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LIDAR is an excellent means to obtain the information of buildings, forests,

bridges, tunnels and many other big scenes, but the high price of 3D LIDAR

currently limits its further application. To meet this challenge a mobile 3D

imaging system based on 2D LIDAR is proposed. The system has the

characteristics of large imaging range and low cost. The composition and

implementation principle of each module of the system are introduced in

detail and a calibration method for the 3-axis assembly error is proposed. In

thismethod Levenberg-Marquardt (LM) optimization algorithm is used to obtain

the optimal value of the 2D LIDAR 3-axis attitude angle, which is used to

compensate for the point cloud distortion caused by the assembly error. The

experimental results show that the proposedmethod can effectively reduce the

point cloud distortion caused by assembly error. This system can meet the

application demand of big scenes 3D imaging.
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Introduction

3D imaging technology can accurately obtain environmental digital information, and

is also the key to realize the “digital twin” technology [1]. Indoor buildings such as rooms

and tunnels are essential parts of human life, and these environments have rich structural

features. 3D reconstruction of the interior of such buildings can achieve geometric

parameter measurement, facilitate monitoring and evaluation of static and dynamic assets

to achieve optimal decision-making, such as providing environmental data support for

VR, AR and mobile robot navigation.

As a kind of high-precision active detection technology with high resolution and

strong anti-interference capability, LIDAR [2] has received wide attention from

researchers, which is widely used in autonomous driving [3], remote sensing [4] and

3D reconstruction [5]. 3D LIDAR is certainly capable of 3D detection, but the current

high price leads to its poor cost-performance radio in some specific applications. While
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2D LIDAR [6] is inexpensive and has achieved more mature

commercialization, it is widely used in simultaneous localization

and mapping (SLAM) [7] for mobile robots. Compared to 3D

LIDAR, 2D LIDAR has higher cost-performance and a more

flexible field of view [8], but it can only obtain 2D plane

information. If 3D information can be obtained by combining

another dimension movement of 2D LIDAR, such a scheme will

be more competitive.

At present, the widely used method is to combine 2D LIDAR

with a rotating device [9, 10] such as a Pan-Tilt Unit to achieve

low-cost 3D scanning of the environment by supplementing the

third dimension with rotational scanning of the device. Although

such solutions can achieve 3D scanning of the environment,

these solutions have the disadvantage of poor detection range.

Considering that the actual working environment may be

complex or narrow scenes (e.g., offices and hallways), there

may also be some obstacles and other objects in the

environment. Thus there will be problems such as occlusion,

resulting in partial absence of the point cloud, making it difficult

to achieve a complete image of the environment in one scan. The

device must be moved at multiple locations for multiple scans.

The complete point cloud can only be formed after registration at

a later stage. So we can see that such operation is complicated,

inefficient and may generates registration errors.

Two key points [11] need to be solved in the scheme using 2D

LIDAR as the core sensor: one is to reduce the point cloud

distortion due to the assembly error [12], and the other is to carry

out accurate motion estimation of the device during scanning.

Inaccurate motion estimation and assembly errors of the attitude

angle will lead to significant point cloud deformation, resulting in

global point cloud images unusable.

In view of the characteristics and shortcomings of the

above methods, a low-cost 3D imaging system based on 2D

LIDAR is proposed in this paper. The 2D LIDAR is mounted

vertically on the mobile platform. The scanning plane of the

2D LIDAR is perpendicular to the horizontal plane, and the

range data of the vertically mounted 2D LIDAR is combined

with the movement data of the mobile platform. When the

scanning plane sweeps across a volume in space, the 3D scene

information is obtained. This solution overcomes the

scanning range of the fixed device and is capable of large-

scale scanning task. In this paper, we propose the composition

of each module of the system, the implementation principle,

and the calibration method for the 3-axis attitude angle.

Various experiments are performed to test the superior

performance of the system. The experiment results show

that point cloud distortion caused by the assembly error of

the system is significantly improved and can be used in the

measurement of regions and in the complete scene

reconstruction.

The remainder of this paper is organized as follows: the

components and parameters of the 3D imaging system are

described in Section 2, the working principle of the system

including the transformation relations between coordinate

systems, and the mathematical model for motion estimation,

are described in Section 3, Section 4 focuses on the

calibration method of the 3-axis attitude angle and revises

the complete coordinate generation formula after

calibration, Section 5 presents our experimental validation

in different scenes to verify the excellent performance of our

system. Finally, the summary of our work is outlined in

Section 6.

