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We study two-dimensional dense granular flows by molecular dynamics

simulations. We quantify shear-induced diffusion of granular particles by the

transverse component of particle displacements. In long time scales, the

transverse displacements are described as normal diffusion and obey

Gaussian distributions, where time correlations of particle velocities entirely

vanish. In short time scales, the transverse displacements are strongly non-

Gaussian if the system is dense and sheared quasistatically though memory

effects on the particle velocities are further suppressed. We also analyze spatio-

temporal structures of the transverse displacements by self-intermediate

scattering functions and dynamic susceptibilities. We find that the relation

between the maximum intensity and characteristic time scale for dynamic

heterogeneities is dependent on the models of contact damping (which

exhibit different rheological properties such as the Newtonian fluids’

behavior and shear thickening). In addition, the diffusion coefficient over the

shear rate is linear (sub-linear) in the maximum of dynamic susceptibility if the

damping force is not restricted (restricted) to the normal direction between the

particles in contact.
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1 Introduction

Flows of granular materials are of great importance to engineering technology [1, 2]

and a better understanding of their transport phenomena is crucial to many industrial

processes such as mixing and segregation [3]. Because constituent grains are macroscopic

in size, e.g., are typically from few μm to mm in diameter [4], thermal fluctuations do not

play a role in flows and transport phenomena of granular materials. This means that

granular flows are induced only by external forces and “mechanically driven” particle

motions have extensively been studied by experiments [5–12] and numerical simulations

[13–19]. It now seems to be a common consensus that collective motions of granular

particles are more pronounced as the system approaches the jamming transition [20].

In recent years, diffusion of the particles under shear, i.e. shear-induced diffusion, has

widely been investigated by experiments [21–25] and molecular dynamics (MD)

simulations [26–31]. From a scaling argument, the shear-induced diffusion coefficient
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scales as D ~ d20 _γ with the particle diameter d0 and externally

imposed shear rate _γ [21–23]. The scaling argument implies that

the diffusion coefficient is proportional to the shear rate.

However, a crossover from D∝ _γ to _γ0.8 (with increasing _γ)

was observed in MD simulations of two- and three-dimensional

particles [16, 26]. These results agree with laboratory

experiments of colloidal glasses under shear [24] and suggest

that the shear-induced diffusion does not depend on spatial

dimensions. Another crossover from D∝ _γ to _γ1/2 was also

found in a model of amorphous solids [29]. In addition, sub-

linear scaling, D∝ _γqD , was examined near the jamming

transition density ϕJ, where the exponent varies as qD = 1

(ϕ < ϕJ), 0.78 (ϕ ≃ ϕJ), and 0.68 (ϕ > ϕJ) with the increase of

particle packing fraction ϕ [27].

The collective motions of the particles enhance self-diffusion

and thus the scaling argument was revised as D ~ d0ξ _γ with a

typical size of collective motions, ξ [28]. The typical size can be

extracted, e.g. from a spatial correlation function of particle

velocities, and it has been suggested that ξ ~ _γ−0.23 near

jamming (ϕ ≃ ϕJ) [16] and ξ ~ _γ−1/2 above jamming (ϕ > ϕJ)

[28, 29]. If the system is below jamming (ϕ < ϕJ), critical

divergence of the size was found as ξ ~|Δϕ|−0.6 in overdamped

MD simulations [20], where Δϕ ≡ ϕ − ϕJ is the proximity to

jamming. However, ξ ~|Δϕ|−1 was reported in quasi-static

simulations [32].

In addition to the shear-induced diffusion, analogies with

dynamic heterogeneities [33, 34] have also been made by

experiments [9, 10] and numerical simulations [15–17].

