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Background: Bone microstructure is important for evaluating bone strength

and requires the support of high-resolution (HR) imaging equipment.

Computed tomography (CT) is widely used for medical imaging, but the

spatial resolution is not sufficient for bone microstructure. Micro-CT scan

data is the gold standard for human bone microstructure or animal

experiment. However, Micro-CT has more ionizing radiation and longer

scanning time while providing high-quality imaging. It makes sense to

reconstruct HR images with less radiation. Image super-resolution (SR) is

adapted to the above-mentioned research. The specific objective of this

study is to reconstruct HR images of bone microstructure based on low-

resolution (LR) images under large-factor condition.

Methods: We propose a generative adversarial network (GAN) based on

Res2Net and residual channel attention network which is named R2-

RCANGAN. We use real high-resolution and low-resolution training data to

make themodel learn the image corruption ofMicro-CT, andwe train six super-

resolution models such as super-resolution convolutional neural network to

evaluate our method performance.

Results: In terms of peak signal-to-noise ratio (PSNR), our proposed generator

network R2-RCAN sets a new state of the art. Such PSNR-orientedmethods have

high reconstruction accuracy, but the perceptual index to evaluate perceptual

quality is very poor. Thus, we combine the generator network R2-RCAN with the

U-Net discriminator and loss function with adjusted weights, and the proposed

R2-RCANGAN shows the pleasing results in reconstruction accuracy and

perceptual quality as compared to the other methods.

Conclusion: The proposed R2-RCANGAN is the first to apply large-factor SR to

improve Micro-CT images of bone microstructure. The next steps of the study

are to investigate the role of SR in image enhancement during fracture

rehabilitation period, which would be of great value in reducing ionizing

radiation and promoting recovery.
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1 Introduction

Bone strength is determined by the bone microstructure [1].

Low bone strength can increase risk of osteoporosis and fracture,

which are major health concerns in the world [2]. It has been

estimated that nine million new osteoporotic fractures occur

worldwide each year [3]. Computed tomography (CT) is one of

the most widely used medical imaging techniques for screening

and diagnosis [4]. However, CT is unable to visualize the

trabecular bone microstructure due to insufficient resolution

and contrast [5]. Micro-CT, which has excellent spatial

resolution, has the ability to quantitatively analyze trabecular

bone microstructures in clinical research. In translational efforts,

Micro-CT has also been used for pre-clinical research to identify

effective treatment and pharmacotherapy options [6–8]. Thus,

Micro-CT is an essential equipment for imaging human bone

microstructure and animal experiments, while it will expose

amount of ionizing radiation to the patient or animal when

scanning [9]. The higher the resolution of the Micro-CT image,

the more radiation is absorbed by patients or animals. According

to certain research, high doses x-ray radiation is detrimental to

fracture healing whereas low doses help endochondral and

intramembranous ossification [10–12]. Thus, it is critical to

ensure sufficient image resolution for diagnosis in the case of

reducing scanning time and ionizing radiation, which not only

enhances the safety of clinical trials and animal experiments, but

also their efficacy. Taking into consideration the above scenarios,

super-resolution (SR) is the most appropriate approach for

obtaining high-resolution (HR) images at low doses of

radiation [13].

SR is a challenging task in computer vision, which is to

reconstruct HR images from low-resolution (LR) images [14, 15].

With the deepening and development of research, the SR

algorithms can be separated into three classes: 1)

Interpolation-based methods: These methods are

computationally inexpensive, and lose a lot of high frequency

texture; 2) Model-based methods [15–17]: These methods are

based on a priori information and regularized reconstruction. It

has better performance compared to interpolation-based

method. However, it relies too much on image prior

information, which can lead to very poor results if the input

image is small; and 3) Learning-based methods (before deep

learning): These methods learn a nonlinear mapping from paired

LR and HR images [18]. It can recover missing high-frequency

textures and its powerful performance has attracted strong

interest from researchers.

