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We present a comprehensive review about the various facets of kink solutions

with a power law tail, which have received considerable attention during the last

few years. This area of research is in its early stages; although several aspects

have become clear by now, there are a number of issues which have only been

partially understood or not understood at all. We first discuss the aspects which

are reasonably well known and then address in some detail the issues which are

only partially or not understood at all. We present a wide class of higher (than

sixth) order field theory models admitting implicit kink as well as mirror kink

solutions where the two tails facing each other have a power law or a power-

tower type fall off, whereas the other two ends not facing each other could have

either an exponential or a power law tail. The models admitting implicit kink

solutions where the two ends facing each other have an exponential tail while

the other two ends have a power law tail are also discussed. Moreover, we

present several field theory models which admit explicit kink solutions with a

power law fall off; we note that in all these polynomial models while the

potential V(ϕ) is continuous, its derivative is discontinuous. We also discuss

one of the most important and only partially understood issues of the kink–kink

and the kink–antikink forces in case the tails facing each other have a power law

fall off. Finally, we briefly discuss the kink–antikink collisions at finite velocity and

present some open questions.
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1 Introduction

Recently, it was found that certain 1 + 1 dimensional higher order field theories,

including ϕ8, ϕ10, and ϕ12 models, admit kink solutions with a power law tail at either both

the ends or a power law tail at one end and an exponential tail at the other end [1–3]. An

example of the latter is the octic potential first studied in the context of massless mesons

[4] as well as some other studies related to the kink solutions with a long-range tail [5, 6, 7,

8, 9, 10, 10a, 11, 12]. This is in contrast to almost all the kink solutions that have been

discussed during the last four decades where the kink solutions have an exponential tail at

both the ends [13–17], with the prototype being the celebrated ϕ4 kink. We provide,

however, an example of a ϕ6 kink with a power law tail [11] in Section 9. The study of

higher order field theories and their attendant kink excitations as well as the associated

kink interactions and scattering are important in a variety of physical contexts ranging
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from successive phase transitions [1, 2, 18, 19, 19a] to

isostructural phase transitions [20] to models involving long-

range interaction between massless mesons [4], as well as from

protein crystallization [21] to successive phase transitions

presumably driving the late time expansion of the Universe

[22]. Thus, understanding kink behavior in these models

provides useful insights into the properties of domain walls in

materials, condensed matter, high energy physics, biology, and

cosmology.

The discovery of these power law kinks has raised several

interesting questions such as the strength and the range of the

kink–kink (K-K) and the kink–antikink (K-AK) forces [23, 24],

possibility of resonances [25] and scattering [26–29], stability

analysis of such kinks [11], and explicit kink solutions with

power law tail. From this perspective, it is worth noting that the

celebrated Manton’s method [14, 30] using collective coordinates

provides the answer for both the strength and the range of the

K-K and K-AK interactions in case they have an exponential tail

facing each other. By now some aspects of the kink solutions with

a power law tail have been understood while several issues are

either only partially or not understood at all. We reckon that it is

now the appropriate time to provide a comprehensive review of

those aspects which are reasonably well understood and also

clearly bring out the issues which are either only partially or not

understood at all and deserve further attention.

Some of the key issues related to the kink solutions with

power law tails are as follows:

1) What are the signatures of the kink solutions with a power law

tail in contrast to the kink solutions with an exponential tail?

2) What are the various possible types of models where the kink

tail at either one end or both the ends has either a power law

or an effective power law fall off?

3) Are there explicit kink solutions with a power law tail at either

one or both the ends?

4) Can one estimate the kink–kink and the kink–antikink forces

in case these kink solutions have power law tails? How do

these forces compare to the corresponding K-K and K-AK

forces in case the kink solutions have exponential tails? In

addition, what is the ratio of the magnitude of the K-AK and

K-K forces in such cases? Note that for the exponential tail

case, this ratio is one.

5) Is there a bound state formation and are there escape

windows when one considers the collision of the kink and

the antikink with power law tails at finite velocity and if yes, is

it universal?

The purpose of this review article is to provide answers to

some of the questions raised above and clearly spell out the issues

which are either only partially understood or not understood at

all so far.

The plan of the review is the following. In Section 2, we first

set up the notations and show that there is always an underlying

supersymmetry in the problem when we set up the Schrödinger-

like kink stability equation. We also show that sometimes it is

more convenient to consider the Schrödinger-like stability

equation in the field variable ϕ rather than the coordinate x.

We then give a recipe for constructing kink solutions with a

power law tail. Next, we show that in the case of the kink

solutions with a power law tail at either one or both the ends,

there is no gap between the zero mode and the beginning of the

continuum in the Schrödinger-like stability equation. In

addition, we consider the case of two adjoining kinks and

point out the various possible forms for the kink tails in the

two adjoining kink case.

In Sections 3–9, we consider distinct possible one-parameter

family of potentials corresponding to the various possible forms

for the two adjoining kinks with at least one power law tail. In

particular, in Sections 3–6, we discuss one-parameter family of

potentials admitting a kink from 0 to 1 and amirror kink from −1

to 0 and the corresponding two antikinks where either two or all

four of the kink tails have a power law fall off. In Section 3 [31],

we present a one-parameter family of potentials of the form

ϕ2n+2(1 − ϕ2)2, n = 1, 2, 3, . . .. For all the kink solutions of this

model, while around ϕ = 0 one has a power law tail, around

ϕ = ±1 one has an exponential tail. In Section 4 [31], we present a

one-parameter family of potentials of the form ϕ2(1 − ϕ2)2n+2,
n = 1, 2, 3, . . .. For all the kink solutions of this model, while

around ϕ = 0 one has an exponential tail, around ϕ = ±1 one has a

power law tail. In Section 5 [31], we present a two-parameter

family of potentials of the form ϕ2m+2(1 − ϕ2)2n+2, n, m ≥ 1, the

kink solutions of which have a power law tail around both ϕ = 0

as well as ϕ = ±1. In Section 6 [32], we present a one-parameter

family of potentials of the form ϕ2m+2[(1/2) ln(ϕ2)]2,m = 1, 2, 3,

. . .; for the kink solution of this model, while around ϕ = 0 one

has a power-tower tail (which is effectively a power law type tail),

around ϕ = ±1 one has an exponential tail. Furthermore, in the

same section, we also present a two-parameter family of

potentials of the form ϕ2m+2[(1/2) ln(ϕ2)]2n+2, m, n = 1, 2, 3,

. . . ; for the kink solution of this model, while around ϕ = 0 one

has a power-tower tail (which is effectively a power law type tail),

around ϕ = ±1 one has a power law tail.

In Sections 7 and 8, we present a one-parameter family of

potentials admitting non-mirror kinks and the corresponding

antikinks with kink tails of the form pppe and eeep, respectively,

where p and e correspond to power law and exponential tail,

respectively. In particular, in Section 7, we present a one-

parameter family of potentials of the form V(ϕ) �
1
2(1 − ϕ2)2n+2(2 − ϕ2)2, n � 1, 2, 3, . . . which admit a kink

solution from −1 to 1 with a power law tail around both

ϕ = −1 and ϕ = 1 and another kink solution from 1 to
�
2

√
(and the corresponding mirror kink solution from − �

2
√

to −1)

with a power law kink tail around ϕ = 1 but an exponential tail

around ϕ � �
2

√
. In Section 8, we present a one-parameter family

of potentials of the form V(ϕ) � 1
2(1 − ϕ2)2(2 − ϕ2)2n+2, n �

1, 2, 3, . . . which admit a kink solution from −1 to 1 with an
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exponential tail around both ϕ = −1 and ϕ = 1 and another kink

solution from 1 to
�
2

√
(and the corresponding mirror kink from

− �
2

√
to −1) with an exponential kink tail around ϕ = 1 but a

power law tail around ϕ � �
2

√
.

Unfortunately, all the kink solutions discussed in

Sections 3–8 are only in an implicit form. In Section 9, we

discuss three different models for which explicit kink

solutions with a power law tail can be obtained. In

particular, we discuss two different one-parameter family

of potentials of the form ϕ2n+2|1 − ϕ2n|3 and |1 − ϕ2n|(2n+1)/n,

where n = 1, 2, 3, . . . for which explicit kink solutions with

power law tails can be obtained [33]. We note that in both

these models, while the potential V(ϕ) is continuous around

ϕ = ±1, its derivative is not continuous. We also discuss one

nonpolynomial model in which an explicit kink solution with

a power law tail can be obtained [34,35,35a]. The nice thing

about this model is that in this model the potential V(ϕ) and

its derivative are both continuous. In Section 10, we discuss

what we consider to be the most important (and not so well

understood) issue of the K-K and K-AK forces in the case of

kink solutions with power law tails. Following the seminal

paper of Manton [23], we show that both the K-K and K-AK

forces have a power law fall off in contrast to the

exponentially small K-K and K-AK forces in the case of

the exponential tail. Furthermore, it turns out that while

the ratio of the magnitude of the K-AK force to the K-K force

is always one in the case of the models with exponential tails,

this ratio is in fact always less than one and progressively

decreases as the kink tail becomes progressively longer [24].

In Section 11, we discuss the question of the kink–antikink

collisions at finite (nonzero) velocity in the case of the kinks

with a power law tail. Finally, in Section 12 ,we highlight

some of the major issues which are either only partially or not

understood at all.

2 Formalism

Consider a relativistic, neutral scalar field theory in 1 + 1

dimensions with the Lagrangian density

L � 1
2

zϕ

zt
( )2

− 1
2

zϕ

zx
( )2

− V(ϕ), (1)

which leads to the equation of motion

z2ϕ

zt2
( ) − z2ϕ

zx2
( ) � −dV

dϕ
. (2)

We are working in the Minkowski space and will use the metric

ημ] = diag( + 1, −1). Furthermore, since the Lagrangian does not

explicitly depend on the space-time coordinates, by invoking

Noether’s theorem it follows that there is a conserved energy-

momentum tensor, as follows:

Tμ] � zL
z(zμϕ)z]ϕ − ημ]L

� zμϕz]ϕ − ημ]L,
(3)

with zμTμ] = 0. Thus, the energy density E and the momentum

density P can be immediately obtained from the components of

the energy-momentum tensor:

T00 � E � 1
2
( _ϕ)2 + 1

2
(ϕ′)2 + V(ϕ), (4)

T01 � _ϕϕ′ � −P. (5)

Here, _ϕ and ϕ′ correspond, respectively, to the time and the space

derivative of ϕ. We assume that the potential V(ϕ) is smooth and

non-negative. Thus V(ϕ) attains its global minimum value of

V(ϕ) = 0 for one or more values of ϕ which are the global minima

of the theory. We shall choose V(ϕ) such that it has two or more

global minima so that one has static kink and antikink solutions

interpolating between the two adjacent global minima as x

increases from − ∞ to + ∞.

