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Owing to the unique electromagnetic response ability, electromagnetic

metasurface have potential applications in medical, imaging, sensing, and

other fields. In this paper, a graphene-based THz metasurface sensor with

an air spacer layer is designed by combining the advantages of the air spacer

structure and the dynamic tunability of graphene materials. The proposed

metasurface sensor consists of six layers, which are silicon dioxide (SiO2)

substrate, metal reflector, air layer, graphene metasurface etched with

microstructure, ion-gel layer and silicon dioxide dielectric layer from bottom

to top. A comprehensive study of the absorption properties and sensing

performance are carried out which is simulated and analyzed with the help

of CST Microwave Studio software. The calculation results show that the two

obvious resonance absorption peaks located at 0.95 THz and 1.53 THz with

absorption of 94.9% and 79%, respectively, and there is a good linear

relationship between the absorption peak and dielectric parameters of

analyte. The frequency shift sensitivity of the two resonance peaks M1 and

M2 can reach 450 GHz/RIU and 717 GHz/RIU, respectively. By changing the

thickness of the air layer, when the two resonance peaks M1 and M2 reach the

maximum absorption at h2 � 140μm and h2 � 280μm, respectively, the

frequency shift sensitivity is still as high as close to 450 GHz/RIU. The

influence of structure parameters and incident angle on the absorption

spectrum shows that the proposed structure has good stability and

reliability. The proposed graphene-based absorption sensor has good

biocompatibility, broadening the application range of terahertz functional

devices.
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Introduction

Terahertz (THz) wave, generally defined in the frequency

range of 0.1–10 THz, lie between the microwave and infrared

frequencies in the electromagnetic spectrum. THz waves have

both analyte penetration and analyte fingerprint recognition

characteristics, making it widely used for analyte detection.

Moreover, THz waves are non ionizing. So, when THz waves

are used to detect analyte, they will not cause changes in material

properties and structural damage due to ionization and high-

intensity radiation, and can achieve non-destructive testing of

analyte [1]. Metamaterials are composite materials made by

artificial design. The properties are not only related to the

physical properties of the constituent materials, but also

related to the effect of the unit structure on waves, and have a

single electromagnetic response characteristic that is not found in

nature. This material consists of periodically arranged

subwavelength units [2, 3], which can realize the local

enhancement of electromagnetic fields [4–7]. It is also quite

sensitive to the change of the dielectric environment around the

structure [8, 9]. THz metamaterial sensor is an important

functional device in the THz frequency band [10–13]. It

realizes the detection of analyte by changing the resonance

characteristics of the sensor due to the difference of the

electromagnetic parameters of the measured analyte in the

THz frequency band [14–17]. In 2017, Geng et al. reported A

microfluidic-integrated terahertz metamaterial biosensor

produces 19 GHz resonance shift (5 mu/ml) and 14.2 GHz

resonance shift (0.02524 μg/ml) when detecting Alpha

fetoprotein (AFP) and Glutamine transferase isozymes II

(GGT-II), which can be used for the detection of early-stage

liver cancer biomarkers [18]. At present, THz metamaterial

sensors are mainly divided into transmissive metamaterial

sensors and reflective metamaterial sensors [19], the designed

and processed metamaterial sensor have a wide applicable

occasion in biomolecule recognition, food quality control,

environmental detection, and many other fields [20–22].

During the process of designing metamaterial absorbers,

spacers can be incorporated in such a design (in terms of

thickness and dielectric function) that it is critical to realize

various applications [23, 24]. For example, partially etched

partitions can be replaced with liquid crystals to achieve

electrically tunable metamaterial absorbers [25–28].

Alternatively, VO2 can be used as the material of the air

spacer. Can control the change of the material from the

insulating layer to the air layer by changing the temperature.

Meanwhile, the absorption resonance will be turned on and off

due to the change of the material [29–32]. In addition, nonlinear

characteristics can be introduced by integrating semiconductor

materials in spacers [33–36]. Importantly, metamaterial

absorbers typically have a higher quality factor than single-

layer metamaterial, making them more suitable for sensing

applications. However, the physical presence of dielectric

spacers impedes access to volumes between the metamaterial

layer and the ground plane, where the electric field is highly

concentrated. In addition, dielectric loss of spacer materials will

reduce the quality factor [37].