FIGURE 1
Hardware and software structure of the 3D imaging system.
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System overview

Hardware system

The whole hardware structure of the system is shown in

Figure 1. The hardware consists of 2D LIDAR, step motors,

IMU, STM32 driver board, Raspberry Pi 3B and power supply.

The 2D LIDAR is installed vertically on the center of the mobile

platform. The step motors are controlled by STM32 driver board

The speed of step motors is read by its optical encoder. The speed is

used to achieve wheel odometer. 2D LIDAR, step motors, IMU

obtain 2D point cloud, speed and attitude angle respectively. The

obtained information is transmitted to Raspberry Pi 3B, and fused to

generate the whole 3D point cloud bymulti-sensor fusion algorithm.

The 2D LIDARwe use in this study is YDLIDAR X4, this sensor

is based on the laser triangulation principle. The built-in rotating

module drives the ranging module to rotate 360° to achieve 360°

rotational scan, then the sampled laser points information of the

ranging distance and its scanning angle can be obtained. The

definition of the scanning angle is shown in Figure 2. The

scanning angle is the angle between the laser measurement optical

path and the vertical direction. The specific parameters are shown in

Table 1. It has high cost-performance and can meet the performance

requirements of general indoor applications. The IMU is HI 219, and

its specific accuracy is shown in Table 2. The speed accuracy of the

step motors is 1% per meter.

Software system

Our software system is based on Robot Operating System

(ROS), and the software system is divided into three levels,

namely, hardware driver, coordinate transformation, and multi-

sensor fusion. The software architecture is shown in Figure 3.

The hardware driver is responsible for controlling and

reading the range data from 2D LIDAR, pose data from IMU,

and sending velocity control commands to the STM32 driver

board. And the driver board controls the motor speed through

PID algorithm and receives motor velocity which is transmitted

back to Raspberry Pi for motion estimation of the wheel

odometer. The relative position of each sensor is defined in

the coordinate transformation module. And the coordinate

transformation module is also responsible for fusing the pose

data from IMU and the wheel odometer to complete motion

estimation of the platform by Extended Kalman Filter (EKF). The

data fusion module fuses the transformation matrix obtained

from the motion estimation and the range data from 2D LIDAR

to generate the coordinates in the world coordinate system. The

complete point cloud is generated by adding up the coordinates

in the world coordinate system frame by frame.

Operation principle

Coordinate system model

In this section we define the coordinate systems of multiple

sensors in the system, and the coordinate systems are all in

Cartesian right-handed coordinate system. The transformation

relationship between the coordinate systems is elaborated.

As shown in Figure 4, we define Body as the center of motion,

Laser as the coordinate system of 2D LIDAR, and Imu as the

coordinate system of IMU. The coordinate system Body is used

as the origin to establish the reference coordinate system. The

world coordinate system is the geodetic coordinate system, which

coincides with the initial position of the Body coordinate system.

As shown in Figure 4, h is the distance from the origin of the 2D

LIDAR coordinate system to the xOy plane of the reference

coordinate system, wheel_distance is the distance from the center

of the wheel to the center of motion, l1 is the displacement from

the center of the 2D LIDAR coordinate system to the reference

coordinate system along the x-axis direction, and l2 is the

FIGURE 2
The definition of the scanning angle.

TABLE 1 The specific parameters of YDLIDAR X4.

Parameter Distance range Distance accuracy Angular resolution Sample frequency (kHz) Scan frequency (Hz)

Value 0.12–10 m <1% 0.5° 5 7

TABLE 2 The specific accuracy of HI 219.

Parameter Roll/pitch (static) Roll/pitch (dynamic) Yaw

Value 0.2°–0.4° 0.5°–2.0° 0.5°
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displacement from the center of the IMU coordinate system to

the reference coordinate system along the x-axis direction. A 2D

point in the lidar frame is obtained by converting a range

measurement ρ from polar to Cartesian coordinate using the

current position of the lidar rotating angle θ in Eq. 1.