Since the neutral relativistic scalar field theory, as given by

Eq. 1, is Lorentz invariant, once the static kink solution is known,

the corresponding time-dependent solution can be easily

obtained by Lorentz transformation. Hence, it is enough to

look for the static kink solution of the field equation

d2ϕ

dx2
( ) � dV

dϕ
. (6)

On integrating Eq. 6 and using the fact that for the kink solution

V(ϕ) as well as dϕ
dx vanish at the degenerate global minima, say ϕ =

a and ϕ = b, one obtains the first order ODE, as follows:

dϕ

dx
� ±

������
2V(ϕ)

√
. (7)

This is a special case of the Bogomolnyi technique [36] (although

known much earlier in this context). Here, the equations with +

and − sign are called the self-dual and anti-self-dual field

equations, respectively. We will refer to the first order

equation as the Bogomolnyi equation for the kink.

The corresponding static kink energy E (which also equals

the corresponding antikink energy) and which is also referred to

as the kink mass MK is given by

MK � ∫∞

−∞
1
2

dϕ

dx
( )2

+ V(ϕ)( ) dx. (8)

In view of the first order Eq. 7, the kink massMK takes a simpler

form:

MK � ∫ϕ�b

ϕ�a

������
2V(ϕ)

√
dϕ, (9)

where as x goes from −∞ to +∞, the kink solution goes from one

minimum at ϕ = a to the adjacent minimum at ϕ = b. Since we are

considering a relativistic neutral scalar field theory, once a static
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kink solution is known, the corresponding moving kink solution

is immediately obtained by a Lorentz boost.

The recipe for constructing kink solutions with a power law

tail or an exponential tail is clear and well known. Since a kink

solution has finite energy it implies that the solution must

approach one of the minima (vacua) ϕ0 of the theory as x

approaches either +∞ or − ∞. If the lowest non-vanishing

term of the potential at the minimum has order m, then by

Taylor expanding the potential at the minimum and writing the

field close to it as ϕ = ϕ0 + η, one finds that the self-dual (or

Bogomolnyi) first order equation in η implies the following

(assuming that the potential vanishes at the minimum):

dη

dx
∝ ηm/2. (10)

Thus, if m = 2 then η ∝ e−αx so that the kink tail has an

exponential fall off, whereas if m > 2 then η ∝ 1/x2/(m−2) so

that it is a power law kink tail. This recipe has been used to

construct several one-parameter family of potentials with various

possible forms of the power law and the exponential tails.

As it is well known, kink is a topological object. In particular,

there is an underlying current which is conserved by construction

while the corresponding topological charge is nonzero in the case

of kink solutions. Specifically, the corresponding conserved

current is given by:

Jμ(x) � ϵμ]
zμϕ

zx]
, μ, ] � 0, 1. (11)

Hence, for the kink solution, the topological charge density is

given by:

J0(x) � dϕ

dx
�

������
2V(ϕ)

√
, (12)

where Eq. 7 has been used in writing the second equality. Thus,

the topological charge Q is given by

Q � ∫b

a
dϕ � b − a. (13)

For the kink solution, one can perform the linear stability

analysis by considering

ϕ(x, t) � ϕk(x) + ψ(x)eiωt, (14)

where ϕk is the kink solution. On substituting ϕ(x, t) as given by

Eq. 14 in Eq. 2 and retaining terms of order ψ, it is easily shown

that ψ(x) satisfies a Schrödinger-like equation

−d
2ψ(x)
dx2

+ U(x)ψ(x) � ω2ψ(x), (15)

where

U(x) � d2 V(ϕ)
dϕ2

∣∣∣∣∣∣∣∣
ϕ�ϕk(x)

. (16)

Here, ϕk(x) denotes the corresponding kink (or antikink)

solution. It is well known that the stability Eq. 15 always

admits a translation zero mode :

ω0 � 0, ψ0(x) �
dϕk(x)
dx

, (17)

where because of the Bogomolnyi Eq. 7, it is clear that ψ0(x) is

indeed nodeless, thereby guaranteeing the linear stability of the

kink solution of any theory.

2.1 Underlying supersymmetry in the
stability equation

Let us now show that there is an underlying supersymmetry

in the kink stability Eq. 16. This is because, as is well known from

the supersymmetric quantum mechanics formalism [37], for the

Schrödinger-like Eq. 15 if the corresponding ground state

eigenfunction ψ0(x) is nodeless then there is always an

underlying supersymmetry in the problem which is unbroken.

In particular, in that case the corresponding superpotentialW(x)

is given by

W(x) � −ψ0′(x)
ψ0(x)

. (18)

Furthermore, in terms of the superpotential W(x), the

corresponding potential U−(x) ≡ U(x) is given by

U(x) ≡ U−(x) � W2(x) −W′(x), (19)

whereas the corresponding partner potential U+(x) with one less

bound state compared to U−(x) is given by

U+(x) � W2(x) +W′(x). (20)
Using Eqs. 7 and (17) in Eq. 18 we can rewrite W(x) as follows:

W(x) � − V′(ϕ)������
2V(ϕ)√ ∣∣∣∣∣∣∣∣

ϕ�ϕk(x)
, (21)

so that as expectedU(x) (i.e.,U−(x)) is as given by Eq. 15, whereas

the corresponding partner potential U+(x) with one less bound

state is given by

U+(x) � [V′(ϕ)]2
V(ϕ) − V″(ϕ)( )∣∣∣∣∣∣∣∣

ϕ�ϕk(x)
. (22)

This is interesting because while doing the stability analysis

for a kink solution, if one obtains more modes (called the

breather modes) than just the translation zero mode, then

using the supersymmetry (SUSY) formalism one can obtain

another kink potential with at least a translation zero mode.

As an illustration, for the famous double-well ϕ4 potential, it is

well known that if one does the stability analysis, then one has a

breathing mode apart from the translation zero mode. By

following this formalism, it is straightforward to discern that
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the corresponding supersymmetric partner kink potential U+

with only the translation zero mode in the stability analysis is the

celebrated sine-Gordon model, thereby showing a remarkable

connection between the two distinct kink bearing models, ϕ4, and

the sine-Gordon field theory; the former is a non-integrable and

the latter is an integrable model.

2.2 Stability equation in terms of the field ϕ

We now show that the kink stability equation, as given by Eq.

15 which is cast in terms of the eigenfunctions ψ(x), can also be

recast in terms of ψ(ϕ). To that end, we start from Eq. 15 and

using the Bogomolnyi Eq. 7 we obtain the following:

ψ′(x) � ψ′(ϕ) dϕ
dx

� ±
������
2V(ϕ)

√
ψ′(ϕ). (23)

Furthermore,

ψ″(x) � 2V(ϕ)ψ″(ϕ) + V′(ϕ)ψ′(ϕ). (24)

On using Eqs. 23 and 24 in the stability Eq. 15, we find that in

terms of ψ(ϕ) the stability equation takes the following form:

−2V(ϕ)ψ″(ϕ) − V′(ϕ)ψ′(ϕ) + V″(ϕ)ψ(ϕ) � ω2ψ(ϕ). (25)

It is straightforward to verify that for any kink bearing

potential V(ϕ) there is always a translation zero mode which

is given by

ψ0(ϕ)∝
�����
V(ϕ)

√
. (26)

The obvious question is what is the advantage of casting the

stability equation in terms of ψ(ϕ) rather than in terms of ψ(x)? One

advantage is in the context of those cases where the kink solution is

only implicitly but not explicitly known. As an illustration, almost all

the kink solutions with a power law tail are only implicitly known. In

such cases, we do not know the explicit form of the zero mode ψ(x).

However, in view of Eq. 26, one always knows the form of the zero

mode ψ0(ϕ). But what is even more interesting is sometimes it so

happens that in case there are breathing modes in addition to the

translational zero mode in the stability equation, then at times it is

easier to guess the form of the excited state eigenfunction ψn(ϕ), n > 0

instead of the formof the corresponding eigenfunctionψn(x).One such

famous example is the second excited state of the stability equation in

the case of the kink solution for theϕ6field theory [38] characterized by

V(ϕ) � (ϕ2 + ϵ2)(1 − ϕ2)2. (27)
As was pointed out a long time ago by Christ and Lee [38], in the

kink stability equation for this case, if ϵ2 = 1/2, the second excited

state eigenfunction and the corresponding eigenvalue are as follows:

ψ2(ϕ) �
�����
1 − ϕ2

√
(ϕ2 − 1/4), ω2 �

�
3

√
/2. (28)

2.3 No gap between the zero mode and
the beginning of continuum for kink
solutions with a power law tail

We now show that if there is a kink solution with a power law

tail at either both the ends or at one of the two ends, then there is

no gap between the zero mode and the beginning of the

continuum in the corresponding Schrödinger-like stability Eq.

15. The proof is rather straightforward. Let us first discuss the

case when there is a kink solution from ϕ = 0 to ϕ = a as x goes

from −∞ to +∞, respectively, with there being a power law tail

around ϕ = 0:

lim
x→−∞

ϕ(x) ≃ 0 + cx−β, β> 0. (29)

In view of Eq. 10, this implies that if there is a kink

solution from 0 to a with a power law tail around ϕ = 0,

then around ϕ = 0 the potential V(ϕ) must behave as

follows:

lim
ϕ→0

V(ϕ) ≃ ϕ(2+2β)/β. (30)

Using the fact that the potential U(x) which appears in the

stability analysis of a kink solution of Eq. 15 is given by Eq. 16 and

further using Eqs. 29, 30 it then follows that as x → −∞, the

potential U(x) around x → −∞ is given by

U(x → −∞)∝ lim
x→−∞

ϕ2/β
k � 0, (31)

so that the continuum in the Schrödinger-like Eq. 15 begins from

ω2 = 0, that is, there is no gap between the zero mode and the

beginning of the continuum [39]. The argument trivially goes

through in case the kink solution is from ϕ = a to ϕ = b as

x→ −∞ to x→∞, respectively, with power law tail around ϕ = a

or/and ϕ = b. This is because expanding V(ϕ) around ϕ = a (or b

as the case may be) leads us to an equation essentially identical to

Eq. 29, and the argument again goes through.

TABLE 1 Eight different cases of two adjoining kink tail configurations.
Here, e denotes an exponential tail and p denotes a power law tail
(see text for details).

K1L K1R K2L K2R

e e e e

e p p e

p e e p

p p p p

e e e p

p e e e

p p p e

e p p p
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It is worth pointing out that if instead one considers the

stability equation in the case of either the exponential or the

super-exponential kink tails [40], there is always a gap between

the zero mode and the beginning of the continuum. In fact, in

these cases, depending on the model one can even have one or

more extra bound states, called vibrational modes, and there is

always a gap between the last vibrational mode and the beginning

of the continuum. This is to be contrasted with the kink solution

with power law tails for which the only discrete mode is the zero

mode, and there is no gap between the zero mode and the

beginning of the continuum. Such a zero energy bound state is

called a half bound state.

