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This study explores the flow irreversibility of the Ellis hybrid nanofluid

(containing CoFe2O4 − TiO2 nanoparticles) with homogeneous and

heterogeneous reactions to a horizontal porous stretching cylinder. The

energy transportation aspects are investigated in terms of the influence of

joule heating and viscous dissipation. The slip and convective boundary

conditions are levied on the cylindrical surface, and the mathematical flow

model is transferred to a system of nonlinear ordinary differential equations

using suitable transformations. The highly nonlinear systems of equations are

numerically solved using the bvp4c approach in MATLAB. The graphical

outcomes are obtained and discussed; it is worth noting that incremental

estimations of the curvature parameter show opposite behaviors on the Ellis

fluid velocity and entropy generation, i.e., the entropy generation profile

increases while fluid velocity decreases. The boundary layer thinning shows

resistance to impact by elasticity and magnetic field. Further, as the porosity of

the liquid phase increases, the momentum of the boundary layer decreases.

KEYWORDS

Ellis hybrid nanofluid, joule (ohmic) heating, viscous dissipation, surface-catalyzed
reaction, homogeneous–heterogeneous reaction

OPEN ACCESS

EDITED BY

Arshad Riaz,
University of Education Lahore, Pakistan

REVIEWED BY

Hassan Waqas,
Government College University,
Faisalabad, Pakistan
Ali Chamkha,
Kuwait College of Science and
Technology, Kuwait
Hina Sadaf,
National University of Sciences and
Technology (NUST), Pakistan
Safia Akram,
National University of Sciences and
Technology (NUST), Pakistan

*CORRESPONDENCE

Shafiq Ahmad,
ashafiq@math.qau.edu.pk

SPECIALTY SECTION

This article was submitted to
Interdisciplinary Physics,
a section of the journal
Frontiers in Physics

RECEIVED 05 July 2022
ACCEPTED 02 August 2022
PUBLISHED 15 September 2022

CITATION

Khan MN, Ahammad NA, Ahmad S,
Elkotb MA, Tag-eldin E, Guedri K,
Gepreel KA and Yassen MF (2022),
Thermophysical features of Ellis hybrid
nanofluid flow with surface-catalyzed
reaction and irreversibility analysis
subjected to porous cylindrical surface.
Front. Phys. 10:986501.
doi: 10.3389/fphy.2022.986501

COPYRIGHT

© 2022 Khan, Ahammad, Ahmad,
Elkotb, Tag-eldin, Guedri, Gepreel and
Yassen. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 15 September 2022
DOI 10.3389/fphy.2022.986501

https://www.frontiersin.org/articles/10.3389/fphy.2022.986501/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.986501/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.986501/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.986501/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.986501/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.986501&domain=pdf&date_stamp=2022-09-15
mailto:ashafiq@math.qau.edu.pk
https://doi.org/10.3389/fphy.2022.986501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.986501


Introduction

At present, the development of the human society depends

mainly on energy transfer and energy sources. Improvements

with regard to generation and utilization of energy can

considerably affect the industrial and engineering fields.

Advancements in energy transport mechanisms have been

investigated, where the thermal capacitances of the base fluids

(water, glycols, and engine oil) are boosted by mixing a nanofluid

into them. Nanofluids are widely used for community service

applications, such as solar cells, nuclear power plants,

refrigerators, heat exchangers, and vehicles. Choi and Eastman

[1] first proposed the idea of a nanofluid. Advanced and novel

applications of nanofluids in domestic refrigerators, power

engines, and chillers were then investigated [2]. The thermal

and solutal energy transportation towards a stretching surface in

a molybdenum disulfide nanoliquid was studied by Waqas et al.