Graphene is a two-dimensional material made of carbon

atoms arranged in a regular hexagonal shape similar to benzene

rings. The surface conductivity of graphene can be artificially

modulated by applying bias voltage or chemical doping to change

the carrier concentration of graphene. Therefore, graphene can

be dynamically modulated. Therefore, graphene may be a good

candidate for the design and engineering of some tunable devices

to the above modulation properties. It has been widely used in

sensors, and the position of the resonance wavelength on the

spectrum can be affected by the Fermi level, which can easily

realize a wide range of graphene sensing [38–40].

In this paper, we combine an air-spaced structure with a

highly concentrated electric field and a tunable graphene material

to propose a graphene-based THz metasurface sensor with air-

spaced structure which is simulated and analyzed with the help of

CST Microwave Studio software, two resonance peaks located at

0.95 THz and 1.53 THz are observed. At the same time, the

resonance mechanism is analyzed from impedance matching and

electric field mode. In addition, the sensing characteristics of the

sensor were also studied, and the sensitivity of the two resonance

peaks M1 and M2 of the graphene absorption sensor can reach

450 GHz/RIU and 717 GHz/RIU, respectively. Furthermore,

when the two peaks reach the maximum absorption, the

sensitivity is still as high as close to 450 GHz/RIU.

Structure and design

The proposed graphene-based THz metasurface sensor

consists of six layers, which are silicon dioxide (SiO2)

substrate, metal reflector, air layer, graphene metasurface

etched with the microstructure, ion-gel layer and silicon

dioxide dielectric layer from bottom to top. The side view of

the unit cell is shown in Figure 1A. The repeat period is

Px � Py � 50 μm. The SiO2 whose relative dielectric constant

is 3.9, are used as substrate and the dielectric layer, and the

thicknesses of the dielectric layer and the substrate layer are h4 �
10 μm and h � 5 μm , respectively. The metal reflection layer is

made of gold (Au), the conductivity is 4.56 × 107 S/m, and the

thickness is h3 � 0.2 μm. The air layer is located between the

graphene microstructure layer and the metal reflective layer, with

a thickness of h2 � 130 μm. The Ef and conductivity of graphene

can be changed by applying static bias, so as to realize the tunable

function of graphene sensor. In order to easily adjust the

electrical conductivity of graphene in the graphene

microstructure layer, an Ion-gel thin film layer is added on

the top of the graphene microstructure layer as a conductive

layer, the thickness of which is h1 � 2 μm. The ion-gel is a solid-

state mixture composed of polymer materials and electrolyte
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materials with good electrical conductivity, and the relative

permittivity is εIon−gel � 1.82. The top view of the graphene

microstructure is shown in Figure 1B, the dotted line is the

auxiliary line. Two identical rings placed vertically are etched

away from the graphene layer. The long radius of the outer ring is

Rout � 25 μm, and the short radius is rout � 16.5 μm, the long

radius of the inner ring is Rin, and the short radius is

rin � 0.65Rin μm. The entire structure is illuminated by planar

light propagating along the negative Z axis, and the position of

the electric field monitor is the same as that of the graphene layer

and larger than the graphene layer boundary.

In this paper, the conductivity model of graphene is mainly

explained by the Kubo formula. Eqs 2, 3 represent the intraband

conductivity and interband conductivity of graphene,

respectively, where e is the electron charge, T is the

temperature of the environment, ω is the circular frequency of

the incidence wave, kB is Boltzmann’s constant, Z is the reduced

Planck’s constant, Ef is the Fermi energy of graphene, and τ �
(μvEf)/(eV2

f) is the relaxation time. The Fermi velocity Vf �
106 m/s in graphene, and μv is the carrier mobility, which

decreases with the carrier density increasing (high Fermi

energy). The experimental results show that the mobility

range is 2000–40,000 cm2 V−1• s−1, in this paper, a

compromise value of 10,000 is taken for the convenience of

calculation [41–43],

σg � σ intra + σ inter (1)

σ intra(ω, T, τ, Ef) � j
e2kBT

π-2(ω − jτ−1) [
Ef

kBT
+ 2 ln(e−Ef/kBT + 1)]

(2)

σ inter(ω, T, τ, Ef) � j
e2

4π-
ln(2

∣∣∣∣Ef

∣∣∣∣ − (ω + jτ−1)-
2
∣∣∣∣Ef

∣∣∣∣ + (ω + jτ−1)-) (3)

The intraband transition plays a leading role in the low

frequency THz band rather than the interband transition.