⎧⎪⎨⎪⎩
xLi � 0

yLi � ρi × cos θi
zLi � ρi × sin θi

. (1)

Wheel odometer

The motion of the platform can be regarded as the rigid body

plane motion, which can be decomposed into two kinds of motion:

translation and rotation, which contains the translation in x-y

direction, and the rotation around z-axis. So the motion of the

platform can be decomposed into 3 degrees of freedom. When the

speed of the left and right drivingwheels are the same, the position of

the platform changes and the heading direction remains the same,

while different, the position and the heading direction both change

at the same time.We use the optical encoder on the drivingwheels to

read the rotational speed of the left and right driving wheels. The

wheel odometer model is established based on the rotational speed

of the two wheels, respectively.

The velocity of the geometric center is [vc ω]
T. The linear

velocity vc is positive when the heading direction is the same as

the x-axis direction, and negative when opposite; the angular

velocity ω is positive when the car rotates counterclockwise, and

negative when opposite.

FIGURE 3
Software architecture of the 3D imaging system.

FIGURE 4
The schematic design and parameters of the 3D imaging system.
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[ vc
ω
] �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2

1
2

1
2 × wheel distance

− 1
2 × wheel distance

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ vrvl ]
(2)

Then we have the kinematic recurrence relation matrix

⎡⎢⎢⎢⎢⎢⎣XO(k)
YO(k)
θO(k)

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣XO(k − 1)
YO(k − 1)
θO(k − 1)

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣ cos θO −sin θO 0
sin θO cos θO 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣dXO

dYO

dθO

⎤⎥⎥⎥⎥⎥⎦ (3)

Where [XO(k) YO(k) θO(k) ]T is the position of the platform

in the world coordinate system derived by the wheel odometer at

the current moment, [XO(k − 1) YO(k − 1) θO(k − 1) ]Tis the
position of the platform in the world coordinate system derived

by the wheel odometer at the previous moment, and

[ dXO dYO dθO ]T is the kinematic increment solved at the

current moment. Where,

⎧⎪⎨⎪⎩
dXO � vcdt cos θO
dYO � vcdt sin θO

dθO � ωdt
. (4)

Extended kalman filter

Since wheel slippage is inevitable, using the wheel

odometer model alone for track deduction will result in

errors, leading to inaccurate motion estimation. To obtain

more accurate motion estimation, we use an EKF to fuse the

wheel odometer and IMU.

Extended Kalman Filter is divided into two parts: prediction

and update.

The complete state variables of the platform are defined as

xk � [Xk, Yk, θk]T, control variables are defined as uk � [v,ω]T.
The complete state of the platform is used as the prediction

model, and the wheel odometer and IMU are used as the

observation model.

The equation of state of the system is defined as:

xk � [Xk−1 + vk−1dt cosθk−1 Yk−1 + vk−1dt sinθk−1 θk−1 + ωk−1dt ]T.
(5)

Then the system state transfer equation is defined as:

xk � f(xk−1, uk) + wk−1. (6)
Where f(xk−1, uk) is the state transfer matrix of the system at

moment k-1.uk is the system control input and wk−1 is the

Gaussian noise of the system at moment k-1. zk is the

observation equation of the system

zk � h(xk) + vk. (7)

Where h(xk) is the observed model transfer matrix, vk is the

observed Gaussian noise.

1) Prediction. Calculate the predicted value x̂k � f(x̂k−1, uk)
and covariance matrix P̂k � Fk−1Pk−1FT

k−1 + Qk−1. Where F is the

Jacobi matrix of the state transfer function and Q is the variance

of the normal distribution at moment k-1.

2) Update. Calculate Kalman gain, optimal estimate and error

covariance matrix:

Kk � PkH
T
k [Rk +HkPkH

T
k ]−1; (8)

x̂k � x̂k−1 + Kk[zk − h(x̂k−1)]; (9)
Pk � [I −KkHk]P̂k. (10)

In this section we define the coordinate systems of

multiple sensors in the system, and the coordinate systems

are all in Cartesian right-handed coordinate system. The

transformation relationship between the coordinate systems

is elaborated.Where Hk is the Jacobi matrix of the sensor

function and Rk is the variance of the normal distribution at

moment k.

Extended Kalman Filter can get more accurate coordinates of

the car in the world coordinate system. So the transformation

matrix from the reference coordinates to world coordinates can

be obtained as follows

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos θi −sin θi 0 Xi

sin θi cos θi 0 Yi

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

Then we can obtain the global point cloud coordinate

equation.