[3]. The heat and mass transport features of Cu- and Ag-water

across a porous rotating disc affected by thermal radiation,

partial slip, and chemical reactions were examined by Reddy

et al. [4]. Krishna and Chamkha [5] surveyed the

magnetohydrodynamic (MHD) free convective rotating flow

of nanofluids (Ag and TiO2) influenced by the Hall current as

well as generation or absorption on a semi-infinite permeable

moving plate. The application of the boundary layer flow to

nanoparticles along uniform heat flux and heat transport in

electronic chips was analyzed by Waqas et al. [6]. Moreover,

theoreticians have reported similar studies [6–18]. Hybrid

nanofluids are used to enrich the heat transport rates and

thermal conductivities of conventional fluids; such hybrid

nanofluids are formed by a mixture of nanoparticles

immersed in a base fluid to improve the heat transport

capacities of the convectional fluids. Turcu et al. [19] and

Jana et al. [20] established the idea of hybrid nanofluids that

boost the thermal capacitances of regular nanofluids. Devi and

Devi [21] presented improved heat transport by distribution of a

water-based aluminum oxide (Al2O3) and copper hybrid

nanofluid subjected to a stretchable surface. The heat and

mass transportation aspects of the Al2Cu/H2O (alumina-

copper/water) hybrid nanofluid toward the stretching cylinder

was reported by Maskeen et al. [22]. The solutal and thermal

transport features of the transient MHD hybrid nanofluid flow

with thermal radiation, chemical reaction, and suction/injection

across the extending surface reported by Sreedevi et al. [23].

Other substantial works regarding hybrid nanofluids have also

been proposed [24–29].

Chemical reactions are typically categorized into two types as

heterogeneous and homogeneous reactions. The processes of

burning, fog formation and dispersion, and catalysis occur by

such homogeneous and heterogeneous reactions. Homogeneous

reactions occur at all phases, while heterogeneous reactions

generally occur in confined patches. Chaudhary and Merkin

[30] initially proposed the boundary layer flow along the

heterogeneous–homogeneous reactions of an isothermal

model. Ramzan et al. [31] investigated the

electromagnetohydrodynamic hybrid nanofluid flow past two

rotating disks along the homogeneous–heterogeneous reaction

and its irreversibility analysis. Khan et al. [32] considered the

cubic autocatalysis chemical reaction to investigate the flow of

magnetized Oldroyd-B fluid across a stretching cylinder. Other

investigators have also focused on the influences of the

homogeneous–heterogeneous reactions in their recent works

[33–38].

The energy losses during an irretrievable process are broadly

called as entropy generation. The second law of thermodynamics

is considered to measure the energy losses during such

irretrievable procedures. Researchers have proposed various

approaches to reduce energy losses. The operations of actual

systems are unvaryingly related to work losses in accordance with

the second law of thermodynamics [39]. Researchers who have

investigated entropy generation [40, 41] have deeply analyzed the

applications of entropy in several fields. The stagnation point

flow of a hybrid nanofluid in the investigation of entropy

generation across a stretching sheet was examined by Jakeer

and Reddy [42]. Other studies on entropy generation may also be

found in literature [43–47].

MHD considerations have many applications in engineering,

such as electrical furnaces, nuclear reactors, installation of

nuclear accelerators, turbo machinery, and blood flow, and

many researchers have investigated their impacts. Ahmad

et al. [48] demonstrated the 3D MHD Maxwell nanofluid flow

towards a slendering stretching surface affected by joule heating,

heat generation, and thermal radiation. Takhar et al. [49]

investigated the time-dependent laminar boundary layer flow

of an electrically conducting fluid along an aligned magnetic field

toward a semi-infinite flat plate. Saeed et al. [50] considered the

six-constant Jeffreys nanofluid in an asymmetric channel with

inclined magnetic fields to examine the theoretical impact of slip

barriers on double diffusion subject to peristaltic flow. The ion

and Hall slip impacts on an unstable laminar MHD convective

rotating flow of a second-grade fluid across a semi-infinite

vertical moving permeable sheet were theoretically

investigated by Krishna et al. [51]. Several other researchers

[52–59] have also discussed the importance of MHD flows

along various geometries.

