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By employing the extended Nikiforov–Uvarov (ENU)method, we solved the radial

Schrodinger equation with the shifted screened Kratzer potential model. The

analytical expression of the energy eigenvalues and numerical results were

determined for some selected diatomic molecule systems. Variations of the

energy eigenvalues obtained with potential parameters and quantum numbers

were discussed graphically. Also, variations of different thermodynamic properties

with temperature and maximum vibration quantum numbers were discussed

extensively. Our results correspond to the results obtained in the literatures. The

shifting parameters contribute a great effect to the energy results obtained. It has

also been established that there exists a critical temperature at specific entropy

values for the selected diatomic molecule systems.
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Introduction

Since the inception of quantum mechanics many decades ago, different analytical

techniques have been used by different authors to obtain the solutions of the Schrodinger

wave equation (SWE), Klein–Gordon equation (KGE), and Dirac equation (DE). Such

analytical techniques include the factorization method [1], modified factorization method

[2], Nikiforov–Uvarov (NU) method [3], asymptotic iteration method (AIM) [4],

Nikiforov–Uvarov functional analysis (NUFA) method [5], and extended

Nikiforov–Uvarov (ENU) method [6], among others [7–9]. In recent years, many

researchers in quantum mechanics have devoted their interest to finding the solutions
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of the SWE for different potential models [10–12]. These

solutions obtained are either exactly or approximately. In the

literature, only a few of these potential models can be solved

exactly such as that of a harmonic oscillator and hydrogen atom

[13]. It is also well known that the solution obtained from the

SWE can be used to study many physical systems such as

probability density and information theoretic measures

[14–18], thermodynamics properties [19–23], and other

applications in physics and chemistry [24–30]. The potential

models that have been investigated within the framework of

nonrelativistic and relativistic quantum mechanics included the

screened Kratzer potential, Hulthen potential, Mobius-square

potential, improved screened Kratzer potential, Wood–Saxon

potential, Manning–Rosen potential, Yukawa potential, screened

Coulomb potential, and others. One of the best potential models

used to describe the interaction of a molecular structure in

quantum mechanics is the Kratzer potential [31]. The Kratzer

potential has many applications in different branches of physics

and chemistry such as molecular physics, atomic physics, and

quantum chemistry [32]. Recently, Ikot et. al. [33] proposed a

screened Kratzer potential and investigated the bound state

solution of the SWE with applications to diatomic molecules.

In a similar development, Ikot et al. [34] proposed an improved

screened Kratzer potential and investigated the bound state

solutions of the Klein–Gordon equation with applications to

the thermodynamic properties within the nonrelativistic limit.

One of the special cases of the improved screened Kratzer is

the shifted screened Kratzer potential (SSKP), which is our focal

point of concern in this study. This is given in the form:

V(r) � −2De(a
r
− b

2r2
)(2λ + γe−αr), (1)

whereDe is the dissociation energy, a � re, b � r2e , re being the

equilibrium bond length, α is the screening parameter, and

λ and γ are constants called “shifting parameters,” and

they can be adjusted as desired. The Kratzer potential and the

screened Kratzer potential can be obtained from the shifted

screened Kratzer potential by adjusting the shifting parameters

appropriately. We aim at unveiling the effects experienced by the

diatomic molecule systems to be considered, as a result of the

existing shifted parameters in the SSKP model. We are also

motivated to study the thermodynamics functions of the SSKP

for selected diatomic molecule systems, which has not been

studied before to the best of our knowledge.

Solutions of the radial Schrodinger
equation with the shifted screened
Kratzer potential

The radial Schrodinger equation is given as [35]

d2ψ(r)
dr2

+ 2μ

-2
[Enℓ − V(r) − ℓ(ℓ + 1)-2

2μr2
]ψ(r) � 0, (2)

where μ is the reduced mass, Enl is the energy spectrum, -

is the reduced Planck’s constant, and n and l are the radial

and orbital angular momentum quantum numbers,

respectively (also known as the vibration-rotation

quantum numbers) [36]. Substituting Eq. 1 into Eq. 2

gives

d2ψ(r)
dr2

+ [2μEnℓ

-2
+ 4μDe

-2
(a
r
− b

2r2
)(2λ + γe−αr)

− ℓ(ℓ + 1)
r2

]ψ(r) � 0. (3)