PW � A(PL + T1). (12)

Calibration method and strategy

Calibration method

The quality of the point cloud depends on the accuracy of

its coordinates which are obtained by the precise

transformation matrix between coordinate systems [13].

Since assembly errors will inevitably exist during assembly,

it is not physically possible to install the 2D LIDAR perfectly

vertically. So angular deviations will inevitably occur, that is,

the actual 2D LIDAR coordinate system L′ may not coincide

with the theoretical coordinate system L. The bias includes

three rotational degrees of freedom (coordinate system

rotational angle γ along the x-axis, angle β along the y-axis,

angle α along the z-axis), which will result in the ideal

scanning plane being different from the actual, as shown in

Figure 5.

Therefore, the bias will cause the actual rotation matrix to be

different from the theoretical rotationmatrix, which in turn will lead
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to distortions in the global point cloud. When the car drives along a

complete circle, the certain object will be repeatedly scanned twice

and this distortion becomes a particularly noticeable ghost image, as

shown in Figure 6. We can find distortion between two parts of the

ceiling and the vertical wall after two scans.

Therefore, it is necessary to calibrate the three-axis attitude

angle of the 2D LIDAR accurately to obtain the accurate

transformation matrix between the actual and ideal coordinate

systems. The traditional measurement-based methods are

difficult to obtain accurate calibration results, so after the

equipment is built, real point cloud need to be collected for

calibration. Some calibration methods have been proposed for

such problems. The methods provided in the literature [14–16]

require the addition of camera and checkerboard, etc. For

calibration, which is complex to operate and the added

sensors may introduce more uncertainties. The method

provided in the literature [17] calibrate only one angle rather

than three, so the final result still has some errors. The calibration

method based on planar alignment proposed in this paper is able

to perform a complete calibration of the three-axis attitude angle

without adding another sensor, and obtain an accurate three-axis

attitude angle.

The rotation matrix of the 2D LIDAR is defined as

R � ⎡⎢⎢⎢⎢⎢⎣ cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin β
sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ
−sin β cos β sin γ cos β cos γ

⎤⎥⎥⎥⎥⎥⎦
(13)

So the complete coordinate transformation is defined

correctly as

P′
W � A(RPL + T1). (14)

Calibration is carried out according to the following steps:

1) Actuate the car to drive along a circle at a constant rate;

2) Extract the calibration target and determine the

corresponding points, establish the cost function;

3) Calculate the three-axis attitude angle when the cost

function is minimized using the LM nonlinear optimization

algorithm;

4) Adjust the transformation matrix according to the

calibration results and regenerate the point cloud;

5) Fit the ceiling plane using the RANSAC algorithm and

analyze the fitting effect.

The calibration target is stuck on the window so that it is

convenient to extract the target plane. When the car is actuated

according to the above steps, and the point cloud of the calibration

target can be obtained after two scans. As the car drives along a circle

at a constant rate, the calibration target is actually scanned twice,

which can be used to construct two point clouds. However, the

corresponding points of the two scans cannot be overlapped due to

the bias of the 2D LIDAR, as shown in Figure 7.

LM Optimized Algorithm.

We define the distance between the corresponding laser

points in the two point clouds as

d � ����PW1
′ − P′

W2

����. (15)

Where PW1
′ and PW2

′ are the corresponding points of the two

scans in the world coordinate system, respectively. The purpose

of the calibration is to find the three-axis attitude angle of the LIDAR

to make the corresponding points of the two scans coincide,

FIGURE 5
The comparison of the ideal and actual laser scanning plane due to the angular error about the three axes (A) x-axis (B) y-axis (C) z-axis.

FIGURE 6
Original scan captured by our system without calibration,
visible distortion is marked in red box (A) distortion in ceiling (B)
distortion in wall.
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specifically to optimize the minimum distance d between the

corresponding laser points of the two point clouds, as shown in

the following equation:

[α, β, γ] � argmin
α,β,γ

{F(α, β, γ)}. (16)

Where the cost function is defined as

F(α, β, γ) � 1
m
∑m

k�1d(k)2 �
1
m
∑m

k�1
����P′k

W1 − P′k
W2

����2
� 1
m
∑m

k�1
�����Ak

1(RPk
L1 + T1) − Ak

2(RPk
L2 + T1)�����2 (17)

Four corresponding edge points are selected in each scan, as

shown in Figure 7B. The selected four matching pairs of points

are used in Equation 17 to obtain the optimal calibration

parameters. The calibration problem is a nonlinear

optimization problem, and we apply the LM algorithm to solve it.