2.4 Various possible tails between the two
adjoining kink solutions

Using Eq. 10, the recipe for constructing models which can

give kink solutions with either a power law tail or an exponential

tail is clear. In particular, using this recipe, several potentials have

been constructed which admit a kink solution with a power law

tail at both ends. A typical example is the potential V(ϕ) �
(1 − ϕ2)2n+2 with n = 1, 2, 3, . . . [31]. Furthermore, several one-

parameter family of potentials have been constructed using kink

and mirror kink solutions with various possible options for the

kink tails. Let us denote the two adjoining kink solutions as kink

1 and kink 2; without any loss of generality, we will assume that

kink 1 is to the left of kink 2. One has two kink tails

corresponding to the kink solution 1 (which we denote by K1L

andK1R) and two kink tailsK2L andK2R for the kink solution 2. In

Table 1, we give all eight possible forms of the kink tails. The well-

studied case for almost five decades is when all the four tails

(i.e., two tails of the first kink and the two tails of the second kink)

have exponential fall off which we denote by K1Le, K1Re, K2Le, and

K2Re, respectively; for simplicity, we will denote such tails simply

as eeee. On the other hand, the recent study by several groups [12,

23–25] have concentrated on the case when the kink tails have

the form K1Le, K1Rp, K2Lp, and K2Re, and we will denote this

possibility as eppe. In fact, there are two other possibilities for

which the kinks and the corresponding mirror kinks are also

possible, and these are of the form peep and pppp. For the other

four possibilities shown in Table 1, one necessarily has to

consider non-mirror kinks since for them the kink tails are of

the form eeep and peee (and without loss of generality one can

consider one of these two possibilities, say eeep) and pppe and

eppp (and again without loss of generality one can consider only

one of these two possibilities, say pppe).

In Sections 3, 4, 5, 7, and 8, we present one-parameter family

of potentials where the kink tails have the form mentioned in

Table 1 with at least one tail being a power law tail. In addition, in

Section 6, we present a one-parameter family of potentials with

kink tails of the form ette and pttp, where t, e, and p correspond to

power-tower [32], exponential, and power law tail, respectively.

For simplicity, we have omitted all inessential factors appearing

in these family of potentials. The readers can of course obtain all

these factors in the relevant studies cited at appropriate places.

3 Potentials admitting kink and mirror
kink solutions with tails of the form e
p p e

In this section, we present a one-parameter family of

potentials of the form [31].

V(ϕ) � 1
2
ϕ2n+2(1 − ϕ2)2, n � 1, 2, 3, . . . . (32)

The potentials for n = 1 and n = 2 with three degenerate minima

are depicted in Figure 1 and that for n = 3 and n = 4 in Figure 2.

This family of potentials has received wide attention in the

FIGURE 1
Potentials given by Eq. 32 with n = 1 (V1) and n = 2 (V2).

FIGURE 2
Potentials given by Eq. 32 with n = 3 (V3) and n = 4 (V4).
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literature starting with the 1979 study of Lohe [4], where in the

context of massless mesons he introduced this potential for the

case of n = 1. The implicit kink solution for n = 1, 2, 3 was first

discussed in the study mentioned in reference [1], who pointed

out that the kink tail around ϕ = 0 has a power law fall off. In

2019 Manton [23] attacked the nontrivial problem of the

calculation of the K-K and the K-AK force for this model in

case n = 1; subsequently, this calculation was extended to the

entire family [24]. We will discuss the K-K and the K-AK force

calculations in detail in Section 10.

The potential in Eq. 32 for any integer n has degenerate minima

at ϕ = 0, ±1 with V(ϕ = 0, ±1) = 0 and admits a kink solution from

0 to 1 and amirror kink solution from−1 to 0 and the corresponding

two antikink solutions with a power law tail around ϕ = 0 and an

exponential tail around ϕ = ±1. Unfortunately, in none of these

cases, explicit kink solutions can be obtained, and we can only find

implicit kink solutions. From the latter, we can obtain how a kink

profile falls off as x→ ±∞. It turns out that the nature of the implicit

kink solution crucially depends on whether n is an odd or an even

integer. We, therefore, consider the two cases of odd n = 1

(i.e., potentials of the form ϕ8) and even n = 2 (i.e., potentials of

the form ϕ10) separately and then generalize to arbitrary n.

3.1 Case I: n = 1

On using Eq. 7, the self-dual first order equation for the kink

solution from ϕ = 0 to ϕ = 1 is:

dϕ

dx
� ϕ2(1 − ϕ2). (33)

This is easily integrated with the implicit kink solution.

x − A � 1
ϕ
+ 1
2
ln
1 + ϕ

1 − ϕ
, (34)

where A is a constant, which without any loss of generality, we

can put equal to zero. It is straightforward to show that in case

A = 0, asymptotically,

lim
x→−∞

ϕ(x) ≃ 1
−x, lim

x→∞
ϕ(x) ≃ 1 − 2e−2x−2. (35)

Thus, the kink tail around ϕ = 0 is entirely determined by the first

term on the right hand side of Eq. 34, that is, the term 1/ϕ.

3.2 Case II: n = 2

On using Eq. 7, the self-dual first order equation for the n = 2

case is:

dϕ

dx
� ϕ3(1 − ϕ2). (36)

This is easily integrated with the implicit kink solution.

2x � − 1

ϕ2 + ln
ϕ2

1 − ϕ2, (37)

so that, asymptotically,

lim
x→−∞

ϕ(x) ≃ 1����−2x√ , lim
x→+∞

ϕ(x) ≃ 1 − e−2x−1. (38)

Thus, the kink tail around ϕ = 0 is again entirely determined by the

first term on the right hand side of Eq. 37, that is, the term 1/ϕ2.

Generalization of these results for arbitrary n is

straightforward [31], and one finds that for the one-parameter

family of potentials, as given by Eq. 32, for arbitrary integer n,

while the kink tail falls off like e−2x around ϕ = 1, it falls off like

x−1/n around ϕ = 0.

3.3 Kink mass

Using Eq. 9 one can immediately estimate the kink mass for

the entire family of potentials as given by Eq. 32. We find that

MK � 2
(n + 2)(n + 4), n � 1, 2, 3, . . . , (39)

so that the kink mass decreases as n increases. For example, while

MK(n = 1) = 2/15, MK(n = 2) = 1/12. Note that the mass of the

kink, mirror kink, and the two antikinks is the same.

4 Potentials admitting kink andmirror
kink solutions with tails of the form p
e e p

In this section, we present a one-parameter family of

potentials of the form [31].

FIGURE 3
Potential given by Eq. 40 with n = 1 (V1) and n = 2 (V2).
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V(ϕ) � 1
2
ϕ2(1 − ϕ2)2n+2, n � 1, 2, 3, . . . . (40)

The potentials for n = 1 and n = 2 with three degenerate

minima are depicted in Figure 3 and that for n = 3 and n = 4

in Figure 4. Specifically, these potentials have degenerate

minima at ϕ = 0, ±1 with V(ϕ = 0, ±1) = 0 and admit a kink

from 0 to 1 and a mirror kink from −1 to 0 and

corresponding two antikinks. Here, while around ϕ = ±1

one has a power law tail, around ϕ = 0 one has an

exponential tail. In these cases too, explicit analytic kink

solutions are not possible and we can only find implicit kink

solutions. However, from the latter we can determine how

the kink profile falls off as x → ±∞.

We will first discuss the case n = 1 (i.e., the ϕ10
field theory)

[1] and n = 2 (i.e., ϕ14
field theory) and thenmention the behavior

of the kink tail for arbitrary n.

4.1 Case I: n = 1

On using Eq. 7, the self-dual first order equation is:

dϕ

dx
� ϕ(1 − ϕ2)2. (41)

This is easily integrated with the implicit kink solution.

2x � 1

1 − ϕ2 + ln
ϕ2

1 − ϕ2. (42)

It then follows that asymptotically:

lim
x→−∞

ϕ(x) ≃ ex−1/2, lim
x→∞

ϕ(x) ≃ 1 − 1
4x

. (43)

Thus, the kink tail around ϕ = 1 is entirely determined by the

first term on the right hand side of Eq. 42, that is, the term 1/

(1 − ϕ2).

4.2 Case II: n = 2

On using Eq. 7, the self-dual first order equation for the n = 2

case is:

dϕ

dx
� ϕ(1 − ϕ2)3. (44)

This is easily integrated with the implicit kink solution.

2x � 1

2(1 − ϕ2)2 +
1

(1 − ϕ2) + ln
ϕ2

(1 − ϕ2). (45)

Asymptotically,

lim
x→−∞

ϕ(x) ≃ ex−3/4, lim
x→∞

ϕ(x) ≃ 1 − 1
4

��
x

√ . (46)

Thus, the kink tail around ϕ = 1 is again entirely determined by

the first term on the right hand side of Eq. 45, that is, the term

1/2(1 − ϕ2)2.
Generalization of these results for arbitrary n is straightforward

[31], and one finds that for the one-parameter family of potentials, as

given by Eq. 40, as x→ −∞, the kink tail aroundϕ= 0 falls off like ex,

whereas as x → +∞, the kink tail around ϕ = 1 falls off like x−1/n.

4.3 Kink mass

Using Eq. 9 one can immediately estimate the kink mass for

the entire family of potentials as given by Eq. 40. We find that

MK � 1
2(n + 2), n � 1, 2, 3, . . . . (47)

Thus, while MK(n = 1) = 1/6, MK(n = 2) = 1/8, that is, the kink

mass decreases as n increases.

5 Potentials admitting kink and mirror
kink solutions with tails of the form p
p p p

In this section, we discuss a two-parameter family of

potentials:

V(ϕ) � 1
2
ϕ2m+2(1 − ϕ2)2n+2, n, m � 1, 2, 3, . . . . (48)

The potentials for three different cases (i) m = n = 1, (ii) m = 1,

n = 2, and (iii)m = 2, n = 1 each with three degenerate minima are

depicted in Figure 5. Similarly, the potentials for three other cases

(iv)m = n = 2, (v)m = 3, n = 2, and (vi)m = 2, n = 3 are depicted

in Figure 6. Specifically, these potentials have degenerate minima

at ϕ = 0, ±1 and V(ϕ = 0, ±1) = 0 and admit a kink solution from

0 to 1 and a mirror kink solution from −1 to 0 and the

corresponding antikink solutions, and all of them have a

power law tail at both the ends. We look for a kink solution

FIGURE 4
Potential given by Eq. 40 with n = 3 (V3) and n = 4 (V4).
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which goes from 0 to 1 as x goes from −∞ to +∞, respectively. In

these cases too, the explicit analytic solutions are not possible and

we can only find implicit kink solutions. From the latter, we can

obtain how a kink profile falls off as x → ±∞.

In thesemodels, depending on ifm< n (m> n), one can have kink

solutions for which the power law tail around ϕ = 1 has slower (faster)

asymptotic fall off compared to the power law tail aroundϕ=0whereas

form = n the power law tails around both ϕ = 0 and ϕ = 1 have similar

fall off. As an illustration, we discuss one case each of the three types.

