parameters used in CMT enable us to explicitly compare the

damping rates with the coupling rate characterizing the coupling

between the constituent resonators.

FIGURE 2
Comparison between harmonic oscillator model (HOS) and coupled-mode theory (CMT). (A) Spectral response of a single resonator for small
damping (γ=0.03ω0). (B) Large damping (γ=0.3ω0). Eigenfrequencies of coupled resonators for γ=0.03ω0 (C) and γ=0.3ω0 (D). Produce (A,B) using
Eqs. 7, 8 for illustration purpose. Adapt (C,D) from Ref. [42].
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2.4 Radiation leakage rate and coupling
rate

The radiation leakage Γ (=mγ) is related to interaction

between Resonator 1 (area S1) and radiated waves by

oscillating Resonator 1 (velocity U0), which is characterized

by complex leakage rate given by

�Γ � ∫
S1
p(t) dS

U0e−iωt � Re(�Γ) + iIm(�Γ). The radiation leakage Γ is

represented as a unit (kg/s). Here, Re(�Γ) � Γ is the leakage

rate while Im(�Γ) � maω with ma being the added mass. This

added mass leads to increased effective mass (me = m + ma)

and has something to do with end correction in Helmholtz

resonators. Similarly, the coupling rate K (=mκ) between

resonators (S1 and S2) is expressed by �K � ∫
S2
p dS

U0e−iωt , where

the radiated pressure waves from Resonator 1 (S1) are

integrated to Resonator 2 (S2), i.e., �K12. The imaginary

part of �K induces the resonance frequency change. The

radiation leakage and coupling rates are numerically

calculated. For some simple cases, these parameters can be

analytically determined.

2.4.1 Free field
For 2D cases, �Γ and �K are analytically calculated, as shown in

Eq. 3(a). For a single resonator (width: s) on a semi-infinite rigid

body, the complex leakage rate (�Γ) is given by [43, 44].

�Γ � πZs2

λ
1 + i

2
π

3
2
− γE − ln

πs

λ
( )( ){ }, (9)

where λ is the wavelength and γE is the Euler’s constant of γE =

0.5332. Here, Re(�Γ) � πZs2

λ is wavelength-dependent. From the

imaginary part of �Γ, the added mass is characterized as

ma � Zs2

πc (32 − γE − ln πs
λ ), which induces a resonance frequency

shift. The leakage rate is also characterized by resistance for its

real part and reactance for its imaginary part. The reactance is

related to the evanescent modes so that it needs to be considered

for near field calculation. The coupling rate between the two

resonators having a distance of d is represented by

�K � πZs2

λ
H 2( )

0

2πd
λ

( ) (10)

with H(2)
0 being the zero-order Hankel function of the

second kind.

FIGURE 3
Physical understanding of leakage and coupling rate. (A)Coupled resonator in a free field. (B) Leakage rate for different sizes (S) in a free field [11].
(C)Coupling rate for different distances (d) in a free field [11]. (D)Coupled resonator in a waveguide. (E) Leakage rate in a waveguide. (F)Coupling rate
in a waveguide. The gray arrows indicate the increase in s and d.
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Both leakage rate and coupling rate are derived from the

two-dimensional dipole Rayleigh integral. As plotted in

Figure 3B, the complex leakage rate is calculated as a

function of the resonator width (s). The real part of the

leakage rate increases with s while the imaginary part

saturates and decreases for larger s. Moreover, the coupling

rate is plotted as a function of d, exhibiting a decrease in |κ|

with increasing d while circling the origin, as shown in

Figure 3C.

2.4.2 Waveguide
For a single resonator (width s) in a 1D waveguide (1 port)

having a width of D, the complex leakage rate is given by [45].

�Γ � s
s

D
Z + iωρϵ[ ]. (11)

Here, kw is the wave number and ϵ � 2
sD∑∞

n�1
sin2(πns/D)

(πn/D)2
��������
4π2n2/D2−k2w

√ .