Here, the conductivity of graphene can be explained by the

Drude model. For Ef ≫ kBT, the electrical conductivity of

graphene can be expressed as Eq. 4 [44, 45]:

σg � e2Ef

π-2
j

ω + jτ−1
(4)

The relative dielectric constant is [46].

εg � 1 + jσg
ε0ωtg

(5)

where, ε0 is the vacuum dielectric constant and tg is the thickness

of graphene. According to the above equations of conductivity

and the dielectric constant of graphene, the calculated data can be

imported into CST software and graphene modeling can be

completed. We set tg as 1 nm, temperature at 293 K and

relaxation time as 0.5 ps. In the simulation, we established

S-parameters, through which we can get the reflection and

transmission of the entire system, (ω) � |S11(ω)|2,
T(ω) � |S21(ω)|2, and the absorption is A(ω) � 1 − R(ω) − T(ω).

Results and discussion

The absorption of the air-spaced graphene metasurface

sensor are studied by the frequency domain solver based on

the finite element algorithm in the CST Microwave Studio

software. In order to improve the accuracy and simulation

speed of structure discretization, adaptive grid is used to

divide the sensor structure. Owing to the symmetric structure,

the TE direction is the same as the TM direction. When the THz

wave is incident vertically (theta � 0°), no analyte in the air layer

(the real part of the air layer dielectric constant Re � 1, and the

imaginary part Im � 0), the long and short radius of the inner

elliptical ring are Rin � 19 μm and Rout � 0.65Rin μm, the

FIGURE 1
(A) Layered structure diagram of the graphene-based THz metasurface sensor. (B) Schematic diagram of the graphene microstructure,
respectively.
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thickness of the air layer is h2 � 180 μm and the Fermi level

Ef � 1 eV, the absorption spectrum is shown in Figure 2. From

the absorption spectrum, two resonance peaks M1 and M2 with

high absorption rates of 94.9 % and 79% in the frequency range of

0.1 ~ 2.0 THz were observed. The resonant frequencies of the two

resonant peaks are M1 = 0.95 THz and M2 = 1.53 THz.

Equivalent model analysis

According to transmission line theory, the graphene-based

metasurface is equivalent to an RLC series circuit, which is shown

in the Figure 3A. The equivalent impedance is Zg, Zg = Rg + j ω Lg
+ 1/(j ω Cg). In addition, on the basis of the transmission line

theory, the ion-gel layer and the dielectric layer both are

equivalent to a lossy transmission line, and the electrical

impedances are ZIon-gel and Zh, respectively, and the

magnitudes are related to the thickness and dielectric

constant. Since the thickness of the metal reflective layer is

greater than the skin depth of the metal aluminum in the

THz wave, the THz wave cannot penetrate the reflective layer,

so the metal reflective layer is equivalent to a lossless short-circuit

wire, and the impedance Zgold = 0. The equivalent electrical

impedance of the sensor is Zin, and the free space electrical

impedance is Z0. Figure 3A shows the equivalent circuit model of

the designed graphene-based THz sensor. According to the

impedance matching theory, when Zin = Z0, the impedance

matching condition is satisfied, and the THz wave at the

resonance frequency is absorbed by the sensor [47].

Since the transmission coefficient of the sensor S21 = 0, the

complex impedance Z of the sensor can be calculated by the

reflection coefficient S11, and the calculation formula of the

complex impedance Z is Eq. 6 [48]:

Z � 1 + S11
1 − S11

(6)

Figure 3B shows the absorption spectrum of graphene-based

THz metasurface sensors when h2 � 130 μm, and Rin � 19 μm.