Experiments and analysis

After the establishment of system and the calibration model,

we performed the calibration experiment and scanning

experiment in practical indoor environment, and analyzed the

measurement accuracy of the system respectively.

Calibration experiment

In the calibration experiment, we actuate the car according to

the steps mentioned in Section 4, the radius of the driving circle

of the center of motion is 0.83 m, and the calibration target is

placed in the environment, as shown in Figure 7A. The LM

algorithm is used to optimize the calibration formula, and the

mean square error variation curve of the point cloud and the

variation curve of the three-axis attitude angle with the number

of iterations during the iteration are shown in Figure 8.

After adopting LM algorithm, the final result is α =

-0.0058 rad, β = 0.0126 rad, γ = 0.0355 rad. We use the

calibration results into Equation 14 to reconstruct the point

cloud. As shown in Figures 9A,B, the distortion of the ceiling

and wall has been improved significantly. To characterize the

accuracy of the calibration, we calculate the deviation and normal

vector between the measured plane and the actual plane to

evaluate the accuracy of our method, where the plane normal

vector is obtained by plane fitting using RANSAC algorithm, and

the obtained normal vector is (-0.012,0.011,0.099)T, which is very

close to (0,0,1)T. As shown in Figure 9C D, the deviation

comparison of calibrated and uncalibrated plane is visualized

by histogram.

Similarly, we performed a comparison test in a stairwell, an

environment with more structured scenes for observing the

aberrations. We controlled the car to scan a specific area twice

and calibrated the point cloud distortion according to the optimal

value in Section 5.1. By comparing the point clouds obtained

before and after calibration, we can see that the distortion of the

point cloud has improved significantly. The results of the test are

shown in Figure 10.

Scanning experiment

We performed a complete scan of the laboratory, tested the

good performance of Extended Kalman Filter, point cloud

density and measurement accuracy. The environment is a

10*5*2.5 m room, the car drives in a closed loop, moving at a

speed about 0.20 m/s. The experiment scene and results are

shown in Figure 11. Due to the wheel odometer’s error, the

trajectory is inaccurate and the loop cannot be closed. During the

scanning process, some areas were scanned twice and we can see

some mismatch in those areas. As shown in Figures 11C,D, we

can see some details in the zoomed-in region, which shows the

improvement of the EKF optimization. After the application of

EKF optimization, the trajectory is more accurate, so the

mismatch of the point cloud is significantly improved. As

shown in Figures 11E,F, some objects in the lab can be

displayed in the point cloud, but some objects cannot due to

the different scattering and absorption of the laser by the object

material.

We used a representation based on the average distance to

represent the sparsity of the point cloud distribution. In a

point cloud C with number of points N, dis(p,q) denotes the

distance between point p and any other point q, and dp
denotes the minimum distance between point p and other

points, then the average distance density of the point cloud is

defined as

FIGURE 7
Experiment environment and different views of the point
cloud obtained by two scans of the calibration target (A)
experiment environment (B) front view (C) side view (D) top view.
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�d � 1
N

∑N
p�1

dp. (18)

Where

dp � min(dis(p, q)), q � 1, 2,/, N, p ≠ q. (19)

The smaller the �d, the denser the point cloud distribution,

and vice versa. The obtained point cloud density �d is 0.1325.

In order to evaluate the measurement accuracy of the system,

we first filter the point cloud to reduce noise, and then use

RANSAC algorithm to fit different wall and ceiling planes to

FIGURE 8
LM algorithm optimization results of calibration (A) optimization results of three-axis attitude Angle under different iterations (B) MSE of two
point clouds.

FIGURE 9
Deviation comparison of the uncalibrated plane and the calibrated plane, respectively (A) ceiling plane (B)wall plane (C) ceiling plane histogram
(D) wall plane histogram.
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obtain the plane equations of the corresponding planes, as shown

in Figure 12A. The fitting results are listed in Equations 20–24.

Then, we use the distance of the corresponding plane to represent

the experimental value of L1, L2 and L3 respectively. The

statistical results are presented by boxplots, as shown in

Figure 12B.