For D ≪ λ, wave modes are limited to a plane wave

mode such that Re(�Γ) � Γ ≈ s2

DZ (more generally, Γ ≈ S2os
Sd
Z

with resonator’s surface area Sos and duct’s cross sectional

area Sd). For a two-port system, the leakage rate reduces by

half, i.e., �Γ2port � 1
2
�Γ1port, since the radiated wave can propagate

toward each port. Moreover, the coupling rate for D ≪ λ is

given by �K � Γ exp(−ikwd), as the two resonators in a

waveguide are arranged in Figure 3D. Both real and

imaginary parts of the leakage rate increase as a function of

s in Figure 3E. The coupling rate becomes a circle in the

complex plot for a larger d, while for smaller d, the coupling

rate exhibits the imaginary part greater than the real part, as

shown in Figure 3F.

3 Physical concepts related to
coupled resonance

3.1 Critical coupling

Coupling in a single resonator occurs between the

resonator and wave (surrounding), as illustrated in

Figure 4A. Such coupling is characterized as leakage rate

FIGURE 4
Coupling in resonator systems. (A) Coupling between a resonator and environment. (B) Coupling between two resonators. (C) Different
coupling regimes in (A), exhibiting critical coupling (γ= δ), under-coupling (γ < δ), and over-coupling (γ > δ). (D)Weak coupling regimes in (B) (κ < |γ1 +
δ1| or κ < |γ2 + δ2|) showing EIT and Fano resonance. (E) Strong coupling regimes in (B) (κ > |γ1 + δ1| and κ > |γ2 + δ2|) demonstrating exceptional points.
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(γ). In this case, three different coupling regimes are realized

depending on leakage rate (γ) relative to loss rate (δ): critical

coupling, under-coupling (γ < δ), and over-coupling (γ > δ), as

summarized in Figure 4C. The critical coupling states that the

leakage rate (γ) should be balanced with the intrinsic loss

(δ) [46]:

γ � δ. (12)

This condition leads to perfect absorption, which can be

readily proved from CMT. The mode amplitude of a single

resonator is given by

aCMT �
��
2γ

√
S

ω0 − ω( ) − γ + δ( )i. (13)

Thus, the absorption (A) is expressed by

A � | ��
2δ

√
aCMT |2
|S|2 � 4γδ

(ω0−ω)2+(γ+δ)2. At resonance (ω = ω0), A is

represented by A � 4γδ
(γ+δ)2 and is maximized to A = 1 when

γ = δ.

The critical coupling condition is discussed for various cases,

as shown in Figure 5. For a single subwavelength resonator in a

free field (Figures 5A,B), absorption is characterized by

absorption cross section (σabs) defined by the absorbed power

(Pabs) relative to the incident power (Pinc), i.e., σabs � Pabs
Pinc

. For two

dimensional (2D) space, the absorption cross section is defined as

a length (σabs, 2D[m] � Pabs[W/m]
Pinc[W/m2]) [48].The theoretical limit of the

single resonator is given by σabs, 2D = λ/2π [48]. Such an

absorption limit can be achieved by satisfying the critical

coupling (δ = γ), as shown in Figure 5G (reproduced from

Ref. [36]). For a single resonator in a free field with a backing

surface (Figure 5A), its absorption cross section is two times the

limit, i.e., σabs, 2D = 2λ/2π for δa = γi,0 with γi,0 � πs2 Z
λm from Eq. 9.

The leakage rate of the backed free field (γi,0) is also twice than

that of the free field such that the absorption limit of the single

resonator in a free field (Figure 5B) is reached when δb � 1
2γi,0 as

shown in Figure 5G.

The critical coupling enables perfect absorption for a single

resonator placed in the middle of a waveguide, as illustrated in

Figures 5C,D. The one-port system (Figure 5C) shows unity

absorption for δc = γw,0 with γw,0 � S2osZ
Sdm

whereas the two-port

system (Figure 5D) exhibits 0.5 absorption even for the critical

coupling (δd � 1
2γw,0) due to the radiation symmetry, as shown in

Figure 5H (reproduced fromRef. [47]). The resonator in a waveguide

is equivalent to a periodic array of resonators so that the perfect

absorption condition is similarly imposed to the periodic system.

The critical coupling condition is further discussed for two

resonators in two-port systems, as illustrated in Figures 5E,F.