Associating the mechanical driving with thermal fluctuations,

the physicists have analyzed heterogeneous nature of particle

motions both in space and time. Then, a link between the shear-

induced diffusion and dynamic heterogeneities was suggested as

D ~ χps _γ by the elastoplastic model in two-dimension (not in

three-dimension) [35], where χps represents the maximum

intensity of dynamic heterogeneities. Results in prior works,

however, are controversial, e.g. the maximum intensity scales

as χps ~|Δϕ|−1.8 for ϕ < ϕJ and χps ~ const. for ϕ > ϕJ in quasi-static

simulations [17], while χps ~|Δϕ|−1.2 _γ−0.3 was suggested for both

below and above jamming by experiments [10]. Moreover, the

scaling, D ~ χps _γ, has not yet been tested by MD simulations of

sheared granular materials. Interestingly, particle motions in

oscillatory sheared granular materials [6], air-fluidized bed [7],

and horizontally vibrated granular media [36] have similarities to

glass forming liquids [33, 34], where both length and time scales

for dynamic heterogeneities diverge at the jamming transition

density.

In this paper, we study the shear-induced diffusion and

dynamic heterogeneities in dense granular flows by MD

simulations. We investigate wide ranges of control parameters,

i.e. the packing fraction of the particles ϕ and shear rate _γ, to

examine the scaling relation, D ~ χps _γ, both below and above

jamming, and in both quasi-static and fast flow regimes. In the

following sections, we introduce our numerical method in

Section 2 and show our results in Section 3. Then, we discuss

our results in Section 4 and conclude our findings in Section 5.

2 Method

We study dense granular flows in two dimensions by MD

simulations. To avoid crystallization of the system, we randomly

distribute a 50 : 50 binary mixture ofN = 2048 particles in a L × L

square periodic box. Different kinds of particles have the same

mass m and different diameters, dS and dL = 1.4dS [20, 37].

Repulsive force between the particles, i and j, in contact is

modeled as elastic force, f eij � kelijnij, where ke is a spring

constant and nij ≡rij/|rij| with the relative position between the

particles, rij, is the normal unit vector. Here, lij ≡ Ri + Rj − |rij| > 0

represents an overlap between the particles, where Ri (Rj) is the

FIGURE 1
Double logarithmic plots of the shear viscosity η and shear
rate _γ, where the models (A) A and (B) B are used for the damping
force, fdij . The packing fraction of the particles ϕ increases as listed
in the legend of (A). The solid lines indicate shear thinning,
η ~ _γ−1, whereas the dashed line in (B) represents the Bagnold
scaling (shear thickening), η ~ _γ.
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radius of i(j)-th particle. Damping force is also introduced

between the particles in contact as f dij, where we examine two

different force laws according to Ref. [38]: (i) The damping force

is given by f dij � −ηdvij, where ηd is a damping constant and vij is
the relative velocity between the particles. We refer to this model

as model A. (ii) The damping force is restricted to the normal

direction as f dij � −ηd(vij · nij)nij, which is often used for a

model of “frictionless granular particles” [39]. We refer to this

model as model B. In both the models A and B, we choose the

spring and damping constants as the normal restitution

coefficient is given by e � exp(−π/
����������
2mke/η2d − 1

√
) ≃ 0.8 [40].

We simulate simple shear flows of the system under the Lees-

Edwards boundary condition. In each time step, every particle

position ri = (xi, yi) is replaced with (xi + Δγyi, yi) (i = 1, . . ., N)

and then equations of motion, m€ri � ∑j(f eij + f dij), are

numerically integrated with a small time increment, Δt =

0.1t0. Here, t0 ≡ ηd/ke is a time unit and Δγ is a strain

increment such that the shear rate is defined as _γ � Δγ/Δt. In
the following, we analyze the data in a steady state (where the

amount of shear strain exceeds unity) and scale every mass, time,

and length by m, t0, and the mean particle diameter, d0 ≡ (dS +

dL)/2, respectively.