We employ the Greene–Aldrich approximation scheme to

deal with the centrifugal barrier as [37]

1
r2

≈
α2

(1 − e−αr)2 ,
1
r
≈

α

(1 − e−αr). (4)

Substituting Eq. 4 into Eq. 3 and using the coordinate

transformation of the form s � e−αr, we have

d2ψ(s)
ds2

+ (1 − s)
s(1 − s)

dψ(s)
ds

1

s2(1 − s)2 [ − (ϵ2n + σ3)s2
+(2ϵ2n + σ3 − σ1 − σ4)s − (ϵ2n + σ2 + σ5 − σ1)]ψ(s) � 0, (5)

where

ε2n � −2μE
-2α2

; σ1 � 8μDeaλ

-2α
; σ2 � 4μDebλ

-2
; σ3 � 4μDeaγ

-2α
;

σ4 � 2μDebγ

-2
; σ5 � ℓ(ℓ + 1). (6)

Comparing Eq. 5 and Eq. (A1) of the extended

Nikiforov–Uvarov (ENU) [6, 38, 39] method (see the

Appendix A section), we have the following polynomials:

~τe(s) � 1 − s, (7)
σe(s) � s(1 − s), (8)

~σe(s) � −(ε2n + σ3)s2 + (2ε2n + σ3 − σ1 − σ4)s − (ε2n + σ2 + σ5

− σ1).
(9)

Substituting these polynomials into Eq. (A8), we obtain

πe(s) � −s
2

±




































































−Ps3 + (1

4
+ ε2n + σ3 + P − Q)s2 − (2ε2n + σ3 − σ1 − σ4 +Q)s + (ε2n + σ2 + σ5 − σ1).√

(10)

Here, we have employed a linear function G(s) � Ps + Q,

which makes the function under the square in Eq. 10 to become

quadratic (A + Bs + Cs2)2. Hence,

πe(s) � −s
2
± (A + Bs + Cs2), (11)

where the coefficients A, B, C, P, Q are defined as follows:
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A � ±















ε2nl + σ2 + σ5 − σ1

√
;

B � ± ( 













1
4
+ σ2 + σ4 + σ5

√
−
















ε2nl + σ2 + σ5 − σ1

√ ) ;

C � 0 ; P � 0 ;

Q � ± ( 














ε2nl + σ2 + σ5 − σ1

√ 













1
4
+ σ2 + σ4 + σ5

√ ) + σ1 − 2σ2 + σ3 − σ4 − 2σ5.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

By employing Eq. 12, Eq. 11 becomes

πe(s) � −s
2
± (A + Bs). (13)

By substituting Eqs 7, 13 into Eq. (A7) (see the Appendix A

section), we have

τe(s) � 1 − 2s ± 2(A + Bs). (14)

From the knowledge of the ENU method, we choose the

expression πe(s)− in which the function τe(s) has a negative

derivative. Hence, Eqs 13, 14 become

π′
e(s) � −1

2
(1 + B) (15)

and

τ′e(s) � −2(1 + B). (16)

Referring to Eq. (A9) and by substituting Eq. 16, we define

the constant h(s) as

h(s) � Q − 1
2
(1 + B). (17)

By substituting Eqs 6, 12, 16, 17 into Eq. A12, where

σ″(s) � −2, we obtain the energy eigenvalue equation of the

shifted screened Kratzer potential as

Enℓ � Λ + -2α2ℓ(ℓ + 1)
2μ

− -2α2

2μ
⎡⎣n + δ

2
−

8μDeaλ
-2α

− 4μDeaλ
-2

+ 4μDeaγ
-2α

− ℓ(ℓ + 1)
2(n + δ) ⎤⎦2, (18)

where,

Λ � −4αDeaλ + 2α2Debλ (19)
and

δ � 1
2
⎛⎝1 ±



























(1 + 2ℓ)2 + 16μDeaλ

-2
+ 8μDebγ

-2

√ ⎞⎠. (20)

Thermodynamic properties of the
shifted screened Kratzer potential

The partition function is the starting point usually employed

in investigating different thermodynamic properties of diatomic

molecule systems. The partition function is known to be a

function of temperature, which is obtained via the expression

[40–42]

Z(β, N max) � ∑Nmax

n�0
e−βEnl , β � 1

kBT
. (21)

Here, kB is the Boltzmann’s constant,Nmax is the maximum

vibration quantum number, T is the absolute temperature, and

Enl represents the energy eigenvalues of the SSKP model.