5.1 Models where the kink tail around
ϕ = ±1 has a slower asymptotic fall off
compared to the tail around ϕ = 0, that is,
m < n

For illustration, let us consider the simplest case of m = 1,

n = 2 in the potential given by Eq. 48, that is,

V(ϕ) � 1
2
ϕ4(1 − ϕ2)6. (49)

On using Eq. 7 the self-dual first order equation is:

dϕ

dx
� ϕ2(1 − ϕ2)3. (50)

This is easily integrated using the identity.

∫ dϕ

(1 − ϕ2)n �
(2n − 3)
2(n − 1)∫ dϕ

(1 − ϕ2)n−1 +
ϕ

2(n − 1)(1 − ϕ2)n−1,
(51)

leading to the implicit kink solution

2x � ϕ

4(1 − ϕ2)2 −
1
ϕ
+ 7ϕ

8(1 − ϕ2) +
15
16

ln
1 + ϕ

1 − ϕ
. (52)

Hence, asymptotically,

lim
x→−∞

ϕ(x) ≃ 1
−2x, lim

x→∞
ϕ(x) ≃ 1 − 1

4
���
2x

√ . (53)

Thus, the kink tail around ϕ = 1 is entirely determined by

the first term on the right hand side of Eq. 52. On the other

hand, the kink tail around ϕ = 0 is entirely determined by the

second term on the right hand side of Eq. 52, that is, the term

1/ϕ.

5.2Models where the kink tail around ϕ=0
has a slower asymptotic fall off compared
to the tail around ϕ = 1, that is, n < m

For illustration, let us consider the simplest case ofm = 2, n =

1 in Eq. 48, that is, consider the potential

V(ϕ) � 1
2
ϕ6(1 − ϕ2)4. (54)

On using Eq. 7 the self-dual first order equation is:

dϕ

dx
� ϕ3(1 − ϕ2)2. (55)

This is easily integrated leading to the implicit kink solution.

2x � − 1

ϕ2 +
1

1 − ϕ2 + 2 ln
ϕ2

1 − ϕ2. (56)

Thus, asymptotically,

lim
x→−∞

ϕ(x) ≃ 1����−2x√ , lim
x→∞

ϕ(x) ≃ 1 − 1
4x

. (57)

Hence, the kink tail around ϕ = 0 is entirely determined by

the first term on the right hand side of Eq. 56. On the other

FIGURE 5
Potential given by Eq. 48with n=m= 1 (V1,1), n= 1m= 2 (V1,2),
and n = 2 and m = 1 (V2,1).

FIGURE 6
Potential given by Eq. 48 with n = m = 2 (V2,2), n = 2 m = 3
(V2,3), and n = 3 and m = 2 (V3,2).
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hand, the kink tail around ϕ = 1 is entirely determined by the

second term on the right hand side of Eq. 56, that is, the term

1/(1 − ϕ2).

5.3 Models where the kink tails around ϕ =
0 and ϕ = 1 have similar asymptotic
behavior, that is, m = n

For illustration, let us consider the simplest case ofm = 1, n =

1 in Eq. 48, that is, consider the potential

V(ϕ) � 1
2
ϕ4(1 − ϕ2)4. (58)

On using Eq. 7 the corresponding first order self-dual equation is:

dϕ

dx
� ϕ2(1 − ϕ2)2. (59)

This is easily integrated using the identity (51) leading to the

implicit kink solution.

x � ϕ

2(1 − ϕ2) −
1
ϕ
+ 3
4
ln
1 + ϕ

1 − ϕ
. (60)

Thus, asymptotically,

lim
x→−∞

ϕ(x) ≃ 1
−x, lim

x→∞
ϕ(x) ≃ 1 − 1

4x
. (61)

Hence, while the kink tail around ϕ = 1 is entirely determined by

the first term on the right hand side of Eq. 60, the kink tail around

ϕ = 0 is entirely decided by the second term on the right hand side

of Eq. 60, that is, the term 1/ϕ. As expected, in this case the kink

tail falls off like x−1 around both ϕ = 1 and ϕ = 0.

Generalization of these results to the most general potential

(48) with arbitrary m and n is straightforward and one can show

that [31] for the kink solution between 0 and 1 the kink tail

asymptotically behaves as x−1/m around ϕ = 0 and as x−1/n

around ϕ = 1.

5.4 Kink mass

Using Eq. 9 one can immediately estimate the kink mass for

the entire family of potentials as given by Eq. 48. We find that

MK � Γ(1 +m/2)Γ(n + 2)
2Γ(n + 3 +m/2) , n, m � 1, 2, 3, . . . . (62)

It is easy to check that the kink mass decreases as either n or

m increases.

5.5 Models having a single kink and an
antikink with power law tails

Before completing this section it is worth mentioning that the

simplest models admitting kink solution with a power law tail at

both the ends are:

V(ϕ) � 1
2
(1 − ϕ2)2n+2, n � 1, 2, 3, . . . . (63)

The potentials with n = 1 and n = 2 are discussed in Section 11

(Eq. 146) and shown there in Figure 10. These models for

arbitrary n ≥ 1 admit a kink solution from −1 to 1 and an

antikink solution from 1 to −1 with power law tails around both

ϕ = ±1. Note that for n = 0 we have the celebrated ϕ4 potential

with exponential tails around both ϕ = ±1. Thus, these models for

n ≥ 1 are the simplest generalizations of the ϕ4 model but the tail

behavior is entirely different than that for the ϕ4 kink. It is also

worth noting that unlike the ϕ4 case, for any n ≥ 1, one can only

obtain an implicit kink solution from which one can obtain the

FIGURE 7
Potential given by Eq. 68 with m = 1 (V1) and Eq. 77 with n = 1
and m = 1 (V1,1).

FIGURE 8
Potential given by Eq. 68 withm = 2 (V2) and Eq. 77 with n = 2
and m = 2 (V2,2).
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behavior of the kink tails around both ϕ = ±1. As an illustration,

we first discuss the simplest case of n = 1 and then generalize the

results for arbitrary n.

5.5.1 Case I: n = 1
On using Eq. 7, the self-dual first order equation is:

dϕ

dx
� (1 − ϕ2)2. (64)

This is easily integrated using the identity (51), and we find:

4x � 2ϕ

1 − ϕ2 + ln
1 + ϕ

1 − ϕ
( ). (65)

From here, it is straightforward to show that

lim
x→−∞

ϕ(x) ≃ − 1 + 1
−4x + . . . , lim

x→+∞
ϕ(x) ≃ 1 − 1

4x
+ . . . .

(66)
Note that the leading contribution as x → ±∞ comes from

the first term on the right hand side of Eq. 65. The generalization

to arbitrary n is now straightforward, and we find that the kink

tails around both ϕ = +1 and −1 go like x−1/n.

5.5.2 Kink mass
Using Eq. 9, one can immediately estimate the kink mass

for the entire family of potentials as given by Eq. 63. We find

that

MK � 24n+1[(2n)!]2
(4n + 1)! . (67)

Note again that the kink mass decreases as n increases.

6 Models with power-tower kink tails

In this section, we consider two different models giving rise

to kink solutions with kink tails of the form ette and pttp,

respectively. Here, t corresponds to the power-tower type of

kink tail, whereas e and p as before correspond to exponential and

power law tails, respectively.

6.1 Models with tails of the form ette

Let us consider a one-parameter family of logarithmic

potentials of the form [32].

V(ϕ) � (1/2)ϕ2m+2[(1/2) ln(ϕ2)]2, m≥ 1. (68)

The potential form = 1 with three degenerate minima is depicted

in Figure 7 and for m = 2 in Figure 8. These potentials have

degenerate minima at ϕ = 0, ±1 with V(ϕ = 0, ±1) = 0 while they

have degenerate maxima at

ϕmax � ± e−1/(m+1), Vmax � 1

2e2(m + 1)2. (69)

Thus, notice that while ϕmax(m = 1) = ±e−1/2, as m becomes

larger, ϕmax moves toward ±1. On the other hand, while

Vmax(m = 1) = 1/8e2, as m becomes larger, Vmax decreases

progressively toward zero. All these models for any integer m

admit a kink solution from 0 to 1 and a mirror kink solution

from −1 to 0 (and the corresponding antikink solutions) with

exponential tails around ϕ = ±1 and power-tower tails

around ϕ = 0.

For the potential (68) we need to solve the self-dual first order

equation

dϕ

dx
� ± ϕm+1[(1/2) ln(ϕ2)]. (70)

For the kink solution between 0 and 1, we need to solve the self-

dual Eq. 70 with negative sign. This is easily integrated by making

the substitution t = (1/2) ln(ϕ2) and we obtain the implicit kink

solution

−x � ∫ e−mt

t
dt � Ei(−mt), (71)

where Ei(x) denotes the exponential integral function [41,

42]. Unfortunately, we do not know how to invert this

function analytically [43] and obtain t and hence ϕ as a

function of x. However, using the Taylor series expansion of

Ei(x) [41].

Ei(x) � γ + ln |x| + x + x2

2 2!
+ . . . , (72)

as well as the asymptotic formula [41].

Ei(x) � ex
1
x
+ 1
x2

+ 2!
x3

+ 3!
x4

+ . . .[ ] (73)

one can estimate the tail behavior around ϕ = 0 as x → −∞ and

around ϕ = 1 as x→ +∞. Here γ = 0.577 is Euler’s constant. One

finds that

lim
x→−∞

ϕm(x) ln[ϕ(x)] ≃ 1
mx

, lim
x→+∞

ϕ(x) ≃ 1 − e−(x+γ)

m
. (74)

It is worth pointing out that the asymptotic behavior

around ϕ = 0 (as x → −∞) in Eq. 74 can also be written as

follows:

lim
x→−∞

ϕ(x)ϕ(x)m ≃ e1/mx, (75)

which is known in the literature as the power-tower function of

order two [44] or tetration [45].

If one inverts Eq. 74 numerically, one finds that

asymptotically as x → −∞, around ϕ = 0 the power-tower tail

essentially behaves as a power law tail where the exponent is not

known precisely.
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6.1.1 Kink mass
One can easily calculate the kink mass for the entire family of

potentials. In particular, for the kink potential as given by Eq. 68,

the kink mass turns out to be

MK � 1

(m + 2)2. (76)

Observe that even in this case the kink mass decreases as m

increases.

6.2 Models with tails of the form pttp

Let us consider a two-parameter family of logarithmic

potentials

V(ϕ) � (1/2)ϕ2m+2[(1/2) ln(ϕ2)]2n+2, m, n≥ 1. (77)

The potential for m = 1 and n = 1 with three degenerate

minima is depicted in Figure 7. Similarly, the potential withm = 2

and n = 2 is depicted in Figure 8. These potentials have

degenerate minima at ϕ = 0, ±1 with V(ϕ = 0, ±1) = 0 while

they have degenerate maxima at

ϕmax � ± e−(n+1)/(m+1), Vmax � 1
2e2(n+1)

(n + 1)
(m + 1)[ ]2(n+1)

. (78)

Notice that both ϕmax andVmax depend on two parametersm and

n. Furthermore, for a fixed m, as n→∞, ϕmax → 0, and Vmax →
∞. On the other hand, for a fixed n, as m → ∞, ϕmax → 1, and

Vmax → 0. Finally, for m = n, ϕmax = ±e−1 and the corresponding

Vmax = 1/2e2(n+1). It is interesting to note that for a givenm, all the

potentials as given by Eq. 77 with arbitrary integer n have the

same value V(ϕ) � 1
2e2(m+1) in case ϕ = ±1/e or V(ϕ) � e2(m+1)

2 in

case ϕ = ±e.