With the development of advanced methods and graphics

processing units, deep learning (DL) has been regarded as a very

promising approach for image processing [19], and it also

provides inspiration and innovative ideas for SR [20]. The

first DL-based SR application was in 2014 and Dong et al.

proposed super-resolution convolutional neural network

(SRCNN) with a three-layer convolutional network [21]. Since

SRCNN, DL has provided new routes toward the development of

high-performance SR. Later, the performance of the SR

algorithm became even better with the development of DL,

such as the improvement of the upsampling module [22, 23],

new backbone proposed [24–28], and modification of the loss

function [29]. The above DL-based methods use the mean square

error (MSE) or L1 as the loss function to improve the peak signal-

to-noise ratio (PSNR), and continuously improve performance.

However, some studies pointed out that the PSNR-oriented

method results in a loss of high-frequency textures and

inconsistency with human visual perception. Recently, the

popularity of generative adversarial networks (GAN), which

enables CNNs to learn feature representations from complex

data distributions, has made it possible to solve the above

problem. GAN-based methods have achieved good results

[30–32].

In the area of medical imaging, DL has been used successfully

in every aspect, such as disease classification, outcome prediction,

medical image segmentation and much more [33–36]. DL-based

SR algorithms have made progress in several medical imaging

modalities. Zhang et al. proposed a hybrid model to improve CT

resolution [37]. Chen et al. proposed a 3D densely connected SR

model to restore HR features of brain magnetic resonance image

(MRI). Dong et al. proposed a multi-encoder structure based on

structural loss and adversarial loss to magnetic resonance

spectroscopic imaging (MRSI) resolution enhancement [38].

And SR also has made progress in the pre-clinical research.

You et al. proposed GAN-CIRCLE to enhance the spatial

resolution of Micro-CT scans of bone [39]. Xie et al.

developed auto-encoder structure to reconstruct HR bone

microstructure [40].

However, there are still the following important challenges

and inherent trends: 1) Most of the previous studies focus on the

small-factor SR (2× and 4×) [41]. Large-factor image SR is likely

to be required in the field of pre-clinical and clinical imaging.

However, the smaller the factor, the lower the difficulty for SR.

Large-factor image SR requires more effective approaches [19]. 2)

The corruption of Micro-CT images is unknown [5]. It is

certainly quite different from the LR images which are

obtained from HR images downsampling [20]. 3)

Reconstruction images require a balance between the accuracy

of the reconstructed image and preserving more high frequency

textures [19].

Motivated by the aforementioned drawbacks, in this study we

made major efforts in the following aspects. First, we determined
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to use Micro-CT images of the rat fracture models. Previous

research has established that Micro-CT images with voxel sizes of

10 µm are sufficient to observe fractures in rats [6, 8]. To achieve

the large-factor SR conditions, the HR and LR voxel sizes are

10 μm and 80 µm in this research. Second, Our HR and LR

images are real data fromMicro-CT, which enables the SR model

to learn about the actual corruption of Micro-CT. Finally, we

propose a new GAN combining Res2Net [42] and residual

channel attention network (RCAN) [28], which named R2-

RCANGAN. The generator network R2-RCAN increases the

network width and has the ability of multi-scale feature

extraction while considering the advantages of each channel.

The U-Net discriminator with spectral normalization (SN) has a

more stable performance [32]. And we adjust the weight of the

loss function, which enable the recovered images have a better

perceptual quality and the accuracy of the pre-clinical images.

Our R2-RCANGAN achieves the best results over the other

classical SR models.

To summarize, the specific objective of this study is to

develop an 8×SR model based on Micro-CT images. The

following innovative points introduced in the paper are worth

mentioning:

1) The large-scale (8×) SR is unusual in pre-clinical imaging or

clinical imaging.

2) Our HR and LR images are real data from the device so that

the SR model learns about the actual Micro-CT corruption.