3 Results

In this section, we show our numerical results of shear-

induced diffusion and dynamic heterogeneities in dense granular

flows.We clarify the role of packing fraction of the particles ϕ and

shear rate _γ. In addition, we examine how rheological properties

of the particles affect our results. Figure 1 displays our numerical

results of shear viscosity η � σ/ _γ, where σ is shear stress. The

shear stress is calculated as σ � −L−2∑i<jf
e
ijxrijy with the x- and

y-components of the elastic force and relative position, fe
ijx and

rijy, respectively, and is averaged over 10
3 different configurations

of the particles in a steady state. In this figure, we used the models

(A) A and (B) B for the contact damping, f dij, and changed the

packing fraction from ϕ = 0.80 to 0.90 (symbols). If the packing

fraction is much smaller than the jamming transition density, ϕJ
≃ 0.8433 [20], the model A exhibits the Newtonian fluids’

behavior, i.e. η ~const., for sufficiently small shear rates. In

contrast, the model B shows the Bagnold scaling, σ ~ _γ2, i.e.

η ~ _γ (dashed line). If the packing fraction is larger than ϕJ, both

the models exhibit the rate-independent yield stress, σ = σY, so

that one observes shear thinning as η ~ _γ−1 (solid lines). See also

the Supplementary Material (SM) [41] for our numerical results

of flow curves, i.e., σ vs. _γ. In the following analyses, we explain

how the difference between the models A and B influences the

shear-induced diffusion and dynamic heterogeneities.

Since our system is homogeneously sheared along the x-

direction, we analyze fluctuating transverse motions of the

particles along the y-direction. We introduce a transverse

displacement of the particle i (= 1, . . ., N) as the time integral,

δyi τ( ) � ∫ta+τ

ta

viy t( )dt , (1)

where τ is a time interval and viy(t) is the y-component of particle

velocity [42]. Note that the initial time ta can arbitrary be chosen

during a steady state.

In the following, we associate the fluctuating transverse

motions of the particles (Eq. 1) with thermally activated

molecular motions in glasses [33]. We show how the shear-

induced diffusion is controlled by the parameters, ϕ and _γ

(Section 3.1), and analyze dynamic heterogeneities (Section

3.2). Then, we examine the relation between the maximum

intensity and characteristic time scale for dynamic

heterogeneities (Section 3.3) and discuss the link between the

shear-induced diffusion and dynamic heterogeneities

(Section 3.4).

3.1 Shear-induced diffusion

We quantify shear-induced diffusion of the particles by the

transverse component of mean squared displacement

(MSD) [42],

Δ2 τ( ) � 〈 1
N

∑N
i�1
δyi τ( )2〉ta , (2)

where the ensemble average 〈. . . 〉ta is taken over different choices

of the initial time ta (see Eq. 1). Figures 2A,B display the MSDs

with different values of the control parameters, (A) ϕ and (B) _γ,

where the scaled shear rate and packing fraction are fixed to (A)
_γt0 � 10−4 and (B) ϕ = 0.84, respectively. The horizontal axes are

the time interval τ scaled by the shear rate _γ, i.e. the shear strain

applied to the system for the duration, γ ≡ _γτ. In this figure, we

used themodel A for the damping force (see SM [41] for the results

of model B, where we confirm that the results are qualitatively the

same). As can be seen, every MSD exhibits a cross-over from

super-diffusion to normal diffusion, Δ2(τ) ~ _γτ (dashed lines),

around a cross-over strain, γ = γc < 1 [17]. The MSDs

monotonously increase with the increase of packing fraction ϕ

(Figure 2A), whereas they decrease with the increase of shear rate _γ

(Figure 2B). In simple shear flows, transverse motions of the

particles are induced by contacts. The denser the system is, the

more likely the particles make contacts. In addition, the particles

can travel long distance during a certain strain interval if the shear

rate is small. Therefore, transverse motions of the particles are

most enhanced in quasi-static flows of dense systems [19].

Different from glass forming liquids [33], any plateaus are not

observed in the MSDs. This means that neither caging nor sub-

diffusion of the particles exists in our system [15–17]. Note that the

MSDs defined by non-affine displacements show qualitatively the

same results (data are not shown).