P11: − 1.0000x − 0.0072y + 0.0061z + 6.2418 � 0 (20)

P12: 0.9998x + 0.0189y + 0.0055z − 4.1121 � 0 (21)
P21: 0.0081x − 1.0000y + 0.0042z − 1.0315 � 0 (22)

P22: − 0.0396x + 0.9992y + 0.0049z + 4.9593 � 0 (23)
P3: 3.1652e − 4x + 0.0018y − 1.0000z + 2.3575 � 0 (24)

The comparison of experimental and actual value is shown in

Table 3. From the results, we can see that the accuracy of the

system is acceptable.

FIGURE 10
Deviation comparisons in a stairwell. The ladder plate and platform beam are used as the contrast objects, namely, Target one and Target 2 (A)
the experiment scene: stairwell (B) target point cloud before calibration (C) target point cloud after calibration (D) deviation comparison of Target
1 (E) deviation comparison of Target 2.
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FIGURE 11
Different views of the point cloud (A) the experiment environment (B) top view of the point cloud (C) the mismatch before EKF optimization (D)
the mismatch after EKF optimization (E) worktop (F) laboratory casework.

FIGURE 12
Accuracy results (A) plane segmentation results (B) measurement statistical results shown in boxplots.
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Conclusion

In summary, this paper proposes a low-cost mobile 3D

imaging system based on 2D LIDAR. The software and

hardware components are introduced, and the theoretical

model is derived. The system can realize a wide range of 3D

scanning of the environment, which can be used for big scenes

3D mapping and reconstruction. For this system, the assembly

error of 2D LIDAR is an important cause of point cloud

distortion. To solve this problem, we propose a calibration

method based on targeted calibration plane registration, which

can calibrate the 3-axis error angles without adding extra

sensor. LM nonlinear optimization algorithm is used to

calculate the results. The experiments verify the superior

performance of the system and the validity of the calibration

method. The system not only reduces the cost but also ensures

the accuracy. It is anticipated that this system will greatly

expand the availability of LIDAR in a wide range of

applications.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

Writing-original draft preparation, conceptualization was

provided by RM Data curation was provided by XL

Investigation, methodology was provided by YP Validation,

formal analysis was provided by LL.

Funding

This research was funded by the National Natural Science

Foundation of China (NSFC) (61905063, 61905061); the Natural

Science Foundation of Hebei Province, China (F2020202055).

Acknowledgments

The authors are thankful to other colleagues in their

laboratory for their understanding and help.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Baek J, Park J, Cho S, Lee C. 3D global localization in the underground mine
environment using mobile LiDAR mapping and point cloud registration. Sensors
(2022) 22:2873. doi:10.3390/s22082873

2. Williams K, Olsen MJ, Roe GV, Glennie C. Synthesis of transportation
applications of mobile LIDAR. Remote Sensing (2013) 5:4652–92. doi:10.3390/
rs5094652

3. Li Y, Ibanez-Guzman J. Lidar for autonomous driving: The
principles, challenges, and trends for automotive lidar and perception
systems. IEEE Signal Process Mag (2020) 37:50–61. doi:10.1109/msp.2020.
2973615

4. Liu K, Ma HC, Ma HC, Cai Z, Zhang L. Building extraction from airborne
LiDAR data based on min-cut and improved post-processing. Remote Sensing
(2020) 12:2849. doi:10.3390/rs12172849

5. Wu QY, Yang HB, Wei MQ, Remil O, Wang B, Wang J. Automatic 3D
reconstruction of electrical substation scene from LiDAR point cloud. ISPRS

J Photogrammetry Remote Sensing (2018) 143:57–71. doi:10.1016/j.isprsjprs.2018.
04.024

6. Konolige K, Augenbraun J, Donaldson N, Fiebig C, Shah P. Ieee. A low-cost laser
distance sensor. In: Proceedings of IEEE international conference on robotics and
automation. Pasadena, CA (2008). p. 3002–+. doi:10.1109/ROBOT.2008.4543666

7. Hess W, Kohler D, Rapp H, Andor D. Real-time loop closure in 2D LIDAR
SLAM. Ieee Int Conf Robotics Automation (Icra) (2016) 1271–8. doi:10.1109/icra.
2016.7487258

8. Wang H, Lin Y, Wang Z, Yao Y, Zhang Y, Wu L. Validation of a low-cost 2D
laser scanner in development of a more-affordable mobile terrestrial proximal
sensing system for 3D plant structure phenotyping in indoor environment. Comput
Elect Agric (2017) 140:180–9. doi:10.1016/j.compag.2017.06.002

9. Xu X, LuoM, Tan Z, ZhangM, Yang H. Plane segmentation and fitting method
of point clouds based on improved density clustering algorithm for laser radar.
Infrared Phys Tech (2019) 96:133–40. doi:10.1016/j.infrared.2018.11.019

TABLE 3 Comparison of experimental and actual value.