The complex impedance frequency spectrum of the sensor is

shown in Figure 3C. It can be clearly seen that a good impedance

match with the free space around 0.98 THz and 1.97 THz, which

result in two high absorption rate resonance peaks.

Electric field distribution analysis

We set the inner radius of the elliptical ring to be

Rin � 19 μm, Ef � 1 eV, h2 varies from 120 to 200 μm at

10 μm intervals. As can be seen from Figure 4A, in this

structure, under the action of TE THz wave, the graphene-

based metasurface acts as a resonant unit, interacting with

THz wave to generate surface plasmon resonance (SPR),

accompanied by the electromagnetic field around the resonant

unit. This resonance is a Fano-like linear resonance due to the

double elliptical ring structure. When we set h2 � 180 μm, two

absorption peaks M1 and M2 were located at 0.95 THz and

FIGURE 2
A Absorption spectrum of graphene-based THz metasurface
sensor at h2 � 180μm.

FIGURE 3
(A) Equivalent circuit model. (B) Absorption spectrum at h2 � 130μm (C) Impedance matching spectrum.
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1.53 THz, and the absorption were 94.9% and 79%, respectively.

In order to explain the resonance mechanism of the graphene-

based THz metasurface sensors, the electromagnetic field

distribution of the sensor is analyzed. First, the electric field

distribution of graphene-based THz metasurface sensor at

resonance frequency M1 and M2 is shown in Figures 4B,C. It

can be seen that the electric fields at the two resonance peaks are

both enhanced at the boundary of the middle part, indicating that

local electric field enhancement occurs, and we can see that the

local enhancement of the absorption peak M1 is more than that

of M2, so there is a higher absorption.

Tunable performance analysis of
graphene

Dynamic adjustment of the resonant frequency is a unique

advantage of graphene-based THz metasurface sensors. The

graphene-based THz metasurface sensors proposed in this

study contains an ion-gel layer, and the positive and negative

electrode of the bias voltage are connected to the ion-gel layer,

and the metal reflective layer, respectively.

The Fermi level of graphene Ef can be adjusted by changing

the magnitude of the bias voltage, which can change the electrical

conductivity of graphene to achieve the purpose of adjusting the

resonant frequency of the sensor. Herein, the relationship

between the Fermi level Ef and the voltage Vb is:

|Ef| ≈ Z]f(πN)1/2 � Z]f(πε0εr|Vb|/d1)1/2 ∝V1/2
b , where ]f, N,

and εr are the Fermi velocity, total carrier density and relative

permittivity of dielectric layer, respectively. Then, Ef can reach a

specific value by applying a specific applied voltage. The structure

parameters are fixed as Rin � 19 μm, h2 � 200 μm, and θ � 0°. We

change Ef from 0 to 1.0 eV, with the interval of 0.2 eV, and

analyze the absorption spectra. The simulation results are shown

in Figure 5B. The maximum absorption of resonance peak

M1 increases from 69.8% corresponding to 0 eV to 99.9%

corresponding to 0.4 eV, and the resonant frequency increases

from 0.36 THz to 0.7 THz as the Ef increases from 0 to 1.0 eV.

The resonance frequency of M1 shows an obvious blue shift. The

maximum absorption of resonance peak M2 increases from

23.7% corresponding to 0 eV to 86.1% corresponding to

1.0 eV, and the resonant frequency moves from 1.01 THz to

1.39 THz as the Ef increases from 0 to 1.0 eV. The frequency shift

curves of the two peaks are similar. According to the relationship

between the Fermi level Ef and the voltage Vb, the higher Ef, leads

to higher number of N, and contribute to the increase of

plasmonic oscillation, which leads to the enhancement of the

maximum absorption.

