
High-Isolation wideband MIMO
antenna with offset T-Shaped
slots for 5G/WLAN applications

Shuyi Chen1, Na Lu1, Jiaxing Sun1, Changfei Zhou1*,
Changxian Li2* and Di Wu3

1Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian,
China, 2National and Local Joint Engineering Research Center for Rail Transit Equipment, Dalian
Jiaotong University, Dalian, China, 3College of Electronics and Information Engineering, Shenzhen
University, Shenzhen, China

A broadband multiple-input multiple-output (MIMO) antenna with high

isolation operating in 3.14–5.42 GHz (2.28 GHz, 53.3%) is proposed for

5G smartphones. An offset T-shaped slot with dual functions is employed

to improve the bandwidth of one antenna element and enhance the

isolation. Then, the double L-shaped stubs are loaded to improve the

impedance matching of the other antenna in the MIMO antenna. Finally,

the 2 × 2 MIMO antenna is constructed by four T-shaped monopole

antennas, two double L-shaped stubs, and two offset T-shaped slots. The

proposed MIMO antenna is first simulated and then experimentally tested

with a good agreement. High isolation of greater than 15 dB, high antenna

efficiency of more than 54%, and low envelope correlation coefficient (ECC)

of smaller than 0.08 are realized within 3.14–5.42 GHz. These good

performances indicate that the proposed antenna can be applied for

MIMO applications in smartphones.
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Introduction

With the merits of enhancing the channel capacity and spectrum efficiency, the

technology of multiple-input multiple-output (MIMO) can be a good candidate for

realizing a high date rate of fifth-generation (5G) communication [1]. The 5G

communication system is converged by multi-networks, which has a combination

of global licensed 5G NR bands N77 (3.3–4.2 GHz), N78 (3.3–3.8 GHz), and N79

(4.4–5.0 GHz) [2]. Thus, it is urgent to realize wideband performances for 5G

terminal antennas. So far, a large number of 5G MIMO antennas have been

designed [3–9]. However, few works support the N77/N78/N79 and WLAN bands

together. Due to the limited space of a terminal remaining for the antenna, it is

difficult to establish a MIMO antenna with wide bandwidth and high isolation

simultaneously. Increasing the bandwidth and enhancing the isolation of MIMO

antennas have attracted much attention [10–16].
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In order to improve the isolation, different techniques

have been proposed. A simple design of a 5G MIMO antenna

is arranging antenna elements in different parts of the

smartphone, far enough to enhance the isolation [17].

However, this method will increase the size of the antenna

with a profile of 13 mm, and put more pressure on the limited

smartphone space. In [18], the center-placed T-shaped

decoupling stub is introduced to improve the isolation,

which is larger than 11.5 dB within 3.3–4.2 GHz. Recently,

the two closely positioned or shared aperture antenna pair is

proposed to construct the MIMO antenna without using any

additional decoupling structure [19–21]. In [19], a

differentially-fed dipole and a commonly-fed dipole

antennas are combined back to back. High isolation of

24.2 dB is realized, but the bandwidth is only

3.35–3.63 GHz. The isolation of the antenna pair in [20] is

increased to 24.1 dB within the corresponding working band,

however, the bandwidth of this antenna is only 3.4–3.6 GHz.

In [21], the bandwidth is expanded to 3.2–4.2 GHz, but the

isolation is only better than 10.5 dB, and a clearance of 2 mm

is required. Therefore, most works can only realize high

isolation but narrow bandwidth [3–21], which is

incompetent to cover the global 5G frequency bands of

N77/N78/N79 (3.3–5.0 GHz).

Recently, several wideband MIMO antennas covering

N77/N78/N79 bands are proposed [22–27]. By introducing

the capacitor to the shared aperture antenna pair [22], a broad

impedance bandwidth (IMBW) of 3.3–5.0 GHz is achieved,

but the isolation between the internal elements of the antenna

pair is just better than 10 dB. The antennas in [23–27] can also

cover N77/N78/N79 and wireless local area network (WLAN)

bands, but the isolations between different antenna elements

are only greater than 10~12 dB. It is known that slots can be

utilized to decrease the mutual coupling of the MIMO

antennas, but the slots reported in the literature are all

located in the middle of the antenna pair, leading to

narrow bandwidths [28–33], which are insufficient to

satisfy the N77/N78/N79 bands.