3) We propose a new network structure R2-RCANGAN. Our

generator network R2-RCAN sets a new state-of-the-art in

terms of PSNR. In addition, we combined a stable U-Net

discriminator and a loss function with appropriate weights.

These significantly improve the perceptual quality of the

reconstructed images. R2-RCANGAN maintains as much

accuracy as possible in pre-clinical images with good

perceptual quality.

2 Methods

2.1 Dataset preparation

Micro-CT with high spatial resolution offers important

support for imaging small animals. However, a major

problem with Micro-CT is that it suffers from poor temporal

resolution. One Micro-CT scanning cycle is performed

throughout numerous respiration cycles for living animal

imaging [43]. This study applied live rats, and even when

the position of the rats was strictly maintained, the

respiratory motor of the rats caused the HR and LR images

to mismatch. To solve the problem, this research applies the

FIGURE 1
LR-HR image pairs are made based on image feature point matching.
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feature point matching approach to make LR-HR image pairs,

as shown in Figure 1.

In this work, we use the A-KAZE algorithm to detect feature

points and the Brute-Force approach to match feature points

[44]. After matching feature points, we select two pairs of feature

points a-A and b-B (points a and b from the LR image, points A

and B from the HR image). Connecting ab and calculating the

angle with the horizontal direction by Eq. 1:

θab � arctan(xa − xb

ya − yb
) (1)

where (xa,ya), (xb,yb) are the coordinate points of a and b.

Calculating the angle between AB and horizontal is the same as

described above. Rotate the LR image in the same direction as the

HR image according to the angle difference between ab and AB.

After rotating, we cut HR and LR separately with the feature

point pair as the center to obtain the corresponding LR-HR

image pair.

With the above operations, a 40 × 40 pixels sub-image is

cropped from the LR image, and a 320 × 320 pixels sub-image is

cropped from the HR image. This not only solves the image motion

shift, but also crops the image to optimize deep learning training.

2.2 Generator network

As shown in Figure 2, our generator network named R2-

RCAN is an enhanced model of RCAN [28]. While retaining the

FIGURE 2
The structure of generator network R2-RCAN. (A) The structure of CA, (B) The structure of RCAB, (C) The structure of Res2block.
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residual channel attention block (RCAB) of the model, it has

introduced the Res2-group based on Res2block. By increasing the

model width, the model gains the ability to extract multi-scale

features. It includes one convolution layer in shallow feature

extraction, several groups (RCAB-group and Res2-group)

stacked in deep feature extraction and the image

reconstruction layer based on sub-pixel convolution.

2.2.1 Channel attention (CA)
CA is an important structure of the RCAB. CA can adaptively

adjust the feature weight of each channel to make the network

focus on more useful feature channels. The structure of CA is

shown in Figure 2A. Initially, CA is a global average pooling

layer. Next, two 1 × 1 convolutional layers are down-scaled and

up-scaled to obtain the weight of each channel. The last step of

CA is to multiply the channel weight with the input feature maps

to obtain new feature maps.

2.2.2 RCAB
The principle of RCAB is to add CA to the residual block. The

structure of the RCAB is shown in Figure 2B, it contains two

convolutional layers and one CA layer. Eq. 2 represents the input

after two layers of convolution:

Xi,j � W1
i,jϕ(W2

i,jFi,j−1) (2)

where i and j represent the jth RCAB of the ith group, Fi,j−1means

input andXi,j means output.W1
i,j andW

2
i,j represent two stacked

convolutional layers, and ϕrepresents the ReLU activation

function. Obtain the result Xi,j and then input to the CA

layer as Eq. 3:

Fi,j � Fi,j−1 + Ri,j(Xi,j) ·Xi,j (3)

where Fi,j is the output of this layer, and Ri,j means the CA. The

RCAB-group contains 20 RCAB layers, one convolutional layer

and short skip connection (SSC).