In addition, in the Figure 5A, it can be seen that the width of

the working frequency band becomes narrower with the increase

of Ef. The working bandwidth mainly depends on how fast Z0 Re(

σ g) and Z0 Im( σ g) + g cot φ change with the angular frequency,

and the fastest changes of conductivity for continuous graphene

is related to cot φ = cot( ω
c gd1), Z0, g, d1 and c are constants [46,

49]. From the Figure 5A, we can see that with the increase of Ef,

the resonance frequency of the absorption peak begins to

increase, because the frequency f and the angular frequency ω

are proportional. In addition, since the cotangent function is a

monotonically decreasing function, the operating bandwidth

increases with resonant frequency gradually narrows as the

resonant frequency increases. The above results show that the

graphene-based THz metasurface sensor has high sensitivity

tuning ability.

The influence of graphene geometric
parameters on the absorption

The influence of graphene geometric parameters

on the absorption were also investigated. We set h2 � 180 μm,

FIGURE 4
(A) The graph of the absorption lines corresponding to h2 from 120 to 200 µm. Electric field distribution of graphene-based THz metasurface
sensor at h2 � 180μm resonant frequency: (B) fM1; (C) fM2.
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theta � 0°, andEf � 1 eV. We keep the outer ring radius Rout
unchanged, and gradually increasing the inner ring radius Rin. The

absorption spectrum with different inner ring radius Rin of the

graphene-based THz metasurfaces is plotted in Figure 6A. It can be

seen that when the Rin increase from 19 μm to 22 μm, the resonance

frequency and the maximum absorption of M1 and M2 have a

certain change. As shown in the Figure 6B, it is found that the

maximum absorption of resonance peak M1 increases from 94.9%

to 99.9% with the Rin increasing from 19 μm to 22 μm. Different

from M1, the maximum absorption of the resonance peak

M2 decreases from 69.1% to 79% with the Rin increasing from

19 μm to 22 μm. In addition, both M1 and M2 are blue-shifted to a

certain extent, wherein the resonant frequency ofM1 decreases from

0.761 THz to 0.736 THz, and the resonant frequency of M2 moves

from 1.53 THz to 1.42 THz. This is because the change in the inner

radius affects the plasmon resonance generated by the incident wave

on the surface, which in turn affects the distribution of the electric

field, and finally changes the absorption rate.

Insensitive analysis of angle and
polarization

The sensitivity of the proposed graphene-based THz

metasurface sensor to the THz polarization angle were

studied. Figure 7 shows that under the normal incidence of

TE polarized THz wave, when the THz wave polarization

angle θ changes from 0° to 50°, the resonant frequency of

M1 increases from 0.7 THz to 1.0 THz, simultaneously, the

resonant frequency of M2 increases from 1.39 THz to

1.99 THz. It can be found that, as θ increases to 50°, the

frequency shift of the two resonance peaks is not large. In

addition, the maximum absorption of resonance peak

M1 drops from 99.9% corresponding to θ � 40° to 90.6%

corresponding to θ � 0°, and the maximum absorption of

resonance peak M2 drops from 86.2% corresponding to θ � 0°
to 57.7% corresponding to θ � 50°. It is obviously that the

absorption change range of the resonance peak M1 is small

FIGURE 5
(A) The absorption spectra corresponding to the Fermi level (Ef) from0 to 1.0 eV. (B) Line graph ofmaximum absorption and resonant frequency
of absorption corresponding to the Fermi level (Ef) from 0 to 1.0 eV.

FIGURE 6
(A) The graph of the absorption lines corresponding to Rin from 19 to 22 µm. (B) Line graph of maximum absorption and resonant frequency of
the absorption corresponding to Rin from 19 to 22 µm.
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and relatively stable, and the absorption rate has been kept above

90%. The absorption of the resonance peak M2 starts to increase

after 30°, when θ � 50°, the absorption rate is 57.7%, the

absorption of the resonance peak M2 is relatively stable before

30°, and the absorption drop does not exceed 15%, which indicate

that the proposed graphene-based THz metasurface sensor is

insensitive to a wide angle of incidence.

Sensing performance of the proposed
graphene-based THz metasurface sensor

Owing to the resonances,graphene-based THz metasurfaces

are more sensitive to changes in the dielectric environment [50].