All these models, for any integers m and n admit a kink

solution from 0 to 1 and a mirror kink solution from −1 to 0 (and

corresponding antikink solutions) with a power law tail around

ϕ = ±1 and a power-tower tail around ϕ = 0.

In order to obtain the kink solution from 0 to 1, we need to

solve the self-dual equation.

dϕ

dx
� ± ϕm+1 [(1/2) ln(ϕ2)]( )n+1. (79)

This is easily done by making the substitution t = (1/2) ln(ϕ2),

and we obtain [32] the implicit kink solution.

± x � −e−mt ∑n
k�1

(−m)k−1
n(n − 1) . . . (n + 1 − k)tn+1−k +

(−m)n
n!

Ei(−mt),

(80)

where we need to take + x ( −x) in Eq. 79 depending on whether n

is an odd (or even) integer. We then find that

lim
x→−∞

ϕm(x) ln[ϕ(x)]( )n+1 ≃ (−1)n
mx

, lim
x→+∞

ϕ(x) ≃ 1 − 1

nx + mnγ

(n − 1)![ ]1/n . (81)

6.2.1 Kink mass
One can easily calculate the kink mass for the entire family of

potentials given by Eq. 77, and we find

MK � (n + 1)!
(m + 2)n+2. (82)

The kink mass decreases as m increases keeping n fixed. On

the other hand, the kink mass increases (decreases) as n increases

keeping m fixed depending on the values of m and n. For

example, MK(n, m) > ( < ) MK(n + 1, m) depending on if

m > ( < ) n + 1.

7 Kink solutions with tails of the form
p p p e

We now briefly discuss a one-parameter family of potentials

of the form [31].

V(ϕ) � 1
2
(1 − ϕ2)2n+2(2 − ϕ2)2, n � 1, 2, 3, . . . . (83)

These potentials have degenerate minima at ϕ � ± 1,±
�
2

√
with

V(ϕ � ± 1,±
�
2

√ ) � 0 and admit a kink solution from −1 to

1 and a kink solution from 1 to
�
2

√
as well as a mirror kink

solution from − �
2

√
to −1 and the three corresponding antikink

solutions. While the kink from −1 to 1 has a power law tail

around both ϕ = −1 as well as ϕ = 1, the kink from 1 to
�
2

√
has a

power law tail around ϕ = 1 and an exponential tail around

ϕ � �
2

√
. In these cases too we can only obtain implicit kink

solutions from which we can obtain the behavior of kink tails.

7.1 − 1 to 1 kink solution

On using Eq. 7, the self-dual first order equation for the

potential (83) is:

dϕ

dx
� (2 − ϕ2)(1 − ϕ2)n+1. (84)

This is easily integrated with the solution [31]

2x � ϕ

n(1 − ϕ2)n +
(−1)n+1�

2
√ ln

�
2

√ + ϕ�
2

√ − ϕ
( ) + lower order terms.

(85)
Note that in Eq. 85 we have only specified those terms which

contribute to the dominant asymptotic behavior as x → ±∞.

Asymptotically,
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lim
x→−∞

ϕ(x) ≃ − 1 + −1
n2n+1x
[ ]1/n, lim

x→+∞
ϕ(x) ≃ 1 − 1

n2n+1x
[ ]1/n.

(86)
Thus, for the kink solution from −1 to 1, the kink tail around both

ϕ = −1 and ϕ = 1 has a power law tail going like x−1/n.

7.1.1 Mass of −1 to 1 kink
It is straightforward to calculate the kink mass for the entire

family as given by Eq. 83, and we find that

MK(−1, 1) � 2(2n + 9/2)B[3/2, n + 2], (87)

where B[a, b] is Euler’s beta function [46].

7.2 1 to
��
2

√
kink solution

On using Eq. 7, the self-dual first order equation is given by

dϕ

dx
� (2 − ϕ2)(ϕ2 − 1)n+1. (88)

This is easily integrated with the solution

2x � ln

�
2

√ + ϕ�
2

√ − ϕ
( ) −

�
2

√
ϕ

n(ϕ2 − 1)n + lower order terms. (89)

Note that in Eq. 89, we have only specified those terms which

contribute to the dominant asymptotic behavior as x → ±∞.

Asymptotically,

lim
x→−∞

ϕ(x) ≃ 1 + − �
2

√
n2n+1x

[ ]1/n

, lim
x→+∞

ϕ(x) ≃ �
2

√ − h(n)e−2x,
(90)

where h(n) is a known function of n. Thus, for the kink solution

from 1 to
�
2

√
, while one has an exponential tail around ϕ � �

2
√

,

the kink tail around ϕ = 1 goes like (−x)−1/n as x → −∞.

7.2.1 Mass of 1 to
��
2

√
kink

It is straightforward to calculate the kink mass for the entire

family as given by Eq. 83, and we find that

MK(1,
�
2

√ ) � 1
2

�
2

√ (n + 2)(n + 4) 2F1(1/2, 2, n + 4, 1/2), (91)

where 2F1 denotes a hypergeometric function.

8 Kink solutions with tails of the form
e e e p

We now briefly discuss a one-parameter family of potentials

of the form [31].

V(ϕ) � 1
2
(1 − ϕ2)2(2 − ϕ2)2n+2, n � 1, 2, 3, . . . . (92)

These potentials have degenerate minima at ϕ � ± 1,±
�
2

√
with

V(ϕ � ± 1,±
�
2

√ ) � 0 and admit a kink solution from −1 to

1 and a kink solution from 1 to
�
2

√
as well as a mirror kink

solution from − �
2

√
to −1 and the corresponding three antikink

solutions. While the kink from −1 to 1 has an exponential tail

around both ϕ = ±1, the kink from 1 to
�
2

√
has an exponential tail

around ϕ = 1 and a power law tail around ϕ � �
2

√
. In these cases

too one can only find implicit kink solutions from which one can

obtain the various kink tails.

8.1 − 1 to 1 kink solution

On using Eq. 7, the self-dual first order equation for the

potential (92) is as follows:

dϕ

dx
� (1 − ϕ2)(2 − ϕ2)n+1. (93)

This is easily integrated with the solution [31].

2x � ln
1 + ϕ

1 − ϕ
( ) − ϕ

2n(2 − ϕ2)n + lower order terms. (94)

Note that in Eq. 94 we have only specified those terms which

contribute to the dominant asymptotic behavior as x → ±∞.

Asymptotically, we find that,

lim
x→−∞

ϕ(x) ≃ − 1 + f(n)e2x, lim
x→+∞

ϕ(x) ≃ 1 − f(n)e−2x, (95)

where f(n) is a known function of n. Thus for the kink solution

from −1 to 1, the kink tail around both ϕ = −1 and ϕ = 1 has an

exponential tail.

8.1.1 Mass of −1 to 1 kink
It is straightforward to calculate the kink mass for the entire

family as given by Eq. 92, and we find that

MK(−1, 1) � 2n+3

3 2F1(−n − 1, 1/2, 5/2, 1/2). (96)

8.2 1 to
��
2

√
kink solution

On using Eq. 7, the self-dual first order equation is now

given by

dϕ

dx
� (ϕ2 − 1)(2 − ϕ2)n+1. (97)

This is easily integrated with the solution [31].

2x � ln
ϕ − 1
ϕ + 1

( ) + ϕ

2n(2 − ϕ2)n + lower order terms. (98)
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Note that in Eq. 98 we have only specified those terms which

contribute to the dominant asymptotic behavior as x → ±∞.

Asymptotically,

lim
x→−∞

ϕ(x) ≃ 1 − f(n)e2x, lim
x→+∞

ϕ(x) ≃ �
2

√ − 1
n22n+1x
[ ]1/n.

(99)
Thus for the kink solution from 1 to

�
2

√
, while around ϕ = 1 one

has an exponential tail, the kink tail around ϕ � �
2

√
goes like x−1/n

as x → ∞.

8.2.1 Mass of 1 to
��
2

√
kink

It is straightforward to calculate the kink mass for the entire

family as given by Eq. 92, and we find that

MK(1,
�
2

√ ) � 1
2

�
2

√ (n + 2)(n + 4) 2F1(1/2, 2, n + 4, 1/2).
(100)

9 Explicit kink solutions with power
law tails

In the last six sections, we have presented a number of one-

parameter family of potentials wherein one could obtain kink

solutions such that at least one of the kink tails has a power law

fall off. Unfortunately, in all these cases one could only obtain

implicit kink solutions. It is clearly desirable and of interest to look

for models where one could obtain kink solutions in an explicit

form. That would offer a deeper insight into the various aspects of

kink solutions with power law tails. For example, one could then

explicitly calculate the kink stability potential, as defined in Section 2

(see Eqs. 15, 16) and verify that for kink solutions with power law

tails, indeed there is no gap between the zero mode and the

beginning of the continuum, thereby providing a concrete

example to the proof given in Section 2. We now discuss three

models, two polynomial and one nonpolynomial type, where explicit

kink solutions with power law tails can be obtained.

9.1 Model I

We now obtain explicit kink solutions with power law tails in

a one-parameter family of potentials characterized by the

potential [33].

V(ϕ) � 1
2
ϕ2(n+1)|(1 − ϕ2n)|3. (101)

Note that this potential has degenerate minima at ϕ = 0, ±1 with

V(ϕ = 0, ±1) = 0 and admits a kink solution from 0 to 1 and a

mirror kink solution from −1 to 0 and the corresponding two

antikink solutions. It is worth pointing out that whereas the

potential (101) is continuous, its derivative is discontinuous at

ϕ = ±1. However, since for the kink as well for the antikink

solutions −1 ≤ ϕ ≤ 1, this discontinuity would not matter as far as

the kink and the antikink solutions are concerned.

In order to obtain the kink solution from 0 to 1, we need to

solve the self-dual equation.

dϕ

dx
� ϕn+1|(1 − ϕ2n)|3/2. (102)

This is easily integrated yielding

(2ϕ2n − 1)
ϕn(1 − ϕ2n)1/2 � nx. (103)

Eq. 103 is inverted with ease yielding an explicit kink solution

ϕ(x) � 1
21/2n

1 + nx�������
n2x2 + 4

√[ ]1/2n

. (104)

It is straightforward to see that

lim
x→−∞

ϕ(x) ≃ 1

(−nx)1/n, lim
x→∞

ϕ(x) ≃ 1 − 1

2n(nx)2. (105)

Since the kink solution is explicitly known, the kink stability

potential U(x) which appears in the Schrödinger-like Eq. 15 is

easily calculated using Eqs. 16 and (104).