2.2.3 Res2-group
Res2-group is stacked by Res2block [42]. Rse2block is a novel

backbone in Res2Net, and its structure is shown in Figure 2C. It

represents multi-scale features and expands the range of

receptive fields for each network layer. The Res2block used in

this study integrates the Squeeze-and-Excitation (SE) block [45].

The SE block establishes the channel dependency relationship

and adaptively recalibrates the channel characteristic response.

This is similar to the previous RCAB in terms of channel

response, so the Res2-group in this study is suitable for

RCAB-group. As the network depth increases, the receptive

field of the network expands, multi-scale features are

expressed, and the network width expands. Res2-group

contains five Res2blocks and SSC.

2.3 Discriminator network

We used the U-Net discriminator with spectral

normalization (SN) [32]. The U-Net discriminator structure is

shown in Figure 3. It contains convolution layers, SN layers and

SSC. SN prevents GAN training instability caused by real CT

corruption. Studies have demonstrated that SN is beneficial to

alleviate the over-sharp and annoying artifacts introduced by

GAN training.

2.4 Loss function

Our loss function contains three parts: L1 loss, GAN loss and

perceptual loss. L1 loss is the content loss that evaluates the 1-

norm distance between the recovered SR image and the HR

image, which is as in Eq. 4:

L1 � 1
n × H × W

∑n
s�1

∑H−1

i�0
∑W−1

j�0

∣∣∣∣∣∣I(i,j)SR(s) − I(i,j)HR(s)
∣∣∣∣∣∣ (4)

FIGURE 3
U-Net discriminator with SN.
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where n is the number of samples, H and W are the length

and width of the image, respectively. I is the image pixel

value.

GAN loss needs to calculate discriminator loss, and the

discriminator loss is as in Eq. 5:

LRa
D � −ExHR[log(DRa(xHR, xSR))] − ExSR[log(1 −DRa(xSR, xHR))]

(5)

where we used the relative discriminator [46], DRa(xHR, xSR)
indicates the degree to which HR images are more realistic than

SR images, and DRa(xSR, xHR) indicates the degree to which SR

images are not as realistic as HR images. The generator loss is as

in Eq. 6:

LRa
G � −ExHR[log(1 −DRa(xHR, xSR))] − ExSR[log(DRa(xSR, xHR))]

(6)

In addition to the above two loss functions, there is also a

perceptual loss functionLpercep [32]. It inputs the SR and HR into

a pre-trained VGG19, and calculates the MSE between the

feature maps after the fourth convolutional layer in the VGG.

The total loss is as in Eq. 7:

L � αL1 + βLRa
G + δLpercep (7)

where α, β, and δ are constants.

3 Experiments

3.1 Datasets

All procedures performed in studies involving animals were

in accordance with the ethical standards of the national research

committee and with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards.

The data (HR and LR) used in this study were derived from

10 living rat fracture models (with a median age of 55 days and a

median body weight of 200 g). All rat models for ankle fracture

were established by professional operators (The depth of the

fracture reached the trabecular bone, but the medial malleolus

artery was not damaged.), and scanned the tibia to the ankle

bone. We use the same scanner (Micro-CT: Bruker SkyScan

FIGURE 4
Feature maps of fracture images in VGG19.

TABLE 1 Quantitative results of different methods on the test set
(PSNR/PI). Red and blue indicate the best and the second best
performance, respectively.

Method Scale PSNR (dB) PI

Bicubic ×8 21.39 ± 2.03 13.00 ± 0.66

SRCNN [21] ×8 21.93 ± 2.52 10.21 ± 0.48

EDSR [29] ×8 22.34 ± 2.55 10.65 ± 0.59

RRDBnet [31] ×8 22.54 ± 2.43 10.53 ± 0.51

ESRGAN [31] ×8 21.32 ± 2.57 6.90 ± 0.29

RCAN [28] ×8 22.68 ± 2.61 10.60 ± 0.52

R2-RCAN (ours) ×8 22.92 ± 2.49 10.52 ± 0.50

R2-RCANGAN (ours) ×8 21.96 ± 2.49 7.20 ± 0.30
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1276) with two scanning protocols. The Micro-CT parameters