By substituting Eq. 18 into Eq. 21, we obtain

Z(β, N max) � ∑Nmax

n�0
e
−β[G1−H((n+δ)

2 − G2
2(n+δ))2]

, (22)

where

H � -2α2

2μ
; G1 � Λ + -2α2ℓ(ℓ + 1)

2μ
;

G2 � 8μDeaλ

-2α
− 4μDeaλ

-2
+ 4μDeaγ

-2α
− ℓ(ℓ + 1).

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

With the help of a Mathematica software, the partition function

of the SSKP is obtained as

Z(β, N max) � 1

2




−Hβ

√ e

−β
2
⎛⎝ 2G1+G2H

+H




1+G2

2

√ ⎞⎠ 


π

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Erf⎡⎢⎢⎢⎢⎢⎢⎣ 







−G2

2Hβ
√

− 



−Hβ
√

δ2

2δ
⎤⎥⎥⎥⎥⎥⎥⎦

+Erf⎡⎢⎢⎢⎢⎢⎢⎣− 







−G2

2Hβ
√

+ 



−Hβ
√ (δ +N max)2

2(δ +N max)
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

2




−Hβ

√ e

−β
2
⎛⎝ 2G1+G2H

+H




1+G2

2

√ ⎞⎠ 


π

√
eHβ





1+G2

2

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Erf⎡⎢⎢⎢⎢⎢⎢⎣ 







−G2

2Hβ
√

+ 



−Hβ
√

δ2

2δ
⎤⎥⎥⎥⎥⎥⎥⎦

+Erf⎡⎢⎢⎢⎢⎢⎢⎣ 







−G2

2Hβ
√

+ 



−Hβ
√ (δ +N max)2

2(δ +N max)
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(24)

whereNmax � 



−G2
√ − δ andErf denote the error function [43].

Other thermodynamic properties including free energy, internal

energy, entropy, and specific heat capacity can be obtained using

the following expressions [44]:

F(β, N max) � −1
β
lnZ(β, N max), U(β, N max) � −d lnZ(β, N max)

dβ
,

S(β, N max) � lnZ(β, N max) − β
d lnZ(β, N max)

dβ
, Cv(β, N max) � β2

d2 lnZ(β, N max)
dβ2

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

Results and discussions

In this study, four diatomic molecule systems were

considered. The spectroscopic parameters for the selected

molecules are presented in Table 1, as obtained from Ref.

[45]. The analytical expression for the energy eigenvalues of

the SSKP model is given in Eq. (18). Numerical energy results of

the SSKP for the selected diatomic molecules have been

computed using the Maple software protocols. These results

are presented in Tables 2–5, for various combinations of the
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shifted parameters. It is worth mentioning here that the following

conversions have been adopted throughout our computations:

-c � 1973.296 eV�A and1 amu � 931.494028 MeVc−2. It is

observed that at a specific value of the vibrational quantum

number n, the energy eigenvalues of the SSKP increase with an

increase in the rotational quantum number l for the selected

diatomic molecule system. This increase in the energy

eigenvalues tends to remain constant with further increase in

l, as will be demonstrated graphically in this article. Conversely,

the energy eigenvalues of the selected systems are seen to

decrease with an increase in n. These energy–quantum

number relationships are observed in all the tables, as regards

the shifted parameter pairs considered. The energy values of the

SSKP for the selected diatomic molecules are very close to zero in

the absence of the shifted parameters (when λ � γ � 0). As either

of the shifted parameters is introduced, the energy eigenvalues

begin to increase negatively. In the presence of both shifted

parameters, the energy eigenvalues are seen to decrease tangibly

for all the selected diatomic molecule systems.