In this paper, a 2 × 2 MIMO antenna operating in

3.14–5.42 GHz (2.28 GHz, 53.3%) is proposed for N77/

N78/N79 (3.3–5.0 GHz) and WLAN (5.15–5.35 GHz)

bands. Different from the conventional decoupling slot

located in the center of two antennas [28–33], an offset

T-shaped slot is inserted into the ground for achieving

isolation of larger than 15 dB across 3.14–5.42 GHz.

Meanwhile, the T-shaped slot helps to expand the IMBW.

By adding double L-shaped stubs, a wide band is achieved for

the antenna pair. From the measured results, the total

efficiency is greater than 54%, and the envelope correlation

coefficient (ECC) between any two antenna elements is

smaller than 0.08.

Antenna design and analysis

Antenna configuration

The detailed structure of the proposed MIMO antenna is

presented in Figure 1. The antenna is designed using FR-4

substrates whose relative permittivity is 4.4 and loss tangent is

0.02. The proposed antenna is composed of four modified

monopoles for a wide band. Offset T-shaped slots are used to

enhance the isolation and bandwidth, and double L-shaped

stubs are introduced to improve the impedance matching. The

monopoles are printed on the inner surface of the FR-4

substrate, while the double L-shaped stubs are printed on

the outer surface. The monopole antenna has a size of

14 mm3 × 0.8 mm3 × 6.7 mm3, and the distance between

two antenna elements is 12.6 mm. The T-shaped slots are

inserted on the ground plane at a distance of L11 from the

center. The four antenna elements are fed by 50 Ω microstrip

lines, which are positioned at the margin of the smartphone

board having a dimension of 150 mm2 × 75 mm2. The antenna

is designed and developed with electromagnetic simulation

software CST. The optimized parameter dimensions of the

proposed MIMO antenna are presented in Table 1 for

fabrication.

Antenna analysis

The design process of the MIMO antenna is demonstrated

in Figure 2 step by step. Ant. A consists of two simple

monopole antennas, showing a narrow IMBW of

3.8–5.2 GHz (1.4 GHz, 31.1%) for S11 lower than −6 dB

and S21 more than -8 dB from Figure 3. To increase the

FIGURE 1
Structure of the proposed antenna.
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isolation between the two antenna elements, a T-shaped slot in

the middle is inserted on the ground plane, indicated as Ant.

B, exhibiting isolation of higher than 14 dB from 3.3 to

5.5 GHz. However, the bandwidth at this time is very

narrow, only covering 3.52–4.02 GHz (0.5 GHz, 13.5%) for

antenna 1 and covering 3.48–4.06 GHz (0.58 GHz, 15.3%) for

antenna 2. Then, the T-slot moves to the right side from the

center, forming Ant. 3. It can be seen that the IMBW of Ant.

1 is expanded to 3.3–5.5 GHz (2.2 GHz, 50%), and isolation of

more than 15 dB is obtained. However, the impedance

matching of Ant. 2 is poor, as shown in Figure 3A. Finally,

two double L-shaped stubs are introduced to improve the

IMBW in Ant. D, with a reflection coefficient lower than -6 dB

across 3.2–5.4 GHz (2.2 GHz, 51%) for Ant. 1 and

3.0–5.4 GHz (2.4 GHz, 57%) for Ant. 2. Moreover, the

isolation is greater than 15 dB across 3.0–5.4 GHz.

Figure 4 shows the current distributions of Ant. A, B, C,

and D at the center frequency of 4.2 GHz. With the

introduction of the T-shaped slot, when port 1 is excited,

the interference between Ant. 1 and Ant. 2 is greatly reduced

[33], enhancing the isolation between port 1 and port 2 from

8 to 15 dB. Due to the high isolation, the Ant. 2 in Ants. B, C,

and D exhibit little current when Ant. 1 is excited. However,

the impedance matching effect of the antenna is very poor for

Ant. 2. To broaden the bandwidth, double L-shaped stubs are

employed, achieving a wide band of 3.0–5.4 GHz (2.4 GHz,

57%). The current distributions are depicted in Figure 4B

when Ant. 2 is excited and Ant. 1 is matched by a 50 Ω load. It

can be found that the currents on the double L-shaped stubs

are strong, which can help improve the impedance matching

of Ant. 2. At the same time, the currents on Ant. 1 are weak

due to the T-shaped slot, thus, the isolation is still higher than

15 dB.