are as follows: 1) HR: X-ray source circular scanning, tube

current 200μA, tube voltage 85 kVp and filtration 0.5 mm(AI),

900 projections over a range of 360°, exposure 464 ms per

projection. 2) LR: X-ray source circular scanning, tube current

200μA, tube voltage 85 kVp and filtration 0.5 mm(AI),

225 projections over a range of 360°, exposure 40 ms per

projection.

The Micro-CT projections were reconstructed using the

Feldkamp-Davis-Kress (FDK) algorithm based on NRecon

(Burker’s reconstruction program: Program Version = 1.7.3.1,

Reconstruction engine = InstaRecon, Engine version = 2.0.4.6,

Smoothing kernel = Gaussian, Filter type = Hamming): the HR

image size 1280 × 1280 pixels, 4,000 slices at 10 μm voxel size,

and the LR image size 160 × 160 pixels, 500 slices at 80 μm voxel

size. So we select one HR image for every eight HR images to

match the LR image (500 pairs). By making LR-HR image pairs

in Section 2.1, HR images and LR images are cropped to 320 ×

320 pixels and 40 × 40 pixels. We screened 1279 LR-HR image

pairs (2–three pairs of LR-HR images were cropped out of each of

the 500 pairs), of which 1000 have good image quality. And the

data were split into training set (80%), validation set (10%) and

test set (10%), where the training and test sets are from different

rat models.

3.2 Training settings

The generation network R2-RCAN is made up of 10 RCAB-

groups and 10 Res2-groups that are interconnected alternately.

Each RCAB-group contains 20 RCAB layers, and each Res2-

group contains five Res2blocks. The convolution kernels size for

FIGURE 5
Box plot of PSNR and PI on the test set. The R2-RCANGAN (red) has good reconstruction accuracy and perceptual quality. In terms of PSNR, R2-
RCAN (blue) is the best, but it has a poor PI performance. In terms of PI, ESRGAN (green) is the best, but its PSNR is too low. (A) PSNR on the test set, (B)
PI on the test set.

FIGURE 6
PSNR-PI plane on the test set. The PSNR-oriented methods such as R2-RCAN (blue) have very high reconstruction accuracy but very poor
perceptual quality. ESRGAN (green) has the best perceptual quality, but the reconstruction accuracy is too low. Only R2-RCANGAN (red) does not fall
into either extreme in the scatter plot, balancing reconstruction accuracy and perceptual quality.
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adjusting the channel scale are 1 × 1, while other convolution

kernels are all 3 × 3.

We perform carefully designed data augmentation during training,

which are randomly rotated (90°, 180° and 270°) and flipped. In each

trainingbatch, 64LR images are extractedas inputs.The total loss function

7) weight {α, β, δ} is {1, 0.1, 0.5}. We use the {conv1_2, conv2_2, . . .,

conv5_4} featuremaps (withweights {1, 0.5, 0.1, 0.1, 0.1}) before activation

in the pre-trained VGG19 network as the perceptual loss. As shown in

FIGURE 7
Visual comparison of different methods. R2-RCAN (blue) has the highest reconstruction accuracy, but loses a lot of image texture. ESRGAN
(green) had the best perceptual quality, but showedmany erroneous textures and theworst reconstruction accuracy. R2-RCANGAN (red) has a good
performance in both reconstruction accuracy and perceptual quality. (A) Sample of the fracture site. (B,C) Sample of the trabeculae bone.
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Figure 4, there are feature maps for each block of VGG19. The feature

maps of the conv1_2 and conv2_2 contains a large number of high

frequency textures such as bone trabeculae, which is important high

frequency information needed for our SR model. Thus, we attribute a

higher weight to the first two feature maps.