When the two resonators have asymmetric losses (i.e., lossy

upstream and lossless downstream resonators), the perfect

absorption and critical coupling condition are similar to those

of the single resonator in a one-port system (Figure 5C). This is

because the downstream resonator functions as a reflector. On

the other hand, two resonators having symmetric losses show

FIGURE 5
Critical coupling for acoustic absorption. Single resonators in a free field with a backing surface (A) and free field (B). Single resonators in
waveguides for one-port (C) and two-port systems (D). Dual resonators in a waveguide for loss/lossless (E) and loss/loss (F). (G) Absorption cross
section spectra for (A) and (B). (H) Absorption spectra for (C) and (D). Adapt (G) from Ref. [36]; Adapt (H) from Ref. [47].
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perfect absorption when the waveguide width (or period) is close

to the wavelength at resonance (λ0) and the distance between the

resonators is much smaller than the wavelength.

For perfect resonant absorption, the critical coupling is

widely used and it is readily realized by either adjusting

leakage rate or intrinsic loss [30, 49, 50]. The leakage rate is

geometrically controlled by choosing a waveguide of specific

width or adjusting the effective size of a resonator. Similarly, the

intrinsic loss of a resonator is engineered by changing

geometrical parameters for thermal viscous losses or

introducing lossy materials. In Figure 6A, the single

Helmholtz resonator is attached to the side of the waveguide,

fulfilling the critical coupling condition, which is confirmed in a

complex frequency map (Figure 6B) [49]. The perfect absorption

is enabled for various configurations, as shown in Figure 6C. The

results indicate that regardless of the intrinsic losses, the critical

coupling condition can be satisfied by carefully adjusting the

physical parameters.

Perfect absorption was realized in two-port systems using

resonance degeneracy with coupled resonators in a unit cell

[28], as illustrated in Figures 5E,F. These absorbers are so

called ventilated sparse absorbers since fluid flow is permitted

while noises are absorbed [47, 52, 53]. In Figure 6D, a fish-

shape unit device consists of a lossy upstream resonator and a

lossless downstream resonator [47]. For such a loss

asymmetry, the opening (or neck) of the downstream is

larger for reducing viscous loss, while its cavity size is

increased to maintain its resonance frequency same as that

of the upstream resonator. Under the critical coupling

condition, the near perfect absorption of the fish-shaped

device was experimentally characterized, as shown in

Figure 6E. Also, the device having a streamline body

FIGURE 6
Critical coupling for perfect sound absorption. (A) Coupled resonator in a one-port system. (B) Critical coupling conditon. (C) Perfect sound
absorption of the resonator system (A). (D) Coupled resonators composed of loss/lossless in a two-port system. (E) Corresponding absorption
spectra. (F) Sound absorption and fluid-flow (ventilation) control. (G) Coupled resonators consisting of loss/loss in two-port system. (H) Absorption
spectra for different period. (I) Monopole and dipole resonance enabled by a certain period (d = 0.14 m). Reprint (A–C) from Ref. [49]; (D–F)
from Ref. [47]; (G–I) from Ref. [51].
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enables the control of fluid flow directions while minimizing

the flow resistance, as illustrated in Figure 6F.

Two identical resonators having symmetric losses in a

two port system show perfect absorption for a relatively large

period (or space between unit devices). Such an interesting

characteristic was confirmed using coupled resonators, as

illustrated in Figure 6G [51]. Depending on the distance

between the unit devices (i.e., period), the absorption peak

values are varied as shown in Figure 6H. The optimized

distance was found to be d = 14 cm, which corresponds to

approximately 0.85λ0. This specific distance for perfection

absorption results in the degeneracy of monopole and dipole

resonances in Figure 6I.

3.2 Coupled resonators in open field

A finite number of coupled resonators exhibit intriguing

wave scattering and absorption characteristics, as summarized in

Figure 7. Coupled resonators of asymmetric intrinsic losses show

different absorption cross section spectra for opposite incidences

[44], as shown in Figures 7A,B. In the referred work, the opposite

FIGURE 7
Coupled resonators in open field. (A) Asymmetric absorption scattering. (B) Corresponding absorption scattering cross section spectra. (C)
Coupled resonators-based acoustic direction sensor. (D) Acoustic power spectra in each resonator of the direction sensor. (E) Coupled resonators
for acoustic superscattering. (F) Scattering cross section spectra of the superscatter. Reprint (A,B) from Ref. [44], (C,D) from Ref. [54], (E,F) from
Ref. [36].
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incidences cause a difference in vibration phases, thus promoting

asymmetric absorption by increasing the response of the lossy

resonator for a specific incidence angle. This concept can be

extended to an array system [55].

