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We propose a device composed of a quantum dot (QD) connected to a normal

metal lead to detect Majorana bound states (MBSs), which are formed at the

ends of a topological superconductor nanowire (TSNW) and coupled to the lead

with spin-dependent hybridization strengths. The information of the MBSs

leaked into the lead is inferred from the spectral function of the QD serving

as the tip of a scanning tunneling microscope (STM). It is found that lead–MBSs

interaction induces a bound state characterized by an infinitely high peak in the

dot’s zero-energy spectral function. The overlap between the twomodes of the

MBSs turns this bound state into a resonant one, and thus the zero-energy peak

is split into three with the height of the central one equaling that in the absence

of lead–MBSs coupling. We also find that the MBSs have lower impacts on the

additional peak in the dot’s spectral function induced by intradot Coulomb

interaction.
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1 Introduction

In submicro- and nano-scale systems, the quantum interference effect resulting from

electrons transporting through multiple paths or states induces various interesting

phenomena that are important in both fundamental and applied subjects [1, 2].

Recently, to enrich physical phenomena, quantum dots (QDs) with well-separated

and adjustable energy levels were embedded in the tunneling channels of multiply

connected or T-shaped geometries [3–7]. Such energy levels couple to the states with

a continuum energy spectrum in the leads that is connected to the central region and thus

form exotic bound states in the continuum (BICs). This kind of platform enables the

emergence of Fano and Dick effects that originally solely occurred in molecular systems

[3, 6]. These two effects are characterized by the asymmetric line shape of the conductance

varying with respective to the Fermi energy or dot level, as well as by zero-width resonant

peaks in local density of states (LDOS). According to the uncertainty principle, a state with

zero-width peak means that its lifetime is infinity and thus is important in applications

such as quantum information or quantum storage. A recent experimental work

demonstrated that Fano resonances are closely related to quasi-BICs [8]. These effects

are also crucial for either fundamental or technological applications. For example, BICs
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have been successfully used in designing new kinds of lasers that

may be applicable in various fields including photoelectric

devices, detection instruments, and quantum information [9].

The quantum interference effects induced by the presence of

BICs have also been extensively studied in low-dimensional

phononic systems [10]. Experimentally, BICs have been

observed in systems beyond electronic ones, for example in

optical waveguides arranged in a series [11], dielectric slabs

[12], cylinders [13], and nano-scale resonators [9].

Issues related to BICs were also studied in the scope of

topological phases of matter [12, 14]. In particular, recent

theoretical and experimental work has demonstrated that

exotic Majorana bound states (MBSs) can be formed at the

ends of p-wave topological superconductor nanowires [15].

The MBSs are quasi-particles of Majorana fermions and of

their own antiparticle excitations with zero energy. They are

coherent superpositions of electrons and holes and resemble the

properties of electron–hole pairs in superconductors.

Accordingly, researchers have been seeking Majorana

fermions in superconductors since they were predicted as

early as in 1937 [16]. In 2008, Fu and Kane first

demonstrated the possibility of realizing MBSs in a vortex

core in a p-wave superconductor [17]. Subsequently,

researchers proved that MBSs may be formed at opposite

ends of a one-dimensional p-wave superconductor realized

from a semiconductor nanowire with Rashba spin-orbit

interaction subjected to both a strong external magnetic field

and proximity-induced s-wave superconductor [17]. Until now,

MBSs have been successfully prepared in various solid-state

platforms, such as topological insulators connected to

superconductors [17], defects in topological superconductors

[18], semiconductor [19], or ferromagnetic [20] nanowires

having strong spin-orbit interaction proximitized to

conventional s-wave superconductors, Josephson junctions

[21], single monolayer systems [22], and chains of magnetic

adatoms [23]. The detection of MBSs remains a challenge. In the

past 2 decades, zero-bias conductance peaks [24, 25] were

believed to be the most reliable evidence of the existence of

MBSs. But some theoretical and experimental works have proved

that such an effect can also arise from trivial Andreev bound

states and Yu–Shiba–Rusinov states, as well as from the Kondo

effect in experimental platforms having a proximitized nanowire

connected to a quantum dot (QD) [26, 27]. Due to the

controversy regarding to the zero-bias abnormal peak related

to MBSs, some other means to detect MBSs were subsequently

proposed. For example, the presence of MBSs may induce a sign

reversion or abnormal enhancement of themopower in a

hybridized Majorana nanowire/QD system, and can efficiently

detect the existence of theMBSs [28–31]. Impacts of MBSs on the

properties of tunnel magnetoresistance [32], photo-assisted

transport [33–36], and Fano resonance [37–40] were also

demonstrated to be promising in the detection of MBSs.