Therefore, the proposed graphene-based THzmetasurface sensor

can be used for sensing. During the sensor detection process, the

analyte is placed in the air layer between the graphene layer and

the metal layer, due to the change of the dielectric environment of

the sensor surface, the sensor absorption spectrum will change.

The thickness of the air layer affects the dielectric constant of the

surrounding environment of the sensor, which will affect the

sensing characteristics of the sensor. The strength of the sensor

resonance absorption depends on the degree of matching

between the equivalent impedance of the sensor and the

impedance of free space. By adjusting the thickness of the air

layer, the equivalent impedance of the sensor can be changed to

make it well matched with the impedance of free space, thereby

enhancing the absorption of THz wave. For this reason, this

section studies the effect of air layer height on sensor

characteristics with other parameters unchanged. In order to

analyze the thickness of the air layer, the graphene Fermi level

Ef � 1 eV, Rin � 19 μm, θ � 0°, the real part of the dielectric

constant of the air layer Re � 1, and the imaginary part of the

dielectric constant Im � 0 .The absorption spectra of the

proposed sensor with the thickness of the air layer h2
increasing from 120 μm to 200 μm are studied, as shown in

Figure 8B. The Figure 8A is a color chart with a total thickness of

120 um to 200 um of the air layer, and the trend of M1 and

M2 can be clearly seen from the figure. As h2 increasing from

120 μm to 200 μm , the resonance frequency of M1 decreases

from 1.12 THz to 0.7 THz, and the resonance frequency of

M2 decreases from 2.09 THz to 1.39 THz. Furthermore, when

Re increases from 1 to 2 with a step size of 0.2, and the sensitivity

of the sensor with different thicknesses are investigated.

According to Figure 8B, we can see that the frequency shifts

of the resonance peak M1 and the resonance peak M2 are

basically the same. As shown in Figures 8C,D, it can be seen

that the frequency shift sensitivity S1 of the resonance peaks

M1 and M2 both showed a decreasing trend with the increase of

the thickness of the air layer h2. The frequency shift sensitivity

S1 is calculated by � Δf/ΔRe , where Δf is the frequency shift

of resonance absorption peak and ΔRe is the real variations of
the dielectric constant of resonance absorption peak. The

results show that when the frequency of the two resonance

peaks is within 2 THz, the minimum thickness of the air layer

is h2 � 130 μm. In addition to the S above, FOM is another

important parameter of the device, which can be defined

as [51]

FOM � Δf
Δn · FWHM

� S

FWHM
(7)

where FWHM is the full-width at half-maximum for the

resonance absorption peak.

The sensing performance are analyzed when h2 � 130 μm.

The results are shown in Figures 9A,B, when the real part of the

permittivity Re increases from 1 to 2 in steps of 0.2 and as the

imaginary part of the permittivity Im increases from 0 to 0.1 in

steps of 0.01. From Figure 9A, we can see that with the real part of

the permittivity Re increases from 1 to 2 in steps of 0.2, the

resonance peaks M1 and M2 have a certain frequency shift and

amplitude shift. We calculate the sensitivity S, FOM andQ [52] of

M1 andM2. As a comparison, the results are shown in the Tables

1, 2, the frequency shift sensitivity of the resonance peak

M1 decreases from 450 GHz/RIU o 203 GHz/RIU, and the

frequency shift sensitivity of the resonance peak M2 drops

from 717 GHz/RIU to 377 GHz/RIU. In addition, according

to the Tables 1, 2, the amplitude sensitivity change of the

resonant peak M2 is larger than that of the resonant peak

M1, indicating that M2 has a high frequency shift sensitivity

and also has a good absorption amplitude change, which is more

suitable for analyte sensing detection. From Figure 9B, it can be

seen that with the increase of the imaginary part of the dielectric

constant Im, the frequency shift of the resonance peaks M1 and

M2 is not large, and the amplitude change of M2 is larger than

that of M2, which indicates that M2 is more suitable for sensing

detection.

FIGURE 7
A Line graph of maximum absorption and resonant frequency
of the absorption corresponding to incident angle from 0° to 50°.
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FIGURE 8
(A) Color graph of graphene-based THz metasurface sensor as the change of air layer. (B) Line graph of maximum absorption and resonant
frequency of the absorption lines corresponding to h2 from 0° to 50°. (C) (D) Line graph of frequency shift sensitivity of resonance peak M1 and
M2 corresponding to Re from 1 to 2.