We also analyze time correlations of transverse motions by

the velocity auto-correlation function (VACF),
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C τ( ) � 〈 1
N

∑N
i�1

viy ta + τ( )viy ta( )〉ta . (3)

Figures 2C,D show the normalized VACFs, C(τ)/C(0), where

ϕ and _γ vary as in Figures 2A,B, respectively. As can be seen,

every VACF decays to zero if the shear strain exceeds the cross-

over strain, γ > γc. Therefore, transverse velocities of the particles

completely lose their memory when the system exhibits the

normal diffusion (dashed lines in Figures 2A,B). If the

packing fraction is small enough, i.e. ϕ < ϕJ, one observes that

the VACFs are lowered to negative values and then converge to

zero (see the inset to (C)), indicating backscattering of the

particles [43]. Note that the backscattering effects are

weakened if we use the model B for the damping force (see

FIGURE 2
The MSD Δ2(τ) ((A) and (B)), normalized VACF C(τ)/C(0) ((C) and (D)), non-Gaussian parameter κ(τ) ((E) and (F)), self-intermediate scattering
function Fs(τ) ((G) and (H)), and dynamic susceptibility χs(τ) ((I) and (J)) as functions of the shear strain γ � _γτ, where we used the model A for the
damping force (see the SM [41] for the results of model B). In (A), (C), (E), (G), and (I), we increase the packing fraction of the particles ϕ as listed in the
legend of (A), where the scaled shear rate is given by _γt0 � 10−4. In (B), (D), (F), (H), and (J), we decrease the scaled shear rate _γt0 as listed in the
legend of (B), where the packing fraction is fixed to ϕ = 0.84. The dashed lines in (A) and (B) indicate the normal diffusion, Δ2 ~ _γτ, while those in
(C)–(F) represent zero. The inset to (C) is a zoom-in to the data for ϕ < ϕJ ≃ 0.8433 and _γt0 � 10−4. The insets to (I) and (J) are double logarithmic plots,
where the dashed lines indicate the power-law behavior (with the slope 3.5). The vertical solid lines represent the peak positions of the dynamic
susceptibility, i.e. γ* � _γτ*, for ϕ = 0.90 ((A), (C), (E), (G), and (I)) and _γt0 � 10−6 ((B), (D), (F), (H), and (J)). Note that all the results have been averaged
over 102 samples.
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SM [41]). In short time scales, γ < γc, the VACF decays faster if we

increase ϕ (Figure 2C) or decrease _γ (Figure 2D). Thus, the time

correlations, as well as memory effects on transverse motions, are

strongly suppressed in quasi-static flows of dense systems.

The probability distribution function (PDF) of particle

displacements is associated with the self-van Hove function which

is another important measure of diffusion [43]. Figure 3 shows our

numerical results of the PDFs of transverse displacements, P(δyi(τ)),

where the models (A) A and (B) B are used for the contact damping.

In this figure, each PDF has been averaged over 102 samples. As can

be seen, the PDFs are quite insensitive to the models and are

symmetric around δyi(τ) = 0, indicating that the anisotropy is

negligible in our systems [44].

The width (variance) of the PDF is equivalent to the MSD,

while the shape of the PDF is characterized by the non-Gaussian

parameter,

κ τ( ) � 〈N−1∑N
i�1δyi τ( )4〉ta

〈N−1∑N
i�1δyi τ( )2〉2ta

− 3 . (4)