TABLE 1 Dimensions of the proposed antenna (Units: mm).

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 W1 W2 D

3.4 1.2 3.2 0.5 4.2 3.5 10.2 3.1 4.6 13.2 0.5 1.8 12.6

W3 W4 W5 W6 W7 Lc W9 W10 W11 W12 Wa La L11

3.1 1.5 9.5 4.2 3 3 10.2 1.5 1 0.6 0.5 9.7 4.3

FIGURE 2
Design process of the proposed antenna.

FIGURE 3
Simulated (A) reflection and (B) transmission coefficients.
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FIGURE 5
Simulated (A) reflection and (B) transmission coefficients for different L7.

FIGURE 4
Current distributions at 4.2 GHz for (A) port 1 excited of Ants A-D, (B) port 2 excited of Ant D.

FIGURE 6
Simulated (A) reflection and (B) transmission coefficients for different Lc.
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Parameter study

The effects of the length of the double L-shaped stubs on the

antenna performance are investigated in Figures 5, 6. It can be

found that the length L7 has little effect on S11 but a great effect on

S22. With L7 increases from 9.2 to 10.2 and 11.2 mm, the

bandwidth of S22 becomes narrower, from 3.32–5.5 GHz

(2.18 GHz, 49.4%) to 3.2–5.38 GHz (2.18 GHz, 50.8%) and

FIGURE 7
Simulated (A) reflection and (B) transmission coefficients for different L9.

FIGURE 8
Simulated (A) reflection and (B) transmission coefficients for different L10.

FIGURE 9
Simulated (A) reflection and (B) transmission coefficients for different offset distance L11.
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3.18–4.8 GHz (1.62 GHz, 40.6%), while the isolation remains

higher than 15 dB within 3.2–5.5 GHz. When Lc increases from

1 to 3 and 5 mm, S11 has insignificant variations, but the

bandwidth of S22 varies from 3.30–5.41 GHz (2.11 GHz,

48.4%) to 3.2–5.38 GHz (2.18 GHz, 50.8%) and

3.26–5.28 GHz (2.02 GHz, 47.3%). The isolation below

3.5 GHz gets better when Lc increases. Therefore, to generate

a wide IMBW and stable high isolation performance, the lengths

of the double L-shaped stubs are optimized with L7 = 10.2 mm

and Lc = 3 mm.

FIGURE 10
Simulated and measured (A) reflection coefficient and (B) transmission coefficients.

FIGURE 11
Radiation patterns at 4.2 GHz. (A) simulated and measured 2-D patterns in yoz plane of Ant. 1, (B) simulated and measured 2-D patterns in yoz
plane of Ant. 2, (C) simulated 3-D patterns of Ant. 1, and (D) simulated 3-D patterns of Ant. 2. (—: Sim. Eθ, − −: Sim. Eϕ, —: Mea. Eθ, − −: Mea. Eϕ).
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At the same time, the effects of the size of the T-shaped slot

on the antenna performance are displayed in Figures 7, 8. It can

be deduced the lengths L9 and L10 have a great effect on S11 and

S21, but little effect on S22. With L9 increases from 3.6 to 4.6 and

5.6 mm, the worst isolation within the whole band gets better

from 14 to 15.3 dB and 16.5 dB. When L10 increases, the isolation

in the high-frequency band decreases. The offset distance of the

T-shaped slot from the middle point is studied in Figure 9. It is

observed that the offset distance has little effect on S11 but a great

effect on S22. To achieve a wide band for both S11 and S21 with

stable high isolation, the values of the T-shape slot are optimized

with L9 = 4.6 mm, L10 = 13.2 mm, and L11 = 4.3 mm.

Simulated and measured results

Performances of the proposed antenna

The simulated and measured reflection coefficients of Ant.