The variations of the energy eigenvalues of the SSKP with

different potential parameters and quantum numbers were

considered. Throughout our graphical analysis, the following

quantum numbers have been adopted: n � 2; l � 1. In Figure 1, a

direct decrease in energy eigenvalues is observed as the

dissociation increases for the selected systems. A monotonous

decrease in the energy eigenvalues of the SSKP is observed as the

equilibrium bond length increases as shown in Figure 2. This

same trend is also seen in Figure 3 as the energy eigenvalues of the

SSKP vary with the screening parameter. In Figure 4, the energy

eigenvalues of the SSKP increase with the increase in the reduced

mass for the selected diatomic molecule system. Thereafter, we

observe constant values for the energy as the reduced mass

further increases. A monotonous decrease is observed in the

energy eigenvalues as the vibrational quantum number increases

in Figure 5. In addition, the energy eigenvalues of the SSKP begin

to increase with the increase in the rotational quantum number

(Figure 6). As the rotational quantum number increases further,

we observed that the energy eigenvalues of the SSKP remain

constant at unique values for the selected systems. It is worth

noting that the aforementioned graphical analyses were done in

the presence of both the shifted parameters (λ � γ � 1).
Furthermore, the variation of different thermodynamic

properties of the SSKP with both temperature and maximum

quantum number has been evaluated. These were done with the

help of the partition function expression obtained in Eq. 24 and

other thermodynamic expressions given in Eq. 25.

In Figure 7, we observe a sharp decrease in the partition

function of the SSKP at zero temperature for the H2 diatomic

molecule, but a sharp increase in the partition functions of the

SSKP are observed for LiH and HCl diatomic molecules. As

the temperature increases, the partition functions of these

diatomic molecules remain zero. The partition function of the

TABLE 1 Spectroscopic parameters for the selected diatomic
molecule systems [45].

Molecules De (eV) re (�A) μ (a.m. u.) α (�A−1)

H2 4.7446 0.7416 0.50391 1.440558

LiH 2.515287 1.5956 0.8801221 1.7998368

HCl 4.61907 1.2746 0.9801045 2.3807

CO 11.2256 1.1283 0.6806719 2.59441

TABLE 2 Energy eigenvalues (−Enl (eV)) of the shifted screened Kratzer potential for H2.

n l λ � 1, γ � 1 λ � 1, γ � 0.5 λ � 0, γ � 1 λ � 0, γ � 0.5 λ � 0, γ � 0

0 0 12.88868820 12.76416270 0.8992448746 0.4240223638 0.002151891095

1 12.86827450 12.74617456 0.8654425337 0.3909585419 0.002151891100

2 12.82757504 12.71033331 0.7984648176 0.3260367213 0.002151891080

3 12.76684367 12.65690644 0.6995367316 0.2315599492 0.002151891100

1 0 12.82620770 12.75708960 0.6750029392 0.2776908018 0.008607564380

1 12.80673214 12.73997903 0.6440461866 0.2484289305 0.01171585151

2 12.76790041 12.70588327 0.5826869799 0.1909215429 0.01344931932

3 12.70994948 12.65505067 0.4920090164 0.1071130964 0.01454678380

2 0 12.78441944 12.76712128 0.4909923166 0.1684659411 0.01936701986

1 12.76581972 12.75082670 0.4625452209 0.1424043945 0.02636066591

2 12.72873192 12.71835413 0.4061433788 0.0911455039 0.03107330739

3 12.67337754 12.66993457 0.3227499235 0.0163451509 0.03443025750

3 0 12.76194202 12.79308527 0.3422748993 0.09031887720 0.03443025752

1 12.74416180 12.77755139 0.3160543843 0.06698185026 0.04553401557

2 12.70870585 12.74659223 0.2640525401 0.02104828359 0.05379727740

3 12.65578155 12.70042300 0.1871289623 −0.04606103475 0.06012120220

Frontiers in Physics frontiersin.org04

Ibrahim et al. 10.3389/fphy.2022.988279

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.988279


CO diatomic molecule increases monotonously from a certain

temperature and it approaches zero as the temperature increases.

The free energy of the SSKP for the selected diatomic molecule

systems is seen to decrease with an increase in temperature, as

shown in Figure 8.

In Figure 9, there exists a monotonous decrease in the

internal energy of the SSKP for the selected diatomic molecule

systems toward zero as the temperature increases.

The plot of entropy of the SSKP with temperature is shown in

Figure 10 for the diatomic molecule systems considered. Here,

the entropies of the diatomic molecules increase to unique values,

corresponding to a selected diatomic molecule system at a

particular temperature. This temperature value corresponding

to the peak values of entropy is called the critical temperature. As

the temperature increases further, the entropy values begin to

decrease gradually. With further increase in the temperature, the

entropy of the selected systems remains constant.