Our network is trained by Adam optimizer with β1 = 0.9 and

β2 = 0.999. The initial learning rate is set to 1 × 10–4 and then

decreases to half every 105 iterations of back-propagation. We

train R2-RCAN for 300 K iterations while training R2-

RCANGAN for 150 K iterations. Our model is trained by a

GeForce RTX 2080 Ti.

3.3 Performance comparison

We trained R2-RCAN (generative networks with L1 loss as loss

function) and R2-RCANGAN. At the same time, we compared the

classic PSNR-oriented methods (SRCNN [21], EDSR [29], RRDB

[31], and RCAN [28]) and GAN-based ESRGAN [31].

To ensure the accuracy of pre-clinical images while getting a

better perceived quality. We validated the SR performance in

terms of two widely-used image quality metrics: PSNR and

perceptual index (PI) [47]. PSNR as a typical distortion

measure is used to evaluate the reconstruction accuracy of SR.

A higher PSNR means better reconstruction accuracy. The

calculation of PSNR is based on Eq. 8.

MSE � 1
H × W

∑H−1

i�0
∑W−1

j�0
[I(i,j)HR − I(i,j)SR ]2

PSNR � 20log10( 255�����
MSE

√ )
(8)

where the PSNR is derived fromMSE between the HR image IHR

and the SR image ISR. Since PSNR and MSE are closely related, it

is reasonable to anticipate that a model trained with the MSE loss

will have high PSNR. Even though higher PSNR typically

indicates higher reconstruction accuracy, it just considers the

per-pixel MSE, which makes it fails to capture the perceptual

differences. To remedy this shortcoming of PSNR, we use the

metric PI. And PI is a non-reference measure proposed by the

2018 PIRM Challenge to evaluate the perceptual quality of SR

[47], which is calculated by Ma’s score [48] and natural image

quality evaluator (NIQE) [49]. This is a new image quality

evaluation standard, which has been greatly promoted and

used in recent years. A lower PI represents a better perceptual

quality. PI is as in Eq. 9:

PI � 1
2
((10 −Ma) +NIQE) (9)

Table 1 and Figure 5 show the summary of PSNR and PI for

each method. In terms of PSNR, our proposed R2-RCAN sets a

new state of the art in the rat fracture dataset. In terms of PI,

ESRGAN gets the best score.

But the above does not mean that they are the best

algorithms, because reconstruction accuracy and perceptual

quality are at odds with each other. As shown in Figure 6,

PSNR-PI plane allows a better weighing of reconstruction

accuracy and perceptual quality. The PSNR-oriented methods

have very high reconstruction accuracy but very poor perceptual

quality. ESRGAN has the best perceptual quality, but the

reconstruction accuracy is very low (PSNR is even lower than

the bicubic interpolation in Table 1). Only our proposed R2-

RCANGAN achieves the not bad scores in terms of PSNR and

second best values in terms of PI. It maintains as much accuracy

as possible in pre-clinical images, while having a good perceptual

quality. R2-RCANGAN loses 4 percent of PSNR while improving

PI by 32 percent compared to R2-RCAN.

In this study, several samples were selected to compare the SR

results of different methods. Figure 7 confirms that the PSNR-

oriented methods (SRCNN, EDSR, RRDB, RCAN, and R2-

RCAN) produced blurry results, while the GAN-based

methods (ESRGAN and R2-RCANGAN) restored more

anatomical contents and was suitable for human perception.

PSNR-oriented methods may fail to recover some fine structure

for fracture evaluation, such as shown by blue boxes in Figure 7A.