The main purpose of this work is to explore the 2D boundary

layer flow of the Ellis nanofluid (containing CoFe2O4 − TiO2

nanoparticles) toward the horizontal porous stretching cylinder

under convective and slip boundary conditions. The thermal and

solutal transport aspects are investigated with respect to the

impacts of viscous dissipation, joule heating, and

homogeneous–heterogeneous reactions. The novelty and main

contribution of this work involve examining the axisymmetric

MHD Ellis hybrid nanofluid flow along

homogeneous–heterogeneous reactions and entropy generation

effect, which have not been considered in literature thus far. The

Frontiers in Physics frontiersin.org02

Khan et al. 10.3389/fphy.2022.986501

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.986501


basic equations developed here are represented as a system of

ordinary differential equations (ODEs) using similarity variables.

These ODEs are numerically solved using the bvp4c approach in

MATLAB. The graphical conclusions are evaluated in terms of

velocity, temperature, and homogeneous–heterogeneous

(homo–hetero) profiles. Moreover, comparison of the current

outcomes with previously reported numerical data shows good

agreement.

Mathematical modeling

In the mathematical model, we consider a steady 2D laminar

incompressible axisymmetric MHD Ellis hybrid nanofluid flow

with CoFe2O4 − TiO2 nanoparticles across a horizontal porous

stretching cylinder. The homogeneous and heterogeneous

chemical species are examined to assess the solutal energy

transport. The thermal energy transport aspects are discussed

under viscous dissipation and joule heating. Figure 1 illustrates

that the z−axis is chosen as the cylindrical coordinate system and

that the r−axis is perpendicular to the cylindrical surface. Here,

we consider the fluid velocity as u � uw � zu0
L , where u0 > 0 and L

is the length. B0 is the magnetic field that is normal to the

cylindrical surface. Additionally, the cylinder temperature is Tw

and ambient temperature is T∞.

The equation of the homo–hetero reaction process is stated

as follows [30, 31]:

C + 2D → 3D, rate � kcab
2. (1)

The first-order isothermal single reaction is stated as

C → D, rate � ksa. (2)
Here, C and D are the substance species with concentrations a

and b, respectively. Moreover, ks and kc are the constant rates.

Using the above assumption and applying the boundary layer

theory, the mathematical flow model is defined as [10, 31]

z(ru)
zz

+ z(rw)
zr

� 0, (3)

u
zu

zz
+ w

zu

zr
� 1
rρhnf

z

zr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ rμhnf( 1�
2

√
τ20

zu
zr)α1−1 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− u

ρhnf
(μhnf

K
+ σhnfB

2
0) ,

(4)

u
zT

zz
+ w

zT

zr
� αhnf

r
(r z2T

zr2
+ zT

zr
) + μhnf(ρcp)hnf

z

zr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1

1 + ( 1�
2

√
τ20

zu

zr
)α1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(zu
zr
)2

+ σhnfB
2
0(ρcp)hnfu2 , (5)

w
za

zr
+ u

za

zz
� D*

A(1r za

zr
+ z2a

zr2
) − k1ab

2 − Sksa, (6)

w
zb

zr
+ u

zb

zz
� D*

B(1r zb

zr
+ z2b

zr2
) + k1ab

2 + Sksa. (7)

The appropriate conditions at the boundary are as follows [37]:

u � −uw + a1
zu

zr
, v � −Vw, T � Tw + c1

zT

zr
,
za

zr
� ksa

D*
A

,
zb

zr

� −ksa
D*

B

, at r � R. (8)
u → 0, a → a0, b → 0, T → T∞, at r → ∞ (9).

In Eqs. 3–9, the components of the velocity are u, v, and w in the

directions r, θ, and z, respectively. The symbols ρhnf, μhnf, σhnf,

B0, (τ0, α1), αhnf, cp, (D*
A, D

*
B), a1, k1, and c1 represent the

hybrid nanofluid density, dynamic viscosity, electrical

conductivity, magnetic field intensity, material constant,

thermal diffusivity, specific heat, diffusion coefficient, factor of

velocity slip, constant rate, and factor of thermal slip,

respectively. The thermophysical characteristics of the hybrid

nanofluid with a convectional fluid are listed in Table 1.