The non-Gaussian parameter is defined as the kurtosis

subtracted by three, which quantifies how the PDF deviates

from the normal distribution (where κ(τ) = 0). Figures 2E,F

display the time development of non-Gaussian parameters, κ(τ),

where the control parameters change as in Figures 2A,B. In this

figure, we used the model A for the damping force (see SM [41]

for the results of model B). The non-Gaussian parameters

converge to zero if the strain exceeds the cross-over strain,

γ > γc, regardless of ϕ and _γ. This means that the transverse

displacements obey Gaussian distributions and thus are

uncorrelated in space when the shear-induced diffusion is

described as the normal diffusion. When molecules in a glass

escape from a cage, the self-van Hove function strongly deviates

from the normal distribution [45] so that the non-Gaussian

parameter exhibits a characteristic peak. In our system, the

non-Gaussian parameters do not show peaks because the

particles are not trapped by cages and do not undergo sub-

diffusion. Nevertheless, in short time scales (γ < γc), the non-

Gaussian parameter tends to be large for ϕ > ϕJ (Figure 2E) and
_γt0 ≪ 1 (Figure 2F), implying that “transverse velocities” in

quasi-static flows of dense systems are strongly non-Gaussian

and may be spatially correlated [19].

3.2 Dynamic heterogeneities

Next, we examine dynamic heterogeneities of transverse

motions of the particles. To quantify the dynamics of single

particles, we introduce the self-intermediate scattering function as

Fs(τ) � 〈f̂s(τ)〉ta, where the function is defined as

f̂s τ( ) � 1
N

∑
i

sin kδyi τ( )[ ]
kδyi τ( ) (5)

with the wave number, k = 2π/d0. Figures 2G,H show the time

development of self-intermediate scattering functions, Fs(τ),

where the parameters, ϕ and _γ, vary as in Figures 2A,B,

respectively (see SM [41] for the results of model B). In these

figures, Fs(τ) monotonously decreases from one to zero and does

not exhibit a plateau as we do not observe any plateaus in the

MSDs. In addition, it becomes sufficiently small, Fs(τ) < 0.5,

when the shear-induced diffusion is described as the normal

diffusion. This means that most of the transverse displacements

are greater than the particle radius if γ > γc (as can be seen in the

data of MSDs). In short time scales (γ < γc), Fs(τ) decays faster if

we increase ϕ (Figure 2G) or decrease _γ (Figure 2H). Therefore,

the magnitude of transverse displacements is most enhanced in

quasi-static flows of dense systems [19].

To further investigate spatio-temporal heterogeneous

structures of transverse motions, we calculate the dynamic

susceptibility as the variance of the function f̂s(τ), i.e.

FIGURE 3
Semi-logarithmic plots of the PDFs of transverse
displacements δyi(τ) (i = 1, . . ., N), where the models (A) A and (B) B
are used for the damping force. The shear strain increases from
γ � _γτ � 10−2 to 1 as listed in the legend of (A), where the
control parameters are given by ϕ = 0.84 and _γt0 � 10−4.
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χs τ( ) � N 〈f̂s τ( )2〉 − 〈f̂s τ( )〉2{ } . (6)

Figures 2I,J display the time development of dynamic

susceptibilities, χs(τ), where the control parameters change as

in Figures 2A,B (see SM [41] for the results of model B). As in

the case of glass forming liquids [34], χs(τ) has a single peak at

a characteristic time scale, τ*. The height of the peak,

χps ≡ χs(τ*), representing the maximum intensity of the

heterogeneities, grows with the increase of ϕ (Figure 2I)

[17] and decrease of _γ (Figure 2J). On the other hand, the

peak position _γτ* decreases with increasing ϕ and decreasing
_γ. This is in sharp contrast to the dynamic heterogeneities in

glasses [34] and homogeneously driven granular materials

[7], where both the peak height and position, χps and τ*,

increase when the systems approach the glass and

jamming transitions. Note that the peak position _γτ*

(vertical solid lines in Figure 2) is around (or less than)

the cross-over strain γc. Moreover, we also find the power-

law growth of dynamic susceptibility before the peak (dashed

lines in the insets to (I) and (J)) as previously reported by

experiments of two-dimensional granular materials under

shear [6].