The specific heat capacities of the SSKP for the selected

diatomic molecules are seen to increase monotonously as the

temperature increases first (Figure 11). With further increase in

TABLE 3 Energy eigenvalues (−Enl (eV)) of the shifted screened Kratzer potential for LiH.

n l λ � 1, γ � 1 λ � 1, γ � 0.5 λ � 0, γ � 1 λ � 0, γ � 0.5 λ � 0, γ � 0

0 0 20.66232586 21.78971193 0.5308115944 0.2767741104 0.001923247146

1 20.65827201 21.78663642 0.5199423639 0.2659913923 0.001923247160

2 20.65017029 21.78049083 0.4982516798 0.2445201457 0.001923247160

3 20.63803260 21.77128598 0.4658345730 0.2125466994 0.001923247220

1 0 21.01184393 22.10611604 0.6429174044 0.3586710210 0.007692988585

1 21.00783785 22.10307007 0.6324165656 0.3483980377 0.01047101224

2 20.99983153 22.09698342 0.6114601496 0.3279393678 0.01202029467

3 20.98783657 22.08786667 0.5801381824 0.2974677432 0.01300115075

2 0 21.36521806 22.42648181 0.7638658892 0.4491866256 0.01730922432

1 21.36125959 22.42346597 0.7537156257 0.4393895494 0.02355977755

2 21.35334835 22.41743948 0.7334580148 0.4198764468 0.02777168880

3 21.34149564 22.40841261 0.7031784186 0.3908077276 0.03077195445

3 0 21.72244784 22.75080389 0.8932997882 0.5478522930 0.03077195434

1 21.71853683 22.74781876 0.8834836786 0.5385009259 0.04069590962

2 21.71072035 22.74185354 0.8638921870 0.5198735695 0.04808117867

3 21.69900944 22.73291826 0.8346063258 0.4921194260 0.05373317035

TABLE 4 Energy eigenvalues (−Enl (eV)) of the shifted screened Kratzer potential for HCl.

n l λ � 1, γ � 1 λ � 1, γ � 0.5 λ � 0, γ � 1 λ � 0, γ � 0.5 λ � 0, γ � 0

0 0 53.03004677 55.21501868 1.339228248 0.6916973618 0.003021681800

1 53.02412415 55.21057543 1.322852179 0.6754326794 0.003021681800

2 53.01228562 55.20169491 1.290155296 0.6430124931 0.003021681800

3 52.99454449 55.18838917 1.241247644 0.5946533158 0.003021681800

1 0 53.65699039 55.77699589 1.555655962 0.8486391966 0.01208672720

1 53.65112485 55.77258552 1.539760989 0.8330422482 0.01645137868

2 53.63940031 55.76377071 1.508023752 0.8019505234 0.01888551125

3 53.62182986 55.75056320 1.460549228 0.7555666792 0.02042656900

2 0 54.28997836 56.34535428 1.785256510 1.018471857 0.02719513620

1 54.28416993 56.34097778 1.769822458 1.003504085 0.03701560205

2 54.27255952 56.33223053 1.739004669 0.9736642888 0.04363308520

3 54.25515986 56.31912407 1.692903350 0.9291424076 0.04834690880

3 0 54.92901063 56.92008005 2.027579578 1.200599368 0.04834690880

1 54.92325938 56.91573831 2.012587664 1.186225879 0.06393878689

2 54.91176316 56.90706045 1.982651897 1.157568739 0.07554204500

3 54.89453447 56.89405776 1.937868003 1.114806194 0.08442208950
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the temperature beyond a certain value, the specific heat capacity

values for the molecule systems considered remain constant

around zero.