Item L1 L2 L3

Experiment Value 10.354 m 5.859 m 2.358 m

Actual Value 10.330 m 5.850 m 2.350 m

Frontiers in Physics frontiersin.org11

Miao et al. 10.3389/fphy.2022.993297

https://doi.org/10.3390/s22082873
https://doi.org/10.3390/rs5094652
https://doi.org/10.3390/rs5094652
https://doi.org/10.1109/msp.2020.2973615
https://doi.org/10.1109/msp.2020.2973615
https://doi.org/10.3390/rs12172849
https://doi.org/10.1016/j.isprsjprs.2018.04.024
https://doi.org/10.1016/j.isprsjprs.2018.04.024
https://doi.org/10.1109/ROBOT.2008.4543666
https://doi.org/10.1109/icra.2016.7487258
https://doi.org/10.1109/icra.2016.7487258
https://doi.org/10.1016/j.compag.2017.06.002
https://doi.org/10.1016/j.infrared.2018.11.019
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.993297


10. Bauersfeld L, Ducard G. Low-cost 3D laser design and evaluation with
mapping techniques review. In: Proceedings of 2019 IEEE sensors applications
symposium (2019). (SAS).

11. Bi S, Yuan C, Liu C, Cheng J, Wang W, Cai Y. A survey of low-cost 3D
laser scanning technology. Appl Sci (2021) 11:3938. doi:10.3390/
app11093938

12. Yuan C, Bi S, Cheng J, Yang D, Wang W. Low-cost calibration of matching
error between lidar and motor for a rotating 2D lidar.Appl Sci (2021) 11:913. doi:10.
3390/app11030913

13. Zhao Haipeng H, Du Yuhong Y, Ding Juan J, Zhao Di D, Shi Yijun Y. LiDAR
ranging angle measurement calibration method in mobile robot. 红外与激光工程
(2019) 48(68):630002–0630002. doi:10.3788/irla201948.0630002

14. Olivka P, Krumnikl M,Moravec P, Seidl D. Calibration of short range 2D laser
range finder for 3D SLAM usage. J Sensors (2016) 3715129. doi:10.1155/2016/
3715129

15. So E, Basso F, Menegatti E. Calibration of a rotating 2D laser range
finder using point-plane constraints. J Automation Mobile Robotics Intell Syst
(2013). doi:10.1007/978-3-319-10774-5_15

16. Kurnianggoro L, Hoang V, Jo KH. Calibration of a 2D laser scanner system
and rotating platform using a point-plane constraint. Comsis J (2015) 12:307–22.
doi:10.2298/csis141020093k

17. Zeng Y, Yu H, Dai H, Song S, Lin M, Sun B, et al. An improved calibration
method for a rotating 2D LIDAR system. Sensors (2018) 18:497. doi:10.3390/
s18020497

Frontiers in Physics frontiersin.org12

Miao et al. 10.3389/fphy.2022.993297

https://doi.org/10.3390/app11093938
https://doi.org/10.3390/app11093938
https://doi.org/10.3390/app11030913
https://doi.org/10.3390/app11030913
https://doi.org/10.3788/irla201948.0630002
https://doi.org/10.1155/2016/3715129
https://doi.org/10.1155/2016/3715129
https://doi.org/10.1007/978-3-319-10774-5_15
https://doi.org/10.2298/csis141020093k
https://doi.org/10.3390/s18020497
https://doi.org/10.3390/s18020497
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.993297

	Design of a mobile 3D imaging system based on 2D LIDAR and calibration with levenberg–marquardt optimization algorithm
	Introduction
	System overview
	Hardware system
	Software system

	Operation principle
	Coordinate system model
	Wheel odometer
	Extended kalman filter

	Calibration method and strategy
	Calibration method

	Experiments and analysis
	Calibration experiment
	Scanning experiment

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