Hybrid nanofluid model

The hybrid nanofluid correlation properties of dynamic

viscosity, thermal conductivity, heat capacity, density, and

electrical conductivity are defined experimentally.

Similarity variables

The applicable similarity variables are as follows [10]:

η � r2 − R2

2R
( uw

zuf
) 1

2, u � zu0

L
f′(η), w � −R

r
(u0uf

L
) 1

2f(η),
ψ(η, z) � (uwufz) 1

2Rf(η), θ(η) � (T − T∞)
(Tw − T∞), g(η)

� a

a0
, h(η) � b

a0
. (10)

FIGURE 1
Flow diagram of the problem.
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Using the similarity variables in Eq. 10 and Table 2, Eqs. 4–9 can

be rewritten as follows:

μ
hnf/μf

ρ
hnf/ρf

((1 + α1(βf″)α1−1)(1 + 2ηγ)f‴
+γ(3 + (1 + 2α1)(βf″)α1−1)f″)
− Pm

μ
hnf/μf

ρ
hnf/ρf

((βf″)α1−1 + 1)2

f′⎛⎝μ
hnf/μf

ρ
hnf/ρf

((βf″)α1−1 + 1)2

Mf′

+ ((βf″)α1−1 + 1)2(f′2 − ff″)⎞⎠
� 0,

(11)
k
hnf/kf(ρCp)hnf/(ρCp)f ((1 + 2ηγ)θ″ + 2γθ′)

+ PrEc
⎛⎜⎝ σ

hnf/σf(ρCp)hnf/(ρCp)fMf′2 + (1 + 2ηγ)f″2

(1 + (βf″)α1−1)⎞⎟⎠
+ Prfθ′
� 0, (12)
1
Sc
((1 + 2ηγ)g″ + 2γg′) + fg′ − Kcgh

2 − Kvsg � 0, (13)
δ*
Sc

((1 + 2ηγ)h″ + 2γh′) + fh′ +Kcgh
2 +Kvsg � 0. (14)

The dimensionless forms of the boundary conditions are given as

(f(η) � S1 , f′(η) − δ1f″(η) � 1, θ(η) − βTθ′(η) � 1,
K*

sg(η) � g′(η), δ*h′(η) � K*
sg(η) ), at η → 0. (15)

(f′(η) → 0, g(η) → 1, h(η) → 0, θ(η) → 0), at η → ∞ .

(16)
Assuming that the particles of the substances of both species

have the same coefficients of diffusion D*
B and D*

A, i.e., the ratio

of the diffusion parameters D*
A/D*

B
� 1; thus, we have

h(η) + g(η) � 1. (17)

Eqs. 16, 17 are combined to get

1
Sc
((1 + 2ηγ)g″ + 2γg′) + fg′ − (Kc(g − 1)2 +Kvs)g � 0.

(18)
The conditions at the boundary are then given as

g′(0) � K*
sg(0), g(∞) → 1. (19)

The governing parameters here are those of the magnetic

field {M � σfB2
0z/ρfuw}, suction {S1 � Vw( L

a]f
) 1

2 > 0}, thermal

slip {βT � c1( a
L]f

) 1
2}, velocity slip {δ1 � a1( a

L]f
) 1

2}, heterogeneous
reaction {K*

s � ks
D*

A
(L]fc )

1
2}, porosity {Pm � zμf

Kuw
}, Schmidt number

{Sc � ]f
D*

A
}, Eckert number {Ec � u2w

cp(Tw−T∞)}, material

{β �
�������
u30r

2z2

2τ40R
2L3μf

√
}, curvature {γ �

���
Lμf
u0R2

√
}, and Prandtl number

{Pr � ]f
αf
}.