From the directional characteristics of the coupled resonators

(Figure 7A), coupled resonators can be used for sensing the

direction of incoming waves [54], as shown in Figure 7C. In the

study, three resonators integrated to the cylindrical scatterer are

capable of amplifying the acoustic waves depending on the

incident angle. In Figure 7D, the response of each resonator is

varied for different incident angles. This subwavelength direction

sensor is advantageous over conventional direction sensors

relying on bulky systems of multiple detectors for

considerable differences in wave phases. This conception was

originally proposed in optics as angle-sensing, bio-inspired

photodetectors [56]. Also, such directional resonance coupling

is demonstrated in magnetic wave direction sensing [57].

Multiple resonators within a subwavelength scatterer

induce relatively strong coupling, which increases

interaction between an incident wave and the resonators

[36–38]. Such strong wave interaction is manifested as

superscattering, as illustrated in Figure 7E. The scattering

cross section of the scatterer is extremely high

(approximately six times greater than that of a single

resonator), when a large number of scattering channels are

excited, as observed in Figure 7F. Due to reciprocal physical

properties, the superscattering behavior is closely related to a

super-emitter consisting of a source surrounded by resonators,

which is demonstrated as a purcell effect [39].

3.3 Exceptional point and rabi splitting

Coupling between resonators is illustrated in Figure 4B.

Various coupling phenomena are observed depending on

coupling rate relative to leakage (or loss) rate, as shown in

Figures 4D,E. Exceptional point states that coupling strength

between the coupled resonators is balanced with the loss

difference, leading to the eigenvalue coalescence. From Eq. 6,

the eigenfrequencies of the coupled resonators are given by

ω± � ω1 + ω2 − i γ1 + γ2 + δ1 + δ2( ) ± ���������������������
4κ1κ2 + Δω − Δ γ + δ( )i[ ]2√

2
, (14)

where Δω = ω2 − ω1 and Δ(γ + δ) = γ2 + δ2 − (γ1 + δ1). Here, the

two eigenvalues coalesce if the square-root term in Eq. 14

becomes zero. For a real and reciprocal coupling (κ1 = κ2 =

κ), the EP occurs when Δω = 0 and 2κ = |Δ(γ + δ)|. From Eq. 14,

assuming a purely imaginary coupling κ � i�κwith �κ being the real

value, exceptional points arise for Δω � ± 2�κ and Δ(γ + δ) = 0

[58]. In a strong coupling regime (κ≫|Δ(γ + δ)|), two eigenvalues

(two peaks in a spectral response) are not identical due to the

non-zero square-root term, even when ω1 = ω2. The emergence

of the two peaks is characterized as Rabi splitting (or Autler-

Townes Splitting).

FIGURE 8
Exceptional point in coupled resonators. (A) Coupled cavity resonators having the complex coupling strength (κ) and κ = κ0exp (iθ). (B) Square-
root term for θ= π/4 + nπ. The red circle indicates the condition (ΔΓ and Δω) for the zero square-root term. (C) Pure imaginary coupling (θ= π/2 + nπ).
(D) π/4 + nπ (E) 3π/4 + nπ.
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To consider a more general case where the coupling strength

(κ) is a complex value, EP conditions are characterized in two

cavity resonators coupled via a thin channel, as illustrated in

Figure 8A. The complex coupling strength (κ) is defined by a

length of the channel (l), which is given by κ = κ0exp (iθ) = κ0
[cos(θ) + i sin(θ)] with θ � l 2πλ and κ0 being the constant real

value. The bottom panel of Figure 8A show a complex coupling

strength depending on the phase angle of θ. Here, specific cases

are highlighted by the symbols: star symbols for pure imaginary

coupling, hexagon symbols for pure real coupling, blue shade for

the first and third quadrants, and red shade for the second and

fourth quadrants. The square-root terms of these specific cases

are plotted as a function of Δω and ΔΓ(=Δ(γ + δ)) in Figures

8B–E for reciprocal coupling (κ1 = κ2 = κ0 = 0.01ω0). Δω and ΔΓ
are normalized to ω0. EP corresponds to the zero of the square-

root term (marked as red circles). For pure real κ (e.g., l≪ λ), EP

is realized for no detuning (Δω = 0) and ΔΓ = 2κ0 = 0.02ω0 in

Figure 8B. Also, for pure imaginary κ (e.g., l = λ/4), EP is observed

for considerable resonance detuning Δω = ±0.02ω0 without

unbalanced loss (i.e., ΔΓ = 0), as shown in Figure 8C.