Recently, the generation of BICs by the presence of MBSs

was investigated in systems composed of QD and Majorana

nanowires, an interesting phenomenon termed MBCIs

[41–43]. In a departure from earlier work, Vernek et al.

proposed to generate and manipulate the MBICs under the

condition that both the MBSs and the QD be coupled to an

external lead with continuum energy spectrum [44], except

when the MBSs and QD are directly connected. The

researchers focused on the spectral and transport properties

of the hybridized system in both the noninteracting and

strong-interacting regimes of the QD [44]. Their numerical

results show that there is bound state in the spectral function

of the QD, as long as the MBS is coupled to the lead, regardless

of the coupling strength. Such a result remains unchanged in

the presence of intradot Coulomb interaction and variation of

the system temperatures. They explained the physical

mechanism of the MBICs by examining the properties of

the dot–lead coupling strength under the influence of the

MBSs. These results are useful for reading and writing

information through veiling and unveiling these states, and

they are promising in applications for quantum computing. In

the present work, we revisit this system by considering both

the MBS–MBS overlap and spin-dependent coupling between

the MBSs and the lead, which were neglected in previous work.

Experimentally, the two modes of the MBSs formed at

opposite ends of the TSNW will interact with each and

change the transport properties significantly [21, 24].

Moreover, the MBSs can couple to both spin-up and spin-

down electrons, even with different coupling strengths [45,

46]. Our results show that the direct overlap between the two

modes of the MBSs may destruct the MBICs under particular

conditions, and the spin-dependent coupling between the

MBSs and the lead enables the interaction between

electrons of opposite spin directions, even in the

noninteracting regime. The information of the MBSs at the

ends of the TSNW will change the properties of the lead and

then leak into the QD when the lead and QD are close enough.

By investigating the behavior of the spectral function of the

QD, one can infer the existence of the MBSs or the MBICs. The

QD thus functions as the tip of an STM to detect the above two

phenomena.

2 Model and methods

The system we study here is similar to that in Ref. [44], except

that the two modes of the MBSs overlap, and one mode of the

MBSs interacts with electrons in a lead with spin-dependent

hybridization strength. The lead–dot coupling strength is

sensitive to the properties of MBSs and thus to changing the

spectral function of the QD. The Hamiltonian of this system can

be written in the following form [25, 44]:
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H � ∑
kσ

εkσc
†
kσckσ +∑

σ

εdd
†
σdσ + Ud†

↑d↑d
†
↓d↓ +∑

kσ

tkc
†
kσdσ +H.c( ) +HMBSs,

(1)

where c†kσ (ckσ) creates (annihilates) an electron of momentum

k and energy εkσ, which depends on electron spin σ = ↑, ↓ in the

lead serving as the tip of an STM. The operator d†σ (dσ) is the
creation (annihilation) operator of an electron with gate voltage

tunable energy level εd, spin-σ, and intradot Coulomb

interaction U. The MBSs couple to spinless electrons in the

QD because of the chirality properties, which has been studied

in previous papers. Experimentally, this happens when the

system holding MBSs is subjected to strong magnetic fields

that enable only one spin-component electron to dwell on the

systems due to the Zeeman splitting effect [25]. When the

external magnetic field is not too strong, and both the spin-up

and spin-down energy levels of the systems are in the transport

window, the MBSs interact with both spin-up and spin-down

electrons [24]. The Coulomb repulsion between the electrons is

crucial and should be considered. The coupling strength

between the QD and the lead is described by tk. The last

term, HMBSs, in Eq. 1 is for the MBSs prepared at opposite

ends of a TSNW. Here we consider the case in which only one

mode of the MBS is coupled to the electrons on the lead with

spin-dependent hybridization strength λσ [45, 46]:

HMBSs � iδMη1η2 +∑
σ

λσ dσ − d†
σ( )η1, (2)

in which δM is the interaction strength between the MBSs whose

operators satisfy ηj � η†j(j � 1, 2) and {ηi, ηj} = δi,j. The coupling

strength between the MBSs and electrons on the lead is λσ. The

information of the MBSs leaked into the lead can be detected

non-invasively by investigating the local density of the states

(LDOS) ρσ of the QD attached to the lead [44]. It can be obtained

from the imaginary part of the retarded Green’s function as

ρσ � −Im[≪ dσ |d†σ ≫ r]/π. By adopting the equation-of-motion

technique, the Green’s function can be expressed in the following

matrix form [24, 25, 44]