Entropy generation

Entropy generation is defined in terms of the magnetic field,

joule heating, and viscous dissipation. The equation of entropy

generation is as follows:

Sgen � khnf
T2∞

(zT
zr

)2

+ μhnf
T∞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1

1 + ( 1�
2

√
τ20

zu
zr)α1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(zu
zr
)2

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σhnf
ρhnf

B2
0u

2

T∞
+ RD*

A

T∞
(zT
zr

) za

zr

+RD
*
A

a0
(za
zr
)2

+ RD*
B

T∞
(zb
zr

zT

zr
)

+ μhnf
kT∞

u2 + RD*
Bb

a0
(zb
zr
)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

TABLE 1 Thermophysical features of the hybrid nanofluid [24, 30].

Properties ρ (kg ·m−3) σ (kg(J ·K)) cp (S ·m−1) k (W(m ·K)−1) Pr

Water (H2O) 997.10 5.5 × 10−6 4179.0 0.6130 6.20

TiO2 4250.0 2.38 × 106 686.20 8.9538 6.20

CoFe2O4 4907.0 5.51 × 109 700.00 3.700 6.20

TABLE 2 Relationships of hybrid nanofluids [24, 30].

Characteristics Relationships

Dynamic viscosity μhnf � μf
(1−ϕhnf )2.5 , ϕhnf � ϕ1 + ϕ2 ,

Density ρhnf
ρf

� (1 − ϕhnf) + ϕ1
ρn1
ρf

+ ϕ2
ρn2
ρf
,

Thermal conductivity khnf
kf

� ((ϕ1kn1+ϕ2kn2)(ϕhnf )
−1+2(ϕ1kn1+ϕ2kn2)+2(1−2ϕhnf )kf

(ϕ1kn1+ϕ2kn2 )(ϕhnf )−1+2kf−(ϕ1kn1+ϕ2kn2)+ϕhnfkf ),
Heat capacity (ρcp )hnf

(ρcp )f � (1 − ϕhnf) + (ρcp )n1
(ρcp)fϕ1 +

(ρcp)n2
(ρcp)fϕ2 ,

Electrical conductivity σhnf
σf

� ((ϕ1σn1+ϕ2σn2 )(ϕhnf )
−1+2(ϕ1σn1+ϕ2σn2)+2(1−ϕhnf )σf

(σn1ϕ1+ϕ2σn2)(ϕhnf )−1+(2+ϕhnf )σf−(σn1ϕ1+ϕ2σn2 ) ).

Note that, ϕ1 and ϕ2 denote CoFe2O4 and TiO2 nanoparticles, respectively, where

ϕhnf � ϕ1 + ϕ2. The value of the solid volume fraction is taken as 0.02 (2%).
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NG � Sgen
S0

(21)
.

The entropy generationNG is the ratio of the entropy generation

rate Sgen to the properties of the entropy generation rate S0, such

that

NG � khnf
kf

(1 + 2γη)α2θ′2 + σhnf/σf
ρhnf/ρf MBrf′2

+ μhnf
μf

⎛⎝ Br(1 + 2γη)
1 + (βf″)α1−1⎞⎠ + ((1 + 2γη)(L1 + L2

α2
)g′2

+ (L1 − L2)(1 + 2γη)θ′g′). (22)

TABLE 3 Justification of f@(0) results in the absence of α1, β, ϕ1, and ϕ2, with S1 � 2.6, Pr � 0.5.

<!—Col Count:4γ Ramesh et al. [37] Bhattacharyya et al. [57] Present results

0.1 2.100332 2.1003187 2.10034

0.2 2.058843 2.0588875 2.05886

0.3 2.008887 2.0088406 2.00885

FIGURE 2
(A–D) Outcomes of f′(η), θ(η), g(η), and NG(η) against γ.
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where α2 � ΔT
T∞ is the temperature ratio parameter and Br � μfuw

kfΔT
is the Brinkman number. Moreover, L1 and L2 are defined as

L1 � RD*
Aa0
kf

and L2 � RD*
Ba0
kf

.