Figure 12 shows the variation of the partition function of the

SSKP with maximum vibration quantum number for the selected

molecule systems. The partition function here increases with an

increase in the maximum vibration quantum number. In

Figure 13, the free energy of the SSKP for the selected

molecule systems decreases monotonously with the increase in

the maximum vibration quantum number. The variation of the

internal energy of the SSKP for the different diatomic molecule

systems is shown in Figure 14. In this plot, the internal energies

for the selected molecule systems first increase slowly at a

TABLE 5 Energy eigenvalues (−Enl (eV)) of the shifted screened Kratzer potential for CO.

n l λ � 1, γ � 1 λ � 1, γ � 0.5 λ � 0, γ � 1 λ � 0, γ � 0.5 λ � 0, γ � 0

0 0 127.2547770 132.4419189 2.472618737 1.248758647 0.0005126516235

1 127.2537190 132.4411200 2.469726022 1.245871077 0.0005126516240

2 127.2516029 132.4395221 2.463941362 1.240097394 0.0005126516300

3 127.2484290 132.4371256 2.455266197 1.231440555 0.0005126516300

1 0 127.6403250 132.7893135 2.593471190 1.334926081 0.002050606494

1 127.6392699 132.7885163 2.590602477 1.332072278 0.002791103281

2 127.6371595 132.7869220 2.590602477 1.326366104 0.003204072650

3 127.6339945 132.7845305 2.576262607 1.317810460 0.003465524980

2 0 128.0268992 133.1377746 2.716745726 1.423499826 0.004613864612

1 128.0258469 133.1369792 2.713900721 1.420679214 0.006279982392

2 128.0237424 133.1353884 2.708211461 1.415039392 0.007402689450

3 128.0205861 133.1330022 2.699679347 1.406583212 0.008202425980

3 0 128.4144994 133.4873018 2.842417020 1.514444733 0.008202425976

1 128.4134500 133.4865082 2.839595433 1.511656748 0.01084770835

2 128.4113514 133.4849208 2.833953009 1.506082157 0.01281629059

3 128.4082038 133.4825398 2.825491122 1.497723759 0.01432285864

FIGURE 1
Variation of energy eigenvalues of the SSKP with dissociation
energy for different diatomicmolecule systemswith n=2 and l= 1.

FIGURE 2
Variation of energy eigenvalues of the SSKP with equilibrium
bond length for different diatomic molecule systems with n = 2
and l = 1.
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particular value of the maximum vibration quantum number.

With the further enhancement of the maximum vibration

quantum number, the internal energies of these diatomic

systems begin to decrease monotonously at different paces.

Figure 15 shows a monotonous increase in the entropy of the

SSKP for the different diatomic molecule systems as the

maximum vibration quantum number increases.

In Figure 16, the specific heat capacity of the SSKP is also seen

to increase with the increase in the maximum vibration quantum

number for the diatomic molecule systems considered. Our

results obtained are seen to agree perfectly with previous

FIGURE 3
Variation of energy eigenvalues of the SSKP with screening
parameters for different diatomicmolecule systems with n = 2 and
l = 1.

FIGURE 4
Variation of energy eigenvalues of the SSKP with reduced
mass for different diatomic molecule systems with n = 2 and l = 1.

FIGURE 5
Variation of energy eigenvalues of the SSKP with vibrational
quantum number for different diatomic molecule systems with
l = 1.

FIGURE 6
Variation of energy eigenvalues of the SSKP with rotational
quantum number for different diatomic molecule systems with
n = 2.
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studies [34], as regards the selected diatomic molecule

systems [44].

Concluding remarks

In this work, the extended Nikiforov–Uvarov method (ENU)

was employed to solve the radial Schrodinger equation for the

shifted screened Kratzer potential (SSKP) model and its

analytical expression of energy eigenvalues was obtained. With

the help of the energy eigenvalues, the expression for the

partition function and other thermodynamic properties’

expressions were obtained using the exact method. In this

FIGURE 7
Variation of the partition function of the SSKP with
temperature for different diatomic molecule systems with n = 2
and l = 1.

FIGURE 8
Variation of free energy of the SSKP with temperature for
different diatomic molecule systems with n = 2 and l = 1.

FIGURE 9
Variation of internal energy of the SSKP with temperature for
different diatomic molecule systems with n = 2 and l = 1.

FIGURE 10
Variation of entropy of the SSKP with temperature for
different diatomic molecule systems with n = 2 and l = 1.

FIGURE 11
Variation of the specific heat capacity of the SSKP with
temperature for different diatomic molecule systems with n = 2
and l = 1.
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study, four different diatomic molecule systems were employed.