1 and Ant. 2 are shown in Figure 10A. In this figure, the simulated

results exhibit a 6 dB IMBW of 3.2–5.4 GHz (2.2 GHz, 51%) for

Ant. 1 and 3.0–5.4 GHz (2.4 GHz, 57%) for Ant. 2, while the

corresponding measured IMBWs are 3.06–5.42 GHz (2.36 GHz,

55.7%) and 3.14–5.42 GHz (2.28 GHz, 53.2%). The overlaps

between the S11 and S22 are 3.2–5.4 GHz (2.2 GHz, 51%) in

simulation and 3.14–5.42 GHz (2.28 GHz, 53.2%) in

measurement. The simulated and measured transmission

coefficients (S12, S13, S14) between adjacent antenna elements

of the four antennas are presented in Figure 10B. It can be

observed that the isolation levels remain greater than 15 dB

across the entire working band.

The radiation patterns of Ants. 1 and 2 in simulation and

measurement at the center frequency of 4.2 GHz are depicted

in Figure 11A good agreement between them is observed. The

maximum gain directions of Ant. 1 and Ant. 2 are opposite to

each other, thus resulting in a low ECC.

Due to the symmetrical structure, the efficiency of Ant. 1 and

Ant. 2 are similar to that of Ant. 3 and Ant. 4. According to

Figure 12, the simulated total efficiencies of Ant. 1 and Ant. 2 are

higher than 72% across 3.2–5.4 GHz, and the measured

efficiencies of the two antennas are higher than 54% across

3.14–5.42 GHz. The measured highest efficiency can reach

80%. To validate the MIMO potentials of the 2 × 2 MIMO

antenna, its corresponding ECC is also studied based on the far-

field. Figure 12B indicates that the simulated and measured

ECCs across 3.2–5.4 GHz are lower than 0.08, which can satisfy

the standards in smartphones [18].

User’s hand effect

To investigate the hand effect on the performance of the

proposed antenna, a model including the hand is simulated in

Figure 13. The simulated results of reflection and transmission

coefficients, and ECCs are depicted in Figure 14. Due to the hand

effect, the bandwidths of Ants. 1-4 become 3.37–5.06 GHz,

FIGURE 12
Simulated and measured (A) total efficiency and (B) ECC of the proposed antenna.

FIGURE 13
The model of a smartphone grabbed by a single hand.
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2.65–5.16 GHz, 3.10–5.50 GHz, and 3.18–5.32 GHz. The isolation

is higher than 19 dB between the adjacent antenna elements. As

electromagnetic radiation can be absorbed by hand tissue, the

efficiencies decrease but are higher than 26% for all the antennas.

When the antenna is held by hand, the antenna element among

Ants. 1-4 with higher efficiency can be selected to enhance the

radiation. The simulated ECCs between adjacent antennas are

lower than 0.05.

Comparison and discussion

The performance of the proposed antenna is compared

with other works in Table 2. Among the MIMO antennas

[3–27] for mobiles, only the antennas in [22–27] have

sufficient bandwidths to cover N77/N78/N79 bands, but the

isolations of these antennas are not enhanced. Compared with

those antennas, the proposed antenna has greater isolation

FIGURE 14
Simulated (A) reflection coefficient, (B) transmission coefficient, (C) total efficiency and ECC of the proposed antenna with a single-hand hold.

TABLE 2 Comparison with other wideband MIMO antennas.

Ref Band (GHz) Antenna pair
size (mm)

Isolation (dB) Ecc Efficiency (%)

22 3.3–5 24 × 4 × 5 10 0.3 40.5–75

23 3.27–5.92 37 × 0.8 × 7 12 0.11 50–82

24 3.3–5.9 35 × 0.8 × 7 10 0.02 56–83

25 3.3–6 47 × 1 × 6 11 0.1 40–71

26 3.3–7.1 48.8 × 0.8 × 7 11 0.09 47–70

27 3.1–6 44.4 × 0.8 × 7 10 0.1 41–69

Pro 3.14–5.42 40.6 × 0.8 × 6.7 15 0.08 54–80
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across 3.14–5.42 GHz, which can cover N77/N78/N79 and

WLAN bands.

Conclusion

In this paper, offset T-shaped slots and double L-shaped stubs

are introduced to realize a wideband MIMO antenna with high

isolation. T-shaped slots not only help increase the isolation, but

also help improve the IMBW of one antenna. In addition, double

L-shaped stubs are used to improve the IMBW of the other

antenna. Wideband, high isolation, and low ECC performances

are obtained, indicating that the proposed MIMO antenna has the

potential for future 5G smartphone applications.
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