Interestingly, for Re(κ) ≠ 0 and Im(κ) ≠ 0 in Figures 8D,E, EP

conditions require both resonance detuning (Δω ≠ 0) and

unbalanced loss (ΔΓ < 0.02ω0). Note that Δω > 0 is for the

first and third quadrants while Δω < 0 is for the second and

fourth quadrants.

Non-Hermitian physics and multiple exceptional points are

systematically studied for two-state and higher-order systems, as

shown in Figure 9A [23]. In a two-state system consisting of two

cavity resonators coupled through a coupling tube, the pressure

of a single acoustic cavity is characterized by increasing

additional loss at the other acoustic cavity. By retrieving the

eigenmodes from the experimental data, it is observed that the

two eigenmodes coalesce at an EP when ΔΓ = 2|κ| in Figure 9B.

Beyond single EP, interesting EP phenomena are enabled at a

FIGURE 9
Exceptional point in coupled resonator system. (A) Exceptional point of two cavity resonators in a closed system. (B) acoustic spectra for varying
loss. (C) Higher-order exceptional point. (D) Exceptional point for unidirectional zero reflection. Reflection spectra from one incidence (E) and the
opposite direction (F). (G) EP-based duct silencer for perfect absorption. (H) Absorption spectra for different damping exhibiting absorption peak
collapse. (I) Representative absorption spectra. Reprint (A–C) from Ref. [23]; (D–F) from Ref. [59]; (G–I) from Ref. [41].
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higher dimension such as a four-state systems (Figure 9C), where

multiple EPs are realized for higher-order EP-related physics.

EPs are observed in a bianisotropic system comprising of

three thin plates and two lossy regions in between [59], as

illustrated in Figure 9D. Asymmetry is introduced to the

system by having different lengths of the lossy regions. With

such geometry asymmetry and unbalanced loss, this work

demonstrates unidirectional zero reflection for the forward

direction in Figure 9E while the high reflection is observed for

the backward direction in Figure 9F. The EP condition is

confirmed by a degenerate non-Hermitian scattering matrix.

In addition to the unidirectional wave control, EP enables

perfect sound absorption of coupled resonators in a duct [41].

The perfect absorption in coupled resonators is realized when

both the critical coupling and EP conditions are simultaneously

satisfied. In this work, asymmetric loss is implemented into the

system, as the upstream resonator has a relatively large loss

compared to the downstream resonator. When two resonators

are strongly coupled, two absorption peaks of small amplitudes

are observed. These two peaks merge into one peak at a EP, as

shown in Figures 9H,I. In this two-port system, conditions for

critical coupling (δ = γ) and EP (2κ = |Δ(γ + δ)| = δ) are

simultaneously met for perfect absorption. For two resonators

in a one-port system, the EP condition is not required as long as

each resonator meets the critical coupling condition. However,

resonance degeneracy is essential to perfect absorption in two-

port systems. In this regard, the EP condition is a good indicator

to see if resonance degeneracy is achieved. Similarly, EP-based

elastic wave absorption is reported in Ref. [60].

3.4 Fano resonance in weakly coupling
regime

A Fano resonance, exhibiting an asymmetric line-shape,

occurs when a discrete localized state is coupled to a

continuum of states [24]. The asymmetric line-shape is

produced by interference between a background

(continuum state) and a resonant scattering process. The

background scattering amplitude typically varies slowly

with frequency whereas the resonant scattering amplitude

changes both in magnitude and phase quickly. The

response by the Fano resonance characterizes absorption,

transmission and scattering. The sharp resonance peak

enabled by the Fano resonance is useful for sensing

applications. For the coupled resonators, the Fano

resonance is observed in the weak-coupling regime: |κ|≪|γ1
+ δ1| or |κ|≪|γ2 + δ2|. For f1 ≠ 0, f2 = 0 and a two-oscillator

model in the weak-coupling regime, the amplitude of the

driven oscillator 1 can be presented in the form [24]:

FIGURE 10
Different types of Fano resonances. (A) Resonant scatterer having non-resonant background scattering and resonant scattering (fr) in a free
field.(B) Resonator and non-resonant scatterer in a waveguide. (C) Dual resonators in a waveguide having a resonant background scattering (fr2) and
a narrow band resonant scattering (fr1). Only the resonator having background scattering is excited (f1 = 0 and f2 ≠ 0). (D) Dual resonators stacked
along thewaveguide. Both resonators are excited (f1 ≠0 and f2 ≠ 0). (E) Scattering spectrumwith a background scattering spectrum (dashed line)
in a resonant scatterer (A). (F) Reflection spectra of the system (B). (G) Reflection spectra of the system (C). (H) Reflection spectra of the system (D).
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|a1|2 ≈|f2
1|

γ1 + δ1( )2
ω1 − ω2( )2 + γ1 + δ1( )2 Ω + q( )2

Ω2 + 1( ) (15)

where

Ω � ω − ω2 + κ2

γ1 + δ1
( ) ω1 − ω2( )

1 + q2
[ ] γ1 + δ1( ) 1 + q2( )

κ2
(16)

is the dimensionless frequency. The Fano parameter q

determines the spectral shape and depends on the spectra

detuning of the oscillators ω2 − ω1. q = cotδ, where δ is the

phase of the response function (ω2 − ω1 + i(γ1 + δ1))−1.
Intuitively, the reflection spectrum for Fano resonance shows

a sharp transition between the zero reflection to the unity

reflection. Here, the zero reflection corresponds to the

destructive interference whereas the unity reflection occurs

due to the constructive interference.

For such a week coupling regime, when two resonators have

the identical resonance frequency ω1 = ω2 so that Fano resonance

(i.e., interference) happens for q = 0, the high transmission occurs

at ω1 = ω2. This spectral lineshape is known as

electromagnetically induced transparency (EIT), as illustrated

in Figure 4D. Of course, two resonators having similar

bandwidths may show EIT for ω1 ≠ ω2 by demonstrating

destructive interference and consequently high transmission at

a frequency between ω1 and ω2.

Figure 10 shows different cases demonstrating Fano

resonances. First, Fano resonances are observed for non-

resonant background scattering in free field (Figure 10A) and

waveguide (Figure 10B). The reduced scattering is seen for a

circular scatterer having a Helmholtz resonator in Figure 10E.

The non-resonant background scattering (corresponding to the

circular scatterer without resonance) is represented as the dashed

FIGURE 11
Fano resonance in coupled resonators. (A) Fano resonance-based Duct silencer. (B) Transmission spectra of each contribution. (C) Dual Fano
resonance by Mie resonators supporting two-type monopole resonances (D) and (E) corresponding transmission spectra. (F) Topological Fano
resonance. (G) Robust Fano resonance with and without disorder. Reprint (A,B) from Ref. [61]; (C–E) from Ref. [62]; (F,G) from Ref. [63].
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line. Similarly, non-resonant background scattering is introduced

in a waveguide, as shown in Figure 10F. The near-zero reflection

is observed at a frequency before the resonance. Also, the

background scattering can be induced by a resonator in a

waveguide, as long as the response of the resonator slowly

varies. This case is illustrated in Figures 10C,D for different

configurations. These dual-resonator systems are slightly

different in terms of excitation. In Figure 10C, only one of the

resonators is excited whereas both resonators are excited in

Figure 10D. Resulting reflection spectra for both systems are

similar, promoting zero reflection between two resonance

frequencies.

Fano resonance is implemented in a waveguide for reducing

transmission, as shown in Figure 11A and B [61, 62]. Interference

for Fano resonance occurs between non-resonant background

scattering and resonant scattering, as illustrated in Figure 10B.