U(x) � 1

4(4 + n2x2) −(58n2 + 33n − 1) + (14n2 + 3n + 1)n2x2

(4 + n2x2) + 2(10n2 + 3n − 1)nx���������(4 + n2x2)√[ ].
(106)

As expected, this kink potentialU(x) vanishes as x→ ±∞ thereby

confirming that indeed in this case there is no gap between the

zero mode and the beginning of the continuum. Furthermore,

one finds that U(x � 0) � −(58n2+33n−1)
16 .

Using the explicit kink solution (104), it is straightforward to

calculate the translation zero mode in the kink stability

Schrödinger-like Eq. 15

ψ0 ∝
dϕ(x)
dx

∝
1

[1 + nx����
n2x2+4√ ]1−1/2n(1 + n2x2)3/2. (107)

As expected this zero mode vanishes as x → ±∞, that is, as ϕ

→ 0, 1.

9.1.1 Kink mass
It is easy to calculate the kink mass in this case. We find

MK � 3
��
π

√
8n

Γ[(n + 2)/2n]
Γ[(3n + 1)/n]. (108)

9.2 Model II

Let us consider a one-parameter family of potentials [33].

V(ϕ) � 1
2
|(1 − ϕ2n)|(2n+1)/n. (109)
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Note that this potential has degenerate minima at ± 1 with

V(ϕ = ±1) = 0 and admits a kink solution from −1 to 1 and the

corresponding antikink solution from 1 to −1. Note also that as in

the previous example, whereas the potential (109) is continuous,

its derivative is discontinuous at x = ±1. However, since for the

kink as well as for the antikink solutions −1 ≤ ϕ ≤ 1, this

discontinuity would not matter as far as the kink and the

antikink solutions are concerned.

In order to obtain the kink solution from −1 to 1, we need to

solve the self-dual equation.

dϕ

dx
� |1 − ϕ2n|(2n+1)/2n. (110)

This is easily integrated yielding

ϕ

(1 − ϕ2n)1/2n � x. (111)

Eq. 111 is inverted with ease yielding an explicit kink solution.

ϕ(x) � x

[1 + x2n]1/2n. (112)

It is straightforward to see that

lim
x→−∞

ϕ(x) ≃ − 1 + 1
2nx2n

, lim
x→∞

ϕ(x) ≃ 1 − 1
2nx2n

. (113)

It is worth pointing out that for the special case of n = 1, the kink

solution (112) has been obtained previously [11].

It is easily checked that, as expected the zero mode

eigenfunction vanishes as x → ±∞, that is, as ϕ → ±1.

Using the explicit kink solution (112), the kink stability

potential U(x) which appears in the Schrödinger-like Eq. 15

is easily calculated.

U(x) � (2n + 1)x
2n−2[(2n + 2)x2n − 2n − 1]

[1 + x2n]2 . (114)

As expected, this kink stability potential vanishes as x→ ±∞,

thereby confirming that indeed in this case too there is no gap

between the zero mode and the beginning of the continuum.

Using the explicit kink solution (112), it is straightforward to

calculate the zero mode and we find

ψ0 ∝
dϕ(x)
dx

∝ [1 + x2n]−(2n+1)/2n. (115)

9.2.1 Kink Mass
Finally, it is easy to calculate the kink mass in this case.

We find

MK � Γ[(4n + 1)/2n]Γ[1/2n]
nΓ[(2n + 1)/n] . (116)

9.3 Model III

Let us consider the periodic potential [34, 35].

V(ϕ) � 1
2
cos4(ϕ). (117)

Note that this periodic potential has degenerate minima at

ϕ = ±π/2 with V(ϕ = ±π/2) = 0 and admits a kink solution

from − π/2 to π/2 and the corresponding antikink solution

from π/2 to − π/2. Note that unlike the two previous

examples, not only the potential (117) but its derivative is

also continuous.

In order to obtain the kink solution from − π/2 to π/2, we

need to solve the self-dual equation

dϕ

dx
� cos2(ϕ). (118)

This is easily integrated yielding the kink solution

ϕ(x) � tan−1(x). (119)

It is straightforward to see that

lim
x→−∞

ϕ(x) ≃ − π/2 + 1
x
, lim

x→∞
ϕ(x) ≃ π/2 − 1

x
. (120)

Using the explicit kink solution (119), the kink stability

potential U(x) which appears in the Schrödinger-like Eq. 15 is

easily calculated

U(x) � 6x2 − 8

(1 + x2)2. (121)

As expected, this kink stability potential vanishes as x→ ±∞
thereby confirming that indeed in this case too there is no gap

between the zero mode and the beginning of the continuum.

Using the explicit kink solution (119) it is straightforward to

calculate the zero mode and we find

ψ0 ∝
dϕ(x)
dx

∝
1

(1 + x2). (122)

9.3.1 Kink Mass
Finally, it is easy to calculate the kink mass in this case.

We find

MK � 3π
8
. (123)

We might add here that apart from the nonpolynomial

potential (117) discussed above, a couple of one-parameter

family of nonpolynomial models have also been introduced in

[3] for which explicit kink solutions have been obtained.
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10 Kink–kink and kink–antikink
forces

Now we turn to perhaps the most important but not so well

understood topic of the calculation of the kink–kink (K-K) and

the kink–antikink (K-AK) forces amongst two widely separated

kinks with power law tails which are capable of interacting over

very large distances. This is in contrast to the well-known ϕ4 and

many other kinks with exponential tails for which the calculation

of the K-K force between two well separated kinks relies on a

linear superposition of the exponentially small tails in the region

between the kinks. One then finds that for such kinks the K-K as

well as the K-AK forces decay exponentially fast with the kink

separation. Furthermore, while the K-K force is repulsive and the

K-AK force is attractive, the magnitude of the K-K and the K-AK

forces are equal.

On the other hand, for the extended kinks (i.e., kinks with a

power law tail), any formula for the force would only make sense

to the leading order in the separation even when the separation is

large and subleading terms are meaningless. It is worth pointing

out that a long time ago Gonzáles and Estrada-Sarlabous [5, 6]

had predicted how the force between such a kink and an antikink

should decay as a function of the separation between them.

However, they did not have a similar prediction for the

kink–kink force. Furthermore, they had no specific prediction

for the numerical coefficient appearing in the formula. In a

remarkable paper, Manton [23] gave a detailed prescription

for the calculation of the force between the two well separated

kinks and a well separated kink and antikink pair in the case of

the potential (discussed in Section 3)

V(ϕ) � 1
2
ϕ4(1 − ϕ2)2. (124)

He not only predicted that both the forces should vary as the

inverse fourth power of the distance between the two well

separated kinks (or the kink and antikink) but more

importantly also calculated the pre-factor multiplying this

exponent in both the cases and showed that remarkably this

factor is very different in the case of K-K and the K-AK forces.

In a subsequent paper, Christov et al. [24] generalized this

calculation and estimated the force between two well separated

kinks as well as between a kink and an antikink in the one-

parameter family of potentials (discussed in Section 3)

V(ϕ) � 1
2
ϕ2n+2(1 − ϕ2)2, n � 1, 2, 3, . . . . (125)

They showed that both the K-K and K-AK forces decay like

x−2(n+1)/nwhere x is the distance between the two kinks or between

the kink and the antikink thereby reconfirming the prediction of

Gonzáles and Estrada-Sarlabous [5, 6]. They also estimated the

pre-factor multiplying the exponent and confirmed that this

exponent is indeed very different in the case of the K-K and

K-AK forces. Furthermore, they compared their predictions with

a detailed numerical computation in the specific cases of n = 1, 2,

3. Note that n = 1 is the case studied by Manton while n = 2, 3

correspond to the ϕ10 and ϕ12 models, respectively.

10.1 K-K and K-AK forces for the ϕ8 model

In this review article we will only briefly discuss the key

points of the ϕ8 case, the details can be found in [23, 24] as well as

in [25, 47]. In [23] Manton has discussed two different

approaches for estimating the K-K and K-AK forces and

showed that to the leading order, both approaches give a

similar answer for the two forces. In the first approach he

calculates the force exerted on one kink by using a version of

the Noether’s theorem to calculate the rate of change of its

momentum [23]. This is equivalent to using the energy-

momentum tensor (introduced in Section 2, see Eqs. 3, 4) to

estimate the stress exerted on the half line containing the kink. In

the second approach he tries to approximately solve the full time-

dependent field equations. A simpler but cruder approximation

[5, 6] is to just set up a static field configuration that incorporates

both kinks, satisfying the appropriate boundary conditions. The

nontrivial part in both methods is about the ansatz for the

interpolating field.

We would like to remind the readers that as discussed in

Section 3, the potential (124) admits a kink solution from ϕ = 0 to

ϕ = 1 (which we denote by ϕ0,1(x)), a mirror kink from −1 to 0

(which we denote by ϕ−1,0(x)), an antikink from 1 to 0 (which we

denote by ϕ1,0(x)) and a mirror antikink from 0 to −1 (which we

denote by ϕ0,−1(x)). Note that while the kink tail around ϕ = 0 has

a fall off like x−1, the kink tail around ϕ = ±1 has an exponential

fall off. Manton in his paper [23] has calculated the force between

the mirror kink ϕ−1,0(x) and the kink ϕ0,1(x). He has also

calculated the force between the antikink ϕ1,0(x) and the kink

ϕ0,1(x). As shown in Section 3, the kink energy (i.e., mass) in this

case is 2/15 (see Eq. 39). Furthermore, the implicit kink solution

ϕ0,1(x) as given by Eq. 34 is

x − A � −1
ϕ
+ 1
2
ln
1 + ϕ

1 − ϕ
, (126)

where A can be thought of as the position of the kink. From here

it is straightforward to obtain the asymptotic behavior

lim
x→−∞

ϕ(x) ≃ 1
A − x

+ O( 1

(A − x)3), lim
x→∞

ϕ(x) ≃ 1

− 2e−2[x+1−A−(1/2) ln(2)]. (127)

Now if ϕ(x − A) is the kink solution then the mirror kink solution

can be shown to be − ϕ( − x − A). This is because both the kink

and the mirror kink obey the same Bogomolnyi Eq. 34.

Let us assume that the kink is located at A and mirror kink at

− A with A≫ 0. Let us now split the spatial line at − X and X with

0≪ x≪ A so that for x < − X we have an exact mirror kink field
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and for x > X we have an exact kink field. For the intermediate

region − X < x < X one assumes that the interpolating field has a

linear behavior that is, ϕ(x) = μxwhich leads toX =A/2 and μ = 4/

A2. It is then straightforward to calculate the kink energy to

leading order in 1/A and one finds the repulsive force between the

kink and the mirror kink to be (note the force is the negative

derivative of the energy with respect to the separation of the kink

and the mirror kink) [23]

FKK � 32
5 A4

. (128)

This calculation is conceptually easy to follow and gives

expected dependence of F on A although the coefficient 32/5

is not so accurate. Proceeding in the same way, and assuming that

a well separated kink is located at A and an antikink at − A,

Manton goes on to calculate the attractive force between the kink

and the antikink. One assumes that the field is symmetric in x at

all times. Furthermore, he splits up the spatial line at + A/2 and −

A/2 so that for x ≤ −A/2 one has an exact antikink field while for

x ≥ A/2 one has an exact kink field. In between − A/2 ≤ x ≤ A/2,

the interpolating field is assumed to have quadratic behavior, that

is, ϕ(x) = α + βx2 where α and β are determined by demanding

that ϕ(x) is continuous and has continuous first derivative at

x = ±A/2. One finds α = 1/A, β = 4/A3. It is then straightforward to

calculate the kink–antikink energy to the leading order in 1/A

and the attractive force between the kink and the antikink turns

out to be [23].