In Figures 7B,C, green boxes mark trabeculae bone. These results

indicate that PSNR-oriented methods can significantly suppress

the noise and artifacts. However, it has poor image quality as

judged by a human observer because it implies that noise impact

is independent of local image properties, whereas the human

visual system’s sensitivity to noise is reliant on local contrast,

intensity, and structural variations. Most importantly the texture

of the bone trabeculae has been smoothed out as noise during this

large-factor SR reconstruction. It can also be observed that the

GAN-based models introduce false textures and strong noise. In

particular, in Figure 7B, the trabecular is incorrect (green box)

and generates additional noise (yellow arrow) on the result of

ESRGAN. And our proposed R2-RCANGAN is capable of

maintaining high-frequency features to recover more realistic

images with lower noise compared with ESRGAN. In terms of

PSNR, R2-RCANGAN is also not significantly lower than the

PSNR-oriented methods, and it both obtains the pleasing results

in terms of PSNR and PI. R2-RCANGAN generates more visually

pleasant results with high reconstruction accuracy than the other

methods.

3.4 Model performance based different
training data

We analysed the performance of R2-RCANGAN based on

different training datasets. There are two groups of paired LR and

HR images: 1) LR and HR images are real data scanned from

Micro-CT. 2) LR image is bicubic downsampled version of HR

image. This downsampling approach to obtain paired data

commonly used in the SR studies. We trained R2-RCANGAN
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with the same hyperparameter settings using the two training sets

described above. We compared the performance of the two

models on the test set. The quantitative results are in Table 2.

The results demonstrate that the R2-RCANGAN trained on real

data achieves the higher scores using the evaluation metrics. We

present typical results in Figure 8, which contains the trabeculae

and the fracture site. These results demonstrate that model based

on downsampled data perform much less well than model based

on real data. The quality of the reconstructed images of both the

trabeculae (green box in Figure 8A) and the fracture sites (blue

box in Figure 8B) is very bad, even similar to LR images.

Surprisingly, the difference in the PSNR values in Table 2 is

not as pronounced as shown in Figure 8. The above scenario

could be attributed to LR-HR image pairs based downsampled

are better matched and the do not suffer from errors in the

position of the real LR-HR image pairs. This makes it easier to

compare reconstruction results to show the difference between

the two LR-HR image pairs. In summary, for the informants in

this study, the commonly SR models used downsampled training

data are not suitable for medical imaging devices. In the field of

medical research, realistic paired images are essential.

4 Discussions

Prior studies that have noted the bone microstructure is a

significant predictor of osteoporosis and fracture risk [1, 50, 51].

However, The spatial resolution of the best CT imaging

technologies is only comparable to or slightly higher than

human trabecular bone thickness [52], resulting in fuzzy

representations of individual trabecular bone microstructure

with significant partial volume effects, which add significant

errors in measurements and interpretations. Thus, Micro-CT

is suitable for imaging bone microstructure. And it is well known

that ionizing radiation is harmful to animals and humans [10, 11,

53]. Even so, for a more accurate medical diagnosis, we need

imaging equipment that can cause damage to the body. We are

committed to reducing ionizing radiation while maintaining the

resolution of Micro-CT images. The first question in this study is

determining the SR factor. Previous pre-clinical or clinical image

studies have focused on small-factor SR [39, 40]. Thus, the

specific objective of this study is to establish an ×8 SR model

and it contributes to the development of the large-factor SR for

medical imaging.

TABLE 2 Quantitative results (on the test set) based on training with different paired LR and HR images.

Model Dataset PSNR PI

R2-RCANGAN HR (real data), LR (real data) 21.96 ± 2.49 7.20 ± 0.30

HR (real data), LR (downsampled) 21.12 ± 2.08 8.00 ± 0.31

FIGURE 8
Visual comparison of the models based on different training datasets. (A) Sample of the trabeculae bone. (B) Sample of the fracture site.
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In previous SR studies, LR image is downsampled version

generated from HR image [19–21]. In order for our SR model

to learn the real corruption of Micro-CT, LR images are

obtained from the equipment scans. Given that our samples

are live rats, the LR and HR images do not match due to the

offset position of the samples. We use feature point detection

and matching algorithms to create LR-HR image pairs. The

above image pairs support our model to learn the real Micro-

CT image corruption. And we also trained a model based on

downsampled data, which was much less effective than the

model trained on real data. These results further support the

importance of real data for medical SR.