Here, non-resonant background scattering is introduced by the

central part (highlighted by the yellow region) in Figure 11A,

exhibiting reflection due to the area reduction. The resonant

reflection enabled by the helical part shows dual peaks at 340 Hz

and 695 Hz (dashed green line) in Figure 11B. This concept was

first proposed in Ref. [65], where a relatively narrow-band Fano

resonance is demonstrated. The helical resonators are a space-

coiled version of an open-pipe resonator, which is open at both

ends. The resonant frequencies of an open-pipe resonator are

fn � n c
2L with L being the length. The two peaks corresponds to

the fundamental (f1) and the first overtone (f2), i.e., f2 ≈ 2f1. Such

two resonant peaks and their interference with the non-resonant

scattering permit broadband transmission suppression. To

understand the interference, the phase spectra of each

scattering are plotted in Ref. [66]. In that reference, phases in

a frequency range between the two peaks differ by π compared to

those of the non-resonant scattering. Moreover, broadband

transmission reduction with dampened super-cell is realized.

FIGURE 12
Emerging research using coupled resonators. (A) Long-range coupling in coupled resonators. (B) Non-local oddities by the long-range
coupling. (C) Asymmetric resonant coupling in cavity resonators. (D)Winding number in nonreciprocal nearest-neighbor coupling. (E) nonreciprocal
long-range coupling. (F) Time modulated resonance coupling. (G) Resonance modulation. (H) Nonreciprocal wave transmission for the forward
(blue) and backward (red) directions. Reprint (A,B) from Ref. [70]; (C–E) from Ref. [71]; (F–H) from Ref. [72].
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Dual-band Fano resonances are realized by artificial Mie

resonances [62], as illustrated in Figure 11C. Two types of

monopolar Mie resonances are observed, which are controlled

by adjusting the size, as shown in Figure 11D. This exhibits two

resonance peaks spaced apart, each promoting a Fano resonance

in Figure 11E. Unlike the broadband Fano resonance, dual-band

Fano resonances are induced around the resonant frequencies, as

each resonant mode leads to destructive interference with the

background scattering.

Although Fano resonance has shown promise in sensing

applications, it is difficult to construct such a system due to

geometrical imperfection. To address this challenge, Fano

resonance is combined with 1D topological insulator,

demonstrating robust topological Fano resonance [63], as

illustrated in Figure 11F. Such an interesting feature was

experimentally validated, as shown in Figure 11G.

Fano resonance between resonators also demonstrates

asymmetrical spectral line-shape for reflection, as illustrated

in Figures 10G,H. For transmission, such Fano resonance

between resonators are typically discussed as acoustically

induced transparency (AIT) [67–69], where two resonators

have detuning and weak coupling interact, supporting Fano

resonance. In other words, both AIT and Fano resonance share

the same physical mechanism. When one resonator has much

wider bandwidth and function as background scattering, the

observation can be categorized as Fano resonance. On the

other hand, AIT has two resonators with comparable

bandwidth.

3.5 Emerging research based on coupled
resonators

Traditional coupling phenomena have been further

considered with emerging physical concepts such as time

modulation of physical properties, non-local interaction (long-

range coupling), and non-reciprocity, as shown in Figure 12. As

illustrated in Figure 12A, the 3D metamaterial having non-local

effects is based on the long-range coupling being stronger than

the nearest-neighbor coupling [70]. In this case, the dispersion

relation exhibits a sign change of the slopes (group velocity, vg =

zω/zkz) for different wavenumbers (A, B, and C) and the same

frequency, as seen in Figure 12B. This negative slope

(wavenumber B) implies that the energy flow is reversed,

while the phase velocity (vph = ω/kz) remains positive. The

theoretical finding was validated with experimental

observation [72, 73]. Such Roton-like characteristics observed

in correlated quantum superfuids are realized in the classical

system relying on coupled resonators, which can serve as simple

tabletop experiments for condensed matter physics and quantum

mechanics [75].

Resonance coupling is controlled by implementing an

additional coupling through an external circuit, enabling non-

reciprocal resonance coupling [71], as shown in Figure 12C. Such

non-reciprocal coupling, exhibiting the single-loop winding of

the complex energy spectrum (Figure 12D), results in a non-

Hermitian skin effect (NHSE) that shows the wave localization

on one of the boundaries depending on the winding number.

This system further demonstrates non-reciprocal long-range

coupling, leading to twisted winding topology with two

oppositely oriented loops (i.e., different signs of the winding

number) in Figure 12E.

Time-modulated resonators enable interesting coupling

behaviors which cannot be observed in traditional

resonators [72]. The energy exchange between coupled

resonators is regulated by implementing modulated

resonance frequencies with proper spatial phase bias, as

illustrated in Figure 12F. In Figure 12G, the resonance

frequency of each resonator is modulated by the cavity

volume change induced by the vibrating upper disk, which

is actuated by a mechanical shaker. This coupled system with

dynamic modulation demonstrates nonreciprocal energy

transmission, as shown in Figure 12H (red: backward, blue:

forward).