FK−AK � − 88
105 A4

. (129)

Manton then goes on to use an alternative approach [23]

where he models the kink by a field of the form

ϕ(x, t) � ξ(y), y � x − A(t). (130)
The acceleration is then a � €A which is assumed to be small.

Furthermore, one also assumes that squared velocity ( _A)2 is

small compared to 1 so that the motion is nonrelativistic and the

Lorentz contraction as well as the radiation can be neglected. On

substituting the accelerating field ansatz in the field Eq. 2 we get

ξ″(y) + aξ′(y) − dV(ξ)
dξ

� 0. (131)

Thus the profile ξ(y) satisfies a static equation which depends on

the acceleration a and evolves adiabatically with time as a varies.

Manton assumes that a varies slowly with time and the effect of

the term aξ′(y) is to change the effective potential to V̂(ξ) �
V(ξ) + 2a

15 where the factor 2/15 is just the kink mass (see Eq. 39)

so that on integrating Eq. 131 once, one obtains in the long-range

region a simplified equation

dξ(y)
dy

�
������
ξ4 + 4a

15

√
. (132)

On integrating it from ξ = 0 to ξ = ∞ this yields the

acceleration [23]

a � €A � 44
A4

, (133)

and hence the K-K force is

FK−K � 2
15

a � 5.91
A4

. (134)

Note that this number is different from the estimate obtained in

Eq. 128 by using the static field approach. Manton has provided

justification as to why this number is more reliable than that

given by Eq. 128.

By using a similar approach Manton has also calculated the

attractive interaction between the ϕ1,0(x) antikink and the ϕ0,1
kink. The only difference is that since the kink and the antikink

attract, hence unlike the K-K case, now a � − €A. While most of

the steps are similar to the K-K force calculation, one crucial

difference is that now instead of Eq. 132 one gets the equation

dξ(y)
dy

�
������
ξ4 − 4a

15

√
. (135)

On integrating ξ(y) from ξ = (4a/15)1/4 to ξ =∞ one then obtains

the acceleration and hence the corresponding K-AK force [23]

FK−AK � −1.48
A4

. (136)

One thus finds that unlike the exponential tail case (where the

magnitude of the K-K and K-AK forces are equal), for the power

law kinks of the ϕ8 model (124), the ratio of the magnitude of the

K-AK and K-K force is about 1/4. This is rather remarkable and

one needs to understand why this is so.

10.2 K-K and K-AK forces for the family of
potential (125)

There are several obvious ϕ8 questions. The first question is

how good is this theoretical prediction? Secondly, can one extend

it to the entire one-parameter family of potentials given by Eq.

125? These questions have been answered by Christov et al. [24]

by extending the Manton calculation to the entire family of

potentials (125). They show that for the K-K case one again

obtains Eq. 132 except one has to replace ξ4(y) by ξ2n+2(y) and

replace the kink mass 2/15 by 2/(n + 2)(n + 4) (see Eq. 39). One

then finds that the K-K force for the entire family of potentials

(125) is given by

FK−K � Γ( n
2(n+1))Γ( 1

2(n+1))
2

��
π

√ (n + 1)[ ] 1
2A(n+1)/n. (137)

The corresponding K-AK force is similarly obtained with the

same replacement as above in Eq. 135 and one finds [24]
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FK−AK � −
��
π

√ Γ( n
2(n+1))

Γ( −1
2(n+1))

⎡⎣ ⎤⎦ 1
2A(n+1)/n. (138)

As expected, for n = 1 one retrieves the Manton results for the

K-K and the K-AK force as given by Eqs. (134) and (136),

respectively. Furthermore, on using the well known identities

Γ(a + 1) � aΓ(a), Γ(a)Γ(1 − a) � π

sin(πa), (139)

it is straightforward to show that [24]

FK−AK
FK−K

� − sin
π

2(n + 1)[ ]2(n+1)/n
. (140)

Thus as n increases, the tail becomes progressively longer,

that is, as we go from ϕ8 to ϕ10, ϕ12 and higher order models, one

finds that that the K-AK force becomes progressively weaker

compared to the corresponding K-K force and whereas this ratio

is −1/4 for n = 1, this ratio goes to zero in the limit n → ∞. It is

worth remembering that for the exponential kink tails, the two

forces are always equal and opposite. This is a highly nontrivial

result which needs a deeper understanding.

These theoretical predictions have been compared with the

detailed numerical simulations for the n = 1, 2, 3 cases (i.e., ϕ8, ϕ10

and ϕ12) in [24] (also see [25]). There are major challenges in

even initializing kinks with a power law tail numerically. There is

a concern that the initial conditions in a direct numerical

simulation of interactions may substantially affect the nature

of the observed interactions [26]. On using the split-domain

ansatz and periodic boundary conditions, numerically accurate

predictions were obtained for the K-K and the K-AK forces in

case n = 1, 2 and 3. They find that while the agreement for the

exponent is excellent for all the three cases, the agreement about

the pre-factor multiplying the exponent is excellent for the ϕ8

case (as given by Eqs. (134) and (136)), but as n increases to 2 and

3, the agreement about the pre-factor gradually becomes worse.

One of the reasons for this disagreement is that as n increases, the

kink tail becomes progressively longer.

Can we extend the above calculations in case the kink tails are

of the form peep or pppp or ette or pttp or pppe or eeep? We now

show that the answer is yes and give predictions for the K-K and

K-AK forces in the above cases when the two tails facing each

other have a power law fall off.

10.3 Predictions for FK−AK in the case of
peep

Let us consider the one-parameter family of potentials as

given by Eq. 40, that is,

V(ϕ) � 1
2
ϕ2(1 − ϕ2)2n+2, n � 1, 2, 3, . . . . (141)

This model admits a kink ϕ0,1(x), a mirror kink ϕ−1,0(x) with an

exponential tail around ϕ = 0 and a power law tail around ϕ = ±1.

It also admits an antikink ϕ1,0(x) and a mirror antikink ϕ0,−1(x).

Following the procedure discussed above, it is

straightforward to calculate the force between the kink ϕ0,1(x)

and the antikink ϕ1,0(x). The two differences compared to the

eppe case discussed above are (1) in this case in the long-range

limit the potential around ϕ = 1 is 1
2(2ξ)2n+2 where ξ = 1 − ϕ and

(2) the kink mass in this case isMk = 1/[2(n + 2)]. Remarkably it

turns out that after taking into account these factors the K-AK

force for the peep case is in fact identical to the K-AK force in the

eppe case as discussed above provided we replace A by 2A in Eq.

138 and is given by

FK−AK � −
��
π

√ Γ( n
2(n+1))

Γ( −1
2(n+1))

⎡⎣ ⎤⎦ 1

2(2A)(n+1)/n. (142)

This is rather remarkable and suggests that the K-K and

K-AK forces are independent of the kink mass and only depend

on the asymptotic behavior of the power law kink tail. Let us now

check if the same is borne out in case the tails are of the

form pppp.

10.4 Predictions for FK-K and FK−AK in the
case of pppp

Let us consider the one-parameter family of potentials as

given by Eq. 48, that is,

V(ϕ) � 1
2
ϕ2m+2(1 − ϕ2)2n+2, m, n � 1, 2, 3, . . . . (143)

This model admits a kink ϕ0,1(x), a mirror kink ϕ−1,0(x) with a

power law tail around ϕ = 0 as well as around ϕ = ±1. It also

admits an antikink ϕ1,0(x) and a mirror antikink ϕ0,−1(x). In

particular, while the tail around ϕ = 0 asymptotically goes like

x−1/m, the power law tails around ϕ = ±1 go like x−1/n.

Following the procedure discussed above, it is

straightforward to calculate the force between the mirror kink

ϕ−1,0(x) and the kink ϕ0,1(x) as well as the force between the

antikink ϕ1,0(x) and the kink ϕ0,1(x) by noting that in this case the

potential around ϕ = 0 is given by 1
2ϕ

2m+2 while the kink mass in

this case is as given by Eq. 62. Remarkably it turns out that after

taking into account these factors the K-K and K-AK forces and

their ratio are again given by the same expressions as in the eppe

case provided we make the obvious replacement of n bym in Eqs.

(137), (138) and (140).

In this model one can also calculate the force between the

kink ϕ0,1(x) and the antikink ϕ1,0(x) since the kink tail around ϕ =

1 also has a power law tail. On noting that in the long-range limit

the potential around ϕ = 0 is given by 1
2(2ξ)2n+2 where ξ = 1 − ϕ, it

is straightforward to check that the K-AK force in this case is also
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the same as in the eppe case provided we replace A by 2A in Eq.

138 and is given by Eq. 142.

Finally we come to the question of the K-K and K-AK forces

in the model with power-tower kink tails as discussed in Section

6. As has been discussed in detail in [32], the power-tower tails

essentially are power law tails varying like x−1/a with a being a real

positive number. We would like to remark that the calculation of

[24] which is valid when the kink tail goes like x−1/n where n is an

integer, is easily extended to the case where the tail falls off like

x−1/a and a is a real positive number. In particular, the expressions

for the K-K force, the K-AK force and their ratio continue to be

still given by Eqs. (137), (138) and (140) with the obvious

replacement of n by a. As has been shown in [32], for potentials

V(ϕ) � 1
2
ϕ4 1

2
ln(ϕ2)[ ]2m, (144)

where the kink tails are of the form ette, the kink tail around ϕ = 0

falls off like x−1/a where 0 < a < 1 and asm increases the value of a

decreases progressively. It appears that these potentials may

provide a bridge between the kink solutions with a power law

tail and the kink solutions with an exponential tail. It would be

highly desirable to understand this transition.

Proceeding in the same way, it is straightforward to compute

the K-K and K-AK forces and their ratio in the case of other

models discussed in this review.

11 Kink–antikink collisions at finite
velocity

The issue of kink–antikink (K-AK) collisions at finite velocity

is only recently being addressed in the context of the kinks with a

power law tail [26–29]. Before we discuss the results obtained,

nontrivial issues involved and some of the open problems, it is

worth pointing out that in the context of kinks with an

exponential tail, the K-AK collisions at finite velocity have

been extensively discussed during the last four and half

decades [48, 49, 50, 50a, 50b, 50c, 51, 51a, 52, 53, 53a, 53b,

53c, 53d, 53e, 54, 54a, 54b, 55, 56, 57, 57a, 58, 59, 60, 61, 62].