Result and discussion

The numerical solution to the above problem is obtained

using bvp4c in MATLAB. Table 3 shows a comparison of the

velocity gradient f″(0) with the results of Ramesh et al. [37] and

Bhattacharyya et al. [57] in the absence of α1, β,ϕ1, and ϕ2 by

taking S1 � 2.6, Pr � 0.5. The results of this study are in good

agreement with the previously published results. The influences

of distinct parameters, such as the curvature, magnetic, porosity,

thermal slip, suction, surface-catalyzed, homogeneous reaction,

and temperature ratio parameters, as well as the Brinkman

number on the velocity, temperature, homo–hetero reaction,

and entropy generation profile are discussed in Figures 2–7.

Figures 2A–D show the impacts of the curvature parameter on

the velocity, temperature, homo–hetero reaction, and entropy

FIGURE 3
(A,B) Outcomes of f′(η) and θ(η) against M.

FIGURE 4
(A,B) Outcomes of f′(η) against α1 and Pm.
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generation profile. From Figure 2A, it is observed that the fluid

velocity profile displays a dual trend with increase in the curvature

parameter; for a higher value of the curvature parameter, the fluid

velocity near the surface increases, while diminishing away from the

boundary. The radius and curvature of the cylinder are inversely

proportional; therefore, the radius of the cylinder reduces as the

curvature parameter increases. As a result, the contact of the Ellis fluid

along the cylinder surface decreases, and the surface supports a small

resistance owing to the Ellis fluid particles; further, increasing values of

γ decrease the Ellis velocity of the fluid. Figure 2B shows how the fluid

temperature increases when the curvature parameter increases.

Physically, increasing values of γ (curvature parameter) reflect the

increasing thermal boundary layer thickness, which result in increased

heat transmission and fluid temperature. Similarly, the curvature

parameter improves the concentration and entropy generation

distribution, as shown in Figures 2C,D. The impacts of the

magnetic parameter on the fluid velocity and temperature are

shown in Figures 3A,B. It is noted that the fluid velocity increases

FIGURE 5
(A,B) Outcomes of f′(η) and θ(η) against S1 and Bt, respectively.

FIGURE 6
(A,B) Outcomes of g(η) against Kc and Kvs .
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as the corresponding thickness of the boundary layer decreases; this is

attributed to the fact that the increment in the magnetic field

parameter produces a Lorentz force, which enhances the resistance

of fluid flow. Consequently, the fluid velocity of the Ellis hybrid fluid

diminishes. From Figure 3B, it is obvious that the fluid temperature

condenses by stronger estimation of the magnetic parameter. Figures

4A,B show the effects of thematerial constant and porosity parameter

on fluid velocity. The influence of the material constant is observed in

Figure 4A, where the velocity reduces and the related thickness of the

boundary increases with improvement in the value of the material

parameter. The impact of Pm on the velocity distribution of the Ellis

hybrid nanofluid is shown in Figure 4B. As the porosity of the liquid

phase increases, the momentum boundary layer decreases.

Additionally, as we move farther from the bounded surface, the

fluid velocity is unaffected by the porosity of the boundary. The effects

of the suction and thermal slip parameters on velocity and

temperature are respectively shown in Figures 5A,B. Figure 5A

presents the velocity characteristics to obtain a better estimate of

the suction parameter. The thickness of the momentum boundary

layer appears to decrease as a result of this; the drag force develops

while the suction parameter increases, which causes the thickness of

themomentum boundary layer to reduce. As the thermal and velocity

slip parameters increase, the wall temperature decreases, as shown in

Figures 5A,B. The velocity slip parameter partially reflects the

increment of the conversion of the dragging force on the

stretching wall toward the liquid; as the thermal slip parameter

increases, it produces a decaying trend in the thermal layer

thickness, indicating that even small amounts of heat are

transferred to the liquid that has leaked from the surface.

Figure 6A shows the properties of the homogeneous reaction

parameter’s strength on the g(η) plot. The trend of the g(η) plot

diminishes with increment of the homogeneous reaction parameter.