These were hydrogen dimer, lithium hydride molecule, hydrogen

chloride molecule, and carbon monoxide molecule. With the

help of spectroscopic parameters of the selected diatomic

molecule systems extracted from available literatures,

numerical results of energies of the SSKP were obtained at

different quantum states and shifted parameters. The shifted

parameters were seen to have a great effect on the energy

eigenvalues obtained. In addition, variations of the energy

eigenvalues of the SSKP with different potential parameters

and quantum numbers were analyzed graphically.

Furthermore, the variations of the partition function and

other thermodynamic properties of the SSKP with respect to

temperature and maximum vibration quantum number for the

diatomic molecule systems considered were studied graphically.

FIGURE 13
Variation of free energy of the SSKP with maximum vibration
quantum number for different diatomicmolecule systemswith n=
2 and l = 1.

FIGURE 12
Variation of the partition function of SSKP with maximum
vibration quantum number for different diatomic molecule
systems with n = 2 and l = 1.

FIGURE 14
Variation of internal energy of the SSKP with maximum
vibration quantum number for different diatomic molecule
systems with n = 2 and l = 1.

FIGURE 15
Variation of entropy of the SSKP with maximum vibration
quantum number for different diatomic molecule systems with
n = 2 and l = 1.

FIGURE 16
Variation of specific heat capacity of the SSKP with maximum
vibration quantum number for different diatomic molecule
systems with n = 2 and l = 1.
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The major result obtained lies in the existence of the critical

temperature for each of the diatomic molecule system

considered. From our results, the SSKP model can be

employed to predict the thermochemical properties of

different diatomic molecule systems. It is our future intention

to study the higher dimensional energies of these diatomic

molecule systems in the relativistic regime.
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Appendix A: Extended
Nikiforov–Uvarov method

The extended Nikiforov–Uvarov (ENU) method was

proposed by [6, 38, 39] as an extended form of the

Nikiforov–Uvarov (NU) method to transform

Schrodinger-like equations into a second-order differential

equation which has at most four singular points that can be

solved analytically. The ENU method is defined as

ψ″(s) + ~τe(s)
σe(s)ψ′(s) +

~σe(s)
σe 2

͝(s)
ψ(s) � 0, (A1)

where ~τe(s), σe(s), and ~σe(s) are polynomials of at most second,

third, and fourth degrees, respectively, and e stands for

“extended.” Using the following transformation

ψ(s) � ϕe(s)yn(s), (A2)

the basic equation given by Eq. A1 becomes a

hypergeometric-type equation

σe(s)y″(s) + τe(s)y′(s) + h(s)y(s) � 0. (A3)

Eq. A3 has a particular polynomial solution of the form

y(s) � yn(s) and the function ϕe(s) is given as a logarithmic

derivative:

ϕ′
e(s)

ϕe(s)
� π(s)
σ(s), (A4)

with πe(s) being at most a second-degree polynomial. The

second part of ϕe(s) being yn(s) in Eq. A2 is the

hypergeometric function with its polynomial solution given by

the Rodrigues relation,

yn(s) � Bn

ρ(s)
dn

dsn
[σn(s)ρ(s)]. (A5)

Here, Bn is the normalization constant and ρ(s) is the weight
function which must satisfy the condition

d

ds
[σ(s)ρ(s)] � τ(s)ρ(s), (A6)

with

τe(s) � ~τe(s) + 2πe(s). (A7)

The polynomials τe(s), πe(s), and h(s) arising in the procedure
of reducing the basic equation of themethod to Eq. A3 are defined as

πe(s) � σ ′e(s) − ~τe(s)
2

±































(σ ′e(s) − ~τe(s)
2

)2

− ~σe(s) + G(s)σe(s)

√√
(A8)

and

h(s) � G(s) + π′
e(s), (A9)

where

G(s) � Ps + Q. (A10)

According to the condition that polynomial πe(s) is at most

second degree, polynomial G(s) must be chosen properly. After

determination of polynomialG(s), all newly defined polynomials

can be achieved by using Eqs. A7, A8, A9. As such, the new

eigenvalue equation can be given as

h(s) � hn(s) � −n
2
τ′e(s) −

n(n − 1)
6

σ″e(s) + Cn, (A11)

where Cn is an integration constant.

But, if and only if πe(s) is a polynomial of degree at most one,

the eigenvalue equation can be obtain from the conventional NU

method of the form

h(s) � hn(s) � −nτ′(s) − n(n − 1)
2

σ″(s)(n � 0, 1, 2, ...). (A12)
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