However, it is fair to say that a coherent physical explanation is

still lacking. Some of the key findings are the following.

1) There is a critical value vcr of the initial velocity which is

model dependent but typically of the order of 0.1 − 0.3 (in

units of c, the speed of light) separating two different regimes

of collision: for vin < vcr, the capture and the formation of a

bound state occurs, while for vin > vcr, the kink and the

antikink escape to infinity after a single collision.

2) For vin < vcr, besides the formation of a bound state one finds

that there are two-bounce, three-bounce and so on escape

windows. In particular, there are intervals of the initial

velocities within which kinks scatter and eventually escape

to spatial infinities. The difference from vin > vcr, however, is

that inside the escape windows the kinks scatter to infinity not

after a single impact, but even after two or more successive

collisions. The escape windows seem to form a fractal

structure.

3) The explanation of the escape windows phenomenon seems

to vary frommodel tomodel. For thosemodels (like ϕ4) where

the kink stability equation admits an extra mode called the

vibrational mode (i.e., over and above the translational zero

mode which is present in every kink bearing model), it has

been suggested that the above phenomenon occurs due to the

resonant energy exchange between the zero mode and the

vibrational mode [62].

4) On the other hand, models where the kink stability equation

does not have any vibrational mode (like the celebrated ϕ6

model with V(ϕ) � 1
2ϕ

2(1 − ϕ2)2), it has been proposed that

the escape windows occur because the kinks and the antikinks

of this model are asymmetric [63].

During the last few years researchers have inquired [26–29] if

similar behavior also occurs in the collision of power law kinks at

finite velocity. The major challenge in case the kinks facing each

other having a power law tail is the correct formulation of the

initial conditions since the power law kink tails overlap

significantly at any finite distance that can be considered as

asymptotically large, that is, large enough so that the kink and the

antikink could be considered noninteracting. Using the split-

domain ansatz [28] the authors have investigated kink–antikink

collisions with finite velocity in the ϕ8, ϕ10 and ϕ12 models as given

by Eq. 32 with n = 1, 2, 3, that is,

V(ϕ) � 1
2
ϕ4,6,8(1 − ϕ2)2. (145)

In these models there is a kink from 0 to 1, a mirror kink from −1

to 0 and the corresponding two antikinks with a power law kink

tail around ϕ = 0 and an exponential tail around ϕ = ±1. These

authors have considered collisions between the kink ϕ−1,0(x) and

the antikink ϕ0,−1(x) moving at finite velocity. In all these models

they again find the same qualitative behavior as in the collision of

the kink and the antikink with an exponential tail. In particular,

they again find that there is a critical velocity vcr such that for

vin > vcr the kinks escape to infinity after one impact while for

vin < vcr there is formation of a kink–antikink bound state. In

addition to that, they again find two-bounce, three-bounce and

so on escape windows as depicted in Figure 9. The critical velocity

vcr monotonically increases from vcr of about 0.15 for the ϕ
8 case

to about 0.21 for the ϕ10 and to 0.27 for the ϕ12 case.

For the power law kinks, this area of research is in its infancy

and hopefully in coming years we will have a better

understanding and eventually a coherent physical explanation

might be available. Some of the open problems are the following.

1) For the models as given by Eq. 32, for large n do we still have a

similar picture as for n = 1, 2, 3? In particular as n becomes
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progressively larger, does vcr become progressively larger and

approach 1 (in units of c, the speed of light) asymptotically?

For large values of vcr, how important are the relativistic

effects? Of course this a difficult problem since as n increases

the kink tails become progressively longer.

2) The question of vcr being very large is not a hypothetical

question because of a recent study [29] of K-AK collisions at

finite velocity for different ϕ8,12 models as given by Eq. 63 with

n = 1, 2 (see Figure 10), that is,

V(ϕ) � 1
2
(1 − ϕ2)4,6. (146)

Note that in these models there is only a single kink from −1

to +1 and a corresponding antikink and unlike the model studied

by [28], in these models one has a symmetric power law kink tail

around ϕ = 1 and ϕ = −1. Using what they term as

computationally efficient way, it has been claimed by the

authors of [29] that the K-AK collisions at finite velocity

behave very differently from all the models studied previously

(either with an exponential or a power law tail). In particular,

they claim that there is neither a long-lived bound state

formation nor resonance windows and vcr is ultrarelativistic.

These claims, if true, would indicate that for power law kink tails,

the K-AK collisions at finite velocity are conceptually very

different from the exponential tail case.

3) Apart from the two possible kind of models studied so far [28,

29], there are several other models with power law kink tails

as discussed in Sections 4–9 and one also needs to study K-AK

collisions at finite velocity in these models and try to

understand various facets of this challenging as well as

difficult problem.

Finally, we note that recently kink scattering in a

generalized Wess–Zumino model [64] with three minima

has been studied, wherein two different scattering channels

have been identified, namely, kink–kink reflection and

kink–kink hybridization.

12 Open problems

In this review we have tried to uncover various aspects of

kink solutions with a power law tail. Several issues are now fairly

clear. For example, one distinctive feature of kinks with a power

law tail is that the corresponding kink stability equation only

admits the translation zeromode and in these cases the beginning

of the continuum coincides with the zero mode (i.e., with ω2 = 0).

Secondly, there is a recipe available for constructing two

adjoining kink solutions with various possible combinations of

the power law and the exponential kink tails. In addition, a wide

class of kink solutions has been constructed with two of the tails

being of power-tower type [32] which is a kind of power law tail

behaving like x−1/a where a is any arbitrary positive number.

FIGURE 9
Space-time contour plot of the scalar field of the kink–antikink interaction in the ϕ8 model showing (A) two-bounce and (B) three-bounce
windows. Adapted from [28].

FIGURE 10
ϕ8 (V8) and ϕ12 (V12) potentials given by Eq. 146.
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However, there are several aspects of the kink solutions with the

power law tail which are either only partially understood or not

understood at all. We now list some of these issues.

1) So far only implicit kink solutions with a power law tail have

been constructed in models with polynomial potentials.

While explicit kink solutions with a power law tail have

been constructed in a few models with polynomial

potentials, however unfortunately in all these models,

while the kink potential V(ϕ) is continuous but its

derivative is not. Even though that has still allowed the

explicit construction of the kink solutions with a power law

tail, it is certainly desirable to obtain kink solutions with a

power law tail in models with polynomial potentials where

not only the kink potential but its derivative is also

continuous everywhere.

2) One of the major issues which is only partially understood is

that of the K-K and K-AK forces in the case of the power law

tail. In case the kink tails are of the form eppe, one of the

intriguing conclusions [23, 24] is that compared to the

kink–kink force, the kink–antikink force gets

progressively weaker as the kink tail becomes

progressively longer. This is in contrast to the kinks with

exponential tails for which the magnitudes of the K-K and

K-AK forces are always equal. In our view, understanding

the reason for the weak K-AK force compared to the K-K

force remains one of the major open problems.

3) The calculation of [24] for the K-K and K-AK forces is only

reliable for smaller values of n in the family of potentials

given by Eq. 125 since as n increases, the kink tails become

progressively longer. It is highly desirable to devise methods

for a reliable computation of the K-K and K-AK forces for

the entire family of potentials as given by Eq. 125.

4) Are the results derived by [23, 24] for the eppe case for the

K-K and K-AK forces and their ratio also valid for the other

kink tail configurations such as peep and pppp (with suitable

modification for the form of the potential in the asymptotic

limit and the corresponding kink mass)? In Section 10, we

have assumed this to be true and tried to make predictions

for the K-K and K-AK forces and their ratio in the other

cases with power law kink tails. How good are these

predictions? It would be desirable if these could be

checked by accurate numerical calculations.

5) The predictions for the K-K and K-AK forces have been

made in [23, 24] for the eppe case, which indicated that the

kink tail goes like x−1/n where n is any integer. Are these

results also valid in case the kink tail goes like x−1/a with a

being any positive number? In Section 10, we have assumed

it to be true and tried to make predictions for the K-K and

K-AK forces in case the kink tails are of the form ette or pttp

and on the basis of these predictions have suggested that the

power-tower kink tails [32] form a bridge between the

exponential and the power law tails. How good are these

predictions? It would be desirable if these could also be

checked by accurate numerical calculations.

6) The predictions made in [23, 24] for the K-K and K-AK

forces are only valid to the leading order and only for the

large separation between the two kinks or the kink and the

antikink. Is it possible to compute the subleading corrections

to these estimates?

7) In all the calculations an implicit assumption has been made

that these results do not depend on the effect of the two (of

the four) tails which are not facing each other. While it may

be a reasonable assumption in the eppe case where the other

two tails are exponential, it is not obvious if it is also true in

case the kink tails are of the form pppp. It would be highly

desirable if one can numerically check the validity of this

prediction.

8) Normally for exponential tails, the K-K and K-AK forces fall

off exponentially as a function of the distance between them.

Is this conclusion still valid if the two remaining kink tails

have a power law fall off as in the peep case?

9) Can one extend the calculation of Manton [23] to the case of

nonpolynomial models [3, 34, 35] with a power law kink tail?

Knowing the behavior of the power law kink tail, one can

perhaps predict how the K-K and K-AK forces fall off as a

function of the kink–kink (or kink–antikink) separation.

However, it is not at all obvious how to compute the pre-

factor multiplying it using the Manton approach [23].

10) There are several areas of physics where kink solutions with

a power law tail could have applications. However, to date

we do not have any such concrete examples. Finding a

concrete example will give an added motivation for an in-

depth study of kinks with power law tails.

11) Very little is known about the kink–antikink collisions at

finite velocity in the case of kinks with power law tails. In

fact, one has conflicting results about such collisions for the

eppe case [28] compared to the case where there is a single

kink with symmetric power law kink tails at both the ends

[29]. It is clearly important to study such collisions in other

models discussed in Sections 4–9 where too one has kink

solutions with a power law tail.

12) Recently we have also constructed models having super-

exponential (se) [40] and super-super-exponential (sse) [65]

kink tails. It may be of interest to enquire if one can construct

models where the two adjoining kinks have an arbitrary

combination of the power law, the exponential, the super-

exponential and the super-super-exponential tails.

13) Several years ago Bazeia et al. [66] proposed a novel

deformation function f(ϕ) �
�����
1 − ϕ2

√
and discussed some

of its properties. Subsequently, a lot of work has been done

about various other deformation functions [10, 67–71].

Recently we [72] have generalized the deformation

function of [66] and proposed a one-parameter family of

deformation functions f(ϕ) � (1 − ϕ2n)1/2n, n �
1, 2, 3, . . . having novel and very unusual properties such
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as being its own inverse and starting from certain potentials

such a deformation can either create or destroy an arbitrary

even number of kinks. It would be worthwhile exploring the

connection between the various models with power law kink

tails such as those mentioned in Sections 3–9 using this and

other deformation functions.

We hope that in the coming years insightful answers would

be obtained for at least some of the questions raised above,

further enriching the field of power law kink tails.
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