Our SR model focuses not only on image reconstruction

accuracy, but also on perceptual quality. A negative relationship

between reconstruction accuracy and perceptual quality has

been reported in the literature [54]. In this study, the PSNR is

used to assess accuracy and the PI to assess perceptual quality.

R2-RCANGAN combines Res2Net, RCAN, and U-Net

discriminators. Its generator R2-RCAN has the advantage of

adaptive channel attention while increasing the network width,

making the network deep enough and increasing the multi-

scale feature extraction capability. In terms of PSNR, the

generator R2-RCAN sets a new state of the art. But these

PSRN-oriented SR models share the same problem: they

tend to output over-smoothed results without sufficient

high-frequency details. Simply, it is poorly related to the

human subjective evaluation and low perceptual quality. So

R2-RCANGAN incorporates a stable U-Net discriminator and

adjusted loss function, which increases the perceptual quality

substantially with a small loss of reconstruction accuracy. It is

only a little lower than the PI of ESRGAN, but the

reconstruction accuracy is much higher than that of

ESRGAN. Thus, we have designed an effective SR model.

R2-RCANGAN satisfies the accuracy reconstruction of pre-

clinical images and matches the perceptual quality of the

human visual system.

Despite these advances, several outstanding questions

remain to be addressed. Firstly, GAN training produces

some unpleasant error textures and requires much longer

training time [31, 32]. The more efficient architectures

should be further investigated. Optimizing the model

structure can increase model training efficiency and save

computational resources. Secondly, the technical route of

this research is applicable to various medical imaging fields

such as X-ray, CT, and MRI. We may create a personalized

SR model for a specific medical scene by obtaining LR-HR

datasets from different scanning devices. The limitation of

this study is that all of the data are scanned from a single

device, and applying images from other devices to this model

may lead to bias. The accuracy, stability, robustness and

extensibility of the R2-RCANGAN should be further

assessed and validated. Thirdly, there is abundant room

for further progress in determining more suitable

measures for evaluating SR results. Several researches have

proposed that PSNR cannot capture and accurately assess the

image quality associated with the human visual system [31,

47, 54]. A further study with more focus on more scientific

evaluation metrics is therefore suggested. Finally, CT

imaging assessment during rehabilitation is also critical,

both for fracture rehabilitation in humans and for

assessing fracture healing in animal experiments. The

assessment of post-fracture rehabilitation relies on post-

operative radiographs or CT [55], so that multiple

radiological examinations will bring a large amount of

ionizing radiation. Further work is necessary to establish

the viability of R2-RCANGAN in evaluating the degree of

healing during fracture recovery.

5 Conclusion

The purpose of the research is to perform a large-factor

SR (8×) reconstruction of Micro-CT images. The difference

is that previous SR researches get LR images through HR

image downsampling, while our HR and LR images are real

data obtained from Micro-CT. The SR model can learn the

real corruption process of Micro-CT imaging. The LR-HR

image pairs are made with the image processing technology

of image feature point matching. We propose the new

network R2-RCANGAN, which is based on Res2Net,

RCAN, and U-Net. Its generator network R2-RCAN

maintains the depth of the model while enhancing the

model’s ability for multi-scale feature extraction. In terms

of PSNR, R2-RCAN sets a new state of the art compared to

other methods. Adding a more stable U-net discriminator

and adjusting the weights of the loss function to fit this

experimental dataset. These enable R2-RCANGAN to

generate reconstructed images that combine

reconstruction accuracy and perceptual quality. Our R2-

RCANGAN is the first attempt at large-factor pre-clinical

image SR reconstruction and produces promising results.

Further research should be undertaken to verify the

effectiveness of SR during fracture rehabilitation, which

has important clinical implications.
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