FIGURE 9
(A) Absorption lines of the graphene-based THzmetasurface sensor when h2 � 130μmcorresponding to Re from 1 to 2. (B) Absorption lines of
the graphene-based THz metasurface sensor when h2 � 130μm corresponding to Im.

TABLE 1 Q, FOM, S1, S2 when the resonant peak M1 changes with Re at h2 � 130μm.

Re f [THz] Absorption S1 [GHz/RIU] S2 [/RIU] FOM Q factor

1.0 1.0396 0.995 — — — 634

1.2 0.9497 0.999 450 0.02 3.15 6.65

1.4 0.8801 0.991 349 0.04 2.69 6.78

1.6 0.8221 0.973 290 0.09 2.37 7.96

1.8 0.7757 0.9534 232 0.098 1.99 8.18

2.0 0.7351 0.9282 203 0.126 1.81 8.21
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According to Figures 10A,B, we can see that M1 and

M2 reach the maximum absorption when h2 � 140 μm and

h2 � 280 μm, respectively, and the sensing performance of the

proposed sensor are studied at these two thicknesses. It can be

seen from Figure 10C that when h2 � 140 μm, the maximum

frequency shift sensitivity of M1 can reach 419 GHz/RIU, and the

maximum frequency shift sensitivity of M2 can reach 696 GHz/

RIU. Compared with h2 � 130 μm, the two peaks have a slight

decrease in sensitivity. It can be seen from Figure 10D that when

h2 � 280 μm, the maximum frequency shift sensitivity of M2 can

reach 440 GHz/RIU, and the maximum frequency shift

sensitivity of M2 can reach 232 GHz/RIU. Compared with

h2 � 130 μm, the two peaks have a larger decrease in

sensitivity. According to the above results, we can infer that

when the two absorption peaks reach the maximum absorption,

the frequency shift sensitivity is still as high as about

450 GHz/RIU.

Conclusion

In summary, a graphene-based THz metasurface sensor with

an air spacer is proposed. The absorption spectrum of this sensor

was studied. The resonance mechanism was analyzed by

impedance matching and electric field distribution. There is a

good linear relationship between the absorption peak and the

TABLE 2 Q, FOM, S1, S2 when the resonant peak M2 changes with Re at h2 � 130μm.

Re f [THz] Absorption S1 [GHz/RIU] S2 [/RIU] FOM Q factor

1.0 1.9922 0.5661 — — — 3.41

1.2 1.8487 0.6323 717 0.331 1.53 3.95

1.4 1.7153 0.6915 667 0.296 1.76 4.51

1.6 1.6167 0.7441 493 0.263 1.56 5.11

1.8 1.5326 0.7904 420 0.232 1.53 5.6

2.0 1.4572 0.8287 377 0.192 1.57 6.05

FIGURE 10
(A) Absorption line of the resonance peak M1 as h2 varies from 120 to 200 μm. (B) Absorption line of the resonance peak M2 as h2 varies from
260 to 340 μm. (C) Line graph of S1 of the absorption corresponding to Re from 1 to 2 when h2 � 140μm. (D) Line graph of S1 of the absorption
corresponding to Re from 1 to 2 when h2 � 280μm.
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dielectric environment of the sensor surface at 0~2 THz, and the

frequency shift sensitivity of the two resonance peaks M1 and

M2 can reach 450 GHz/RIU and 717 GHz/RIU, respectively. By

changing the thickness of the air layer, when the two resonance

peaks reach the maximum absorption, the frequency shift

sensitivity is still as high as close to 450 GHz/RIU. The

influence of structural parameters and incident angle on the

absorption spectra is studied, it is found that the structural

parameters and incident angle have little effect on the device

within a certain range, and analyte detection can still be achieved.

The above results show that the sensor has good stability and

reliability. The graphene-based THz metasurface sensor can be

used for analyte sensing, which broadens the application range of

THz functional devices.
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