4 Conclusions and outlook

Coupled resonators are considered as a fundamental building

block, enabling effective wave control and sensing. Among

several theoretical frameworks characterizing coupled

resonance phenomena, the lumped parameter-based models

have many advantages by reducing the complicate description

of physical systems to a few key physical parameters capturing

essential physical characteristics. First, such models are simple

but very intuitive by permitting explicit description of coupling

strength, which is one of critical parameters dictating interaction

between constituent resonators. Also, the explicit coupling

strength can be compared with other key parameters such as

the leakage rate and intrinsic loss, consequently allowing

estimation of the overall system characteristics. After thorough

comparison between two representative lumped parameter-

based models, various coupled resonance phenomena are

discussed, including critical coupling, Fano resonance, and

exceptional point.

While having many advantages, the lumped parameter-based

models also have disadvantages, requiring ardours extraction of

constituent lumped parameters through separate simulation or

parameter fitting. Since other physical parameters describing the

systems are lumped to a few representative parameters,

knowledge of how these lumped parameters are correlated to

other physical parameters is often more important. In this sense,

lumped parameter-based models are complementary with other

theoretical frameworks without using lumped parameters.

For perfect absorption, one can design and optimize an

absorber without realizing the critical coupling. Instead, if the
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absorber exhibits perfect absorption, one claims that the critical

coupling must be satisfied. As long as the leakage rate is balanced

with the intrinsic loss, the perfect absorption is enabled by

multiple optimum solutions. By increasing the leakage rate

and intrinsic loss simultaneously, broadband perfect absorbers

are constructed [46]. Interaction of resonators with incident

waves in open field leads to intriguing physical features. Finite

number of resonators are simple, but demonstrating rich

coupling behaviors such as directionality and scattering. Also,

physical insights into resonant coupling are gained and can be

extended to periodic arrays.

For wave sensing, Fano resonance is a great choice due to its

sharp spectral line shape, exhibiting high sensing sensitivity.

However, such high sensitivity realized in Fano resonance

poses challenges in constructing Fano resonance-based sensing

systems. Fano resonance in combination with Topological

insulators greatly improve system robustness [63]. Moreover,

systems with exceptional points have been only implemented for

acoustic resonance degeneracy, and they can be a nice sensing

platform as proposed in optics. Sensing sensitivity can be

improved by implementing higher order exceptional points.

As discussed by introducing the emerging research,

metamaterial research based on coupled resonance continues

to evolve in a way that enables design of exotic coupling between

resonators or resonant modes without any restrictions imposed

by the physical distance and reciprocity. For example, resonance

coupling can be established through a closed-loop control

system, which is composed of a sensor, actuator, and

autonomous controllers preprogrammed to define a transfer

function between the sensor and actuator [76]. In this

example, the mechanical lattice demonstrates non-Newtonian

topological insulation with nonreciprocal coupling and next

nearest-neighbor coupling. This approach implies that the

autonomous controllers can be programmed to support any

arbitrary coupling and the electric wires used for the closed-

loop control system permit any long-range coupling.

Recently, research on optical metamaterials has advanced to

implement synthetic dimensions [77, 78], which enable

extension of the geometric dimensionality of a photonic

structure such that one-dimensional structures with a

synthetic dimension can exhibit two-dimensional-like physical

features. For instance, a dynamically modulated ring resonator

functions as a one-dimensional lattice in the synthetic frequency

dimension [79]. Such optical concepts based on synthetic

dimensions are useful in acoustic resonators. With a few

number of acoustic resonators, exotic coupling between

resonance modes can be realized as it is demonstrated in two

coupled ring resonators [80].

Although coupled resonators are a promising platform for

wave sensing, resonance-based sensing approaches perturb

their measurement and create considerable wave scattering

[81]. To avoid such an issue while benefiting from resonance,

one can consider a non-resonant sensor connected to

electrical resonance, which is so-called virtual acoustic

resonance. Therefore, many existing resonant systems can

be translated into systems composed of virtual acoustic

resonators.
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