3.3 Dynamic criticality

In the case of glass forming liquids and homogeneously

driven granular materials, both the peak height χps and

position τ* of dynamic susceptibility are increased by e.g.

the decrease of temperature [33] and the increase of packing

fraction [7]. This implies the existence of dynamic criticality

in thermally/athermally driven disordered systems, i.e.

critical slowing down (the divergence of relaxation time

τ*) is accompanied by the divergence of correlation length

ξ*, where the correlation length is roughly estimated as

ξ* ~ χp1/ds in d-dimension [34].

In our MD simulations, however, we find that χps grows

while τ* shifts to short time scales if the system is dense and

sheared quasistatically (Figures 2I,J). This means that

instantaneous transverse motions, or “transverse velocities”,

become more heterogeneous in space than the displacements in

long time scales (γ > γc). To extract relations between the peak

height and position of dynamic susceptibility, we make scatter

plots of χps and _γτ* in Figure 4A. Here, the solid (open) symbols

are the results of model A (B), where the shear rate is limited to

quasi-static values, _γt0 ≤ 10−5 (10–4). We find that the relations

between χps and _γτ* are well described by the power-laws, where

the data of models A and B are fitted to _γτ* ~ χp−0.82s (solid line)

and χp−0.51s (dashed line), respectively. The data cannot be

described by the power-laws if the shear rate is sufficiently

large. Furthermore, the difference between the models becomes

significant as χps decreases and _γτ* increases (Figure 4A), where

the two models exhibit different rheological properties, i.e. the

Newtonian fluids’ behavior and shear thickening, for ϕ < ϕJ and
_γt0 ≪ 1 (Figure 1). On the other hand, the difference between

them is less pronounced if χps increases and _γτ* decreases

(Figure 4A), where both the models show the same

rheological behavior, i.e. shear thinning, for ϕ > ϕJ and
_γt0 ≪ 1 (Figure 1).

3.4 Shear-induced diffusion coefficient

It had been suggested by the elastoplastic model [35] that the

diffusion coefficient of sheared athermal system is linked to the

peak height of dynamic susceptibility as

FIGURE 4
(A) The peak position of dynamic susceptibility, _γτ*, and (B)
diffusion coefficient over the shear rate, D/ _γ, as functions of the
maximum intensity of dynamic heterogeneities, χps , where the
packing fraction ϕ increases as listed in the legend of (A). The
solid (open) symbols are the results of model A (B), where we only
show the data in a quasi-static regime, _γt0 ≤ 10−5 (10–4). In (A), the
solid (dashed) line is a power-law fit, _γτ* ~ χp−0.82s (χp−0.51s ), to the
data of model A (B). In (B), the solid line is the linear scaling,
D/ _γ ~ χps , for the results of model A, while the dashed line is a
power-law fit, D/ _γ ~ χp0.43s , to the data of model (B). The insets are
double logarithmic plots.
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D ~ χps _γ . (7)

We examine this linear scaling relation between D and χps _γ

by our numerical data. Extracting the shear-induced

diffusion coefficient over the shear rate from the slope of

MSD asD/ _γ � lim
τ→∞Δ2(τ)/2γ [42], we make scatter plots ofD/ _γ

and χps in Figure 4B. We find that the results of model A (solid

symbols) obey the linear scaling, Eq. 7 (solid line), regardless

of the packing fraction ϕ, where the shear rate is limited to the

quasi-static values, _γt0 ≤ 10−5. However, the model B (open

symbols) exhibits a different scaling, D/ _γ ~ χp0.43s (dashed

line), for any ϕ and _γt0 ≤ 10−4. Though the scaling for the

results of model B is controversial, the difference between the

models for small χps can be associated with the different

rheological properties in ϕ < ϕJ and _γt0 ≪ 1 (Figure 1). In

contrast, the difference becomes small if χps increases, where

the same shear thinning, η ~ _γ−1, is observed in both the

models (Figure 1). Interestingly, the product of shear-

induced diffusion coefficient D and time scale τ* is almost

constant, Dτ* ~const., if the maximum intensity increases to

χps > 20 (see SM [41]). This relation, Dτ* ~const., is insensitive

to the models and mimics the Stokes-Einstein relation [46,

47]. However, the dependence of shear viscosity η on either χps
or τ* is not monotonous (see SM [41]) and we cannot find a

clear relationship between the viscosity and diffusion

coefficient.