The performance ofg(η) for the surface-catalyzed reaction is depicted
in Figure 6B. The reactants gain a greater surface area for the reaction

to proceed through the use of porous media. The reaction rate is

additionally accelerated by the surface-catalyzed reaction; hence,

increasing the surface-catalyzed reaction lowers g(η) more quickly.

In Figures 7A,B, the outcomes of the temperature ratio parameter and

Brinkman number on entropy generation are shown; it can be

observed from the figures that the entropy generation distribution

is boosted by increments to the temperature ratio parameter and

Brinkman number.

Concluding remarks

The CoFe2O4 − TiO2\water Ellis hybrid nanofluid flow was

explored in a permeable horizontal cylinder through the combined

impacts of joule heating, homogeneous–heterogeneous reactions, and

slip boundary conditions. The highly nonlinear ODEs were

numerically solved using bvp4c in MATLAB. The following are

the conclusions of this study:

➢ The curvature parameter shows dual behaviors for fluid

velocity and entropy generation as the temperature and

nanoparticle concentration of the fluid increase.

➢ The momentum boundary layer thickness reduces with

stronger estimations of the magnetic and porosity

parameters.

➢ The fluid velocity improves with the suction parameter but

diminishes for stronger estimation of the material

parameter.

FIGURE 7
(A,B) Outcomes of NG(η) against α2 and Br.

Frontiers in Physics frontiersin.org08

Khan et al. 10.3389/fphy.2022.986501

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.986501


➢ The fluid concentration decreases as the surface-catalyzed

and homogeneous reaction parameters increase.

➢ The entropy generation profile is improved by the

temperature ratio parameter and Brinkman number.

➢ The thermal and velocity slip parameters reduce the

temperature distribution.

Finally, we note that our work was built on the Ellis model for

fluid rheology using the unique behaviors of the straightforward

power-law model. In particular, as the flow rate in the basic state

is zero, the power-law model predicts either a zero or an infinite

critical estimate for the Darcy–Rayleigh number, as stated in

Barletta and Nield [60]. However, the application of the Ellis

model results in a nonsingular trend as the basic flow rate

approaches zero, reaching the same critical estimate of the

Darcy–Rayleigh number in the case of a Newtonian fluid.
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Nomenclature

r, θ, z Axis coordinates

(ρCp)hnf Heat capacity

σhnf Electrical conductivity

τo, α1 Material constants

Bo Magnetic field intensity

T∞ Ambient temperature

DA*, DB* Variable diffusion coefficients of chemical species

C and D

C,D Chemical species

k1, ks Reaction rates

khnf Thermal conductivity

S Interfacial surface area

a1, c1 Arbitrary constants

M Magnetic parameter

γ Curvature parameter

ϕ2 Volume fraction of nanoparticles (TiO2)

TiO2 Titanium oxide

ϕhnf Hybrid nanoparticle volume fraction

Br Brinkman number

Ec Eckert number

S1 Suction parameter

BT Thermal slip parameter

NG Entropy generation

α2 Temperature ratio parameter

u, v, w Velocity components

K Permeability of porous medium

u∞, uw Free stream and wall velocities

Tw Wall temperature

ρhnf Hybrid nanofluid density

αhnf Hybrid nanofluid thermal diffusivity

υhnf Kinematic viscosity of hybrid nanofluid

a Concentration of C

b Concentration of D

η Similarity variable

Pr Prandtl number

Kvs Surface-catalyzed parameter

β Material parameter

Pm Porosity parameter

ϕ1 Volume fraction of nanoparticles (CoFe2O4)

CoFe2O4 Cobalt ferrite

Sc Schmidt number

Kc Parameter of homogeneous reaction

Ks* Parameter of heterogeneous reaction

δ1 Velocity slip parameter

δ* Ratio of the diffusion coefficient

μhnf Dynamic viscosity

S0 Characteristic entropy generation rate
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