4 Discussion

In this study, we have numerically investigated shear-

induced diffusion and dynamic heterogeneities in two-

dimensional dense granular flows. Applying simple shear

deformations to the system, we analyzed fluctuating

transverse motions of the particles, where we focused on

the role of packing fraction of the particles ϕ and shear rate _γ.

To examine the influence of different rheological properties,

we introduced two different force laws to the damping force

between the particles in contact (as the models A and B). We

found that the transverse displacements (Eq. 1) are described

as the normal diffusion if the applied strain exceeds the cross-

over strain, γc < 1. In long time scales, γ > γc, the time

correlations of transverse velocities vanish and the transverse

displacements obey Gaussian distributions, where most of the

transverse displacements exceed the particle radius. In short

time scales, γ < γc, memory effects on the transverse velocities

are strongly suppressed and the transverse displacements

become highly non-Gaussian if the system is dense (ϕ >
ϕJ) and sheared quasistatically ( _γt0 ≪ 1). We confirmed

that the dependence of the MSDs, VACFs, and non-

Gaussian parameters on the control parameters, ϕ and _γ, is

qualitatively the same even if we change the model of contact

damping. Different from thermally activated molecular

motions in glasses [33], we did not observe any plateaus in

the MSDs and self-intermediate scattering functions, and did

not find any peaks in the non-Gaussian parameters.

Therefore, neither the caging nor sub-diffusion exists in

our shear-driven granular systems. In contrast, the

dynamic susceptibility exhibits a peak at a characteristic

time scale τ*. Increasing ϕ and decreasing _γ, we found that

the maximum of dynamic susceptibility χps increases though

the peak position _γτ* shifts to short time scales. This trend is

opposite to the dynamic criticality observed in glasses [48]

and homogeneously driven granular materials [7], where we

described our numerical results in a quasi-static regime as a

power-law, _γτ* ~ χp−]s , with the model-dependent exponent ].
Moreover, the diffusion coefficient over the shear rate, D/ _γ, is

linear in the maximum of dynamic susceptibility χps (Eq. 7) if

the model A is used for the contact damping. On the other

hand, we found a sub-linear scaling between them, which is in

conflict to the prediction made by the elastoplastic model

[35], if the model B is used in MD simulations.

Though we have examined two different models of

contact damping, where they exhibit the Newtonian fluids’

behavior and Bagnold scaling for sufficiently small ϕ and _γ

[38], more systematic studies of the damping force are also

possible [38, 49]. Furthermore, the effect of particle inertia

which we have not studied here is also crucial to the rheology

[50]. In general, interactions between the particles in contact

drastically change the rheological behavior, e.g. frictional

contacts induce discontinuous shear thickening [51, 52],

whereas cohesive contacts result in discontinuous shear

thinning [53]. Because our results suggest that the relation

between the maximum intensity and characteristic time scale

for dynamic heterogeneities, as well as the link between the

shear-induced diffusion and dynamic heterogeneities, is

dependent on rheological properties, further studies of the

effect of particle inertia and interaction forces are necessary

in future. In addition, different models of elastic forces, e.g.

the Hertzian contact which takes account of the particle

curvature, should also be examined. Moreover, non-

spherical particle shapes [54] and the study in three

dimensions [55, 56] are also important for experiments

and industrial applications of this study.

5 Conclusion

In conclusion, we found that shear-induced transverse

motions of granular particles are totally different from

thermally activated molecular motions in glasses. The scaling

relations between the maximum intensity of dynamic
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heterogeneities, characteristic time scale, and diffusion

coefficient of the particles were confirmed in quasi-static

flows, where the scaling exponents are dependent on the

model of contact damping.
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