Gr−1
d,↑ +KΓΛ↑ KΓΛ↑ KΓ

�����
Λ↑Λ↓

√
KΓ

�����
Λ↑Λ↓

√
KΓ

�����
Λ↑Λ↓

√
~G
r−1
d,↑ +KΓΛ↑ KΓ

�����
Λ↑Λ↓

√
KΓ

�����
Λ↑Λ↓

√
KΓ

�����
Λ↑Λ↓

√
KΓ

�����
Λ↑Λ↓

√
Gr−1

d,↓ +KΓΛ↓ KΓΛ↓

KΓ
�����
Λ↑Λ↓

√
KΓ

�����
Λ↑Λ↓

√
KΓΛ↓ ~G

r−1
d,↓ +KΓΛ↓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
≪ d↑|d†

σ ≫
r

≪ d†
↑|d†

σ ≫
r

≪ d↓|d†
σ ≫

r

≪ d†
↓|d†

σ ≫
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
δ↑,σ
0
δ↓,σ
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(3)
in which the inverse of the QD Green’s function is

Gr−1
d,σ � ε − εd( ) ε − εd − U( )

ε − εd − U 1 − n�σ( ) + iΓ, (4)

and the Green’s function of holes is

~G
r−1
d,σ � ε + εd( ) ε + εd + U( )

ε + εd + U 1 − n�σ( ) + iΓ, (5)

where ∑k
|tk |2
ε ± εkσ

� −iΓ, ∑k
|λσ |2
ε ± εkσ

� −iΛσ , and

K � [ε + 2i∑Λσ − δ2M/(ε + i0+)]−1. The occupation number

nσmust be calculated from the self-consistent equation of nσ �
−∫ Im≪ dσ |d†σ ≫ rf(ε)dε/π , with f(ε) being the Fermi

distribution function in the equilibrium state.

FIGURE 1
(Color online) Spin-up (A) and spin-down (B) LDOS varying as
functions of electron energy for different values of λ↓. (C) is for the
spin polarization of the LDOS. Other parameters areU= 0, λ↑= 0.1,
dot level εd = 0, and MBS–MBS interaction strength δM = 0.
With increasing λ↓, the magnitude of ρ↑ (A) and ρ↓ (B) is individually
enhanced and suppressed. As a result, the spin polarization of the
LDOS (C) first decreases, changing its sign, and then increases.
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3 Results and discussion

In the following numerical calculations, we choose half-band

width of the lead D ≡ 40 [25] as the energy unit and fix the value

of dot-lead coupling strength at Γ = 0.1. Figure 1 presents the

spin-up (a) and spin-down (b) spectral functions and (c) their

spin-polarization P = (ρ↑ − ρ↓)/(ρ↑ + ρ↓) for different values of

spin-down lead–MBS hybridization strength λ↓ with fixed λ↑ =

0.1. For λ↓ = 0, the zero-energy spin-up spectral function is

πΓρ↑(ε = 0) → ∞ (black solid line in Figure 1A), whereas

πΓρ↓(ε = 0) = 1 is shown by the solid black line in Figure 1B.

This indicates that the MBSs leaked into the lead, inducing a

bound state in the QD at zero electron energy. Turning on the

coupling between spin-down electrons on the QD and the MBSs

in the lead (λ↓ ≠ 0), the bound state in spin-up spectral function is

stable, which is characterized by πΓρ↑(ε = 0)→∞. Now the zero-

energy spectral function of the QD for spin-down electrons also

becomes a bound state (πΓρ↓(ε = 0) → ∞). Note that the bound

state emerges as long as the dot-lead coupling is turned on and is

independent in its magnitude. Shifting the QD energy level by

gate voltage away from zero energy, it is found that the

magnitude of spin-up (spin-down) spectral function is

monotonously enhanced (suppressed) by increasing λ↓. The

reason is that the MBSs leaked into the QD change the dot

level, and then the electron transport probability in each channel

(electron state) is lowered. This result is in consistent with earlier

works [25, 44].

The bound state induced by the MBSs can be understood by

examining the properties of the hybridization between the QD and

the lead KΛσ. As is known from the Green’s function, the position

of the peaks in the spectral function is determined by the dot level

as well as by the real part of the self-energy, and the width (lifetime

of the state) of the peaks is related to the value of the imaginary part

of the self-energy. A larger (smaller) value of the imaginary part of

the self-energy corresponds towider (narrower) peaks, and hence a

longer (shorter) electron life on the energy state. The real part of

KΓΛσ will shift the dot level, and its imaginary part determines the

broadening of peaks in the spectral function πΓρσ(ε). As shown in

Ref. [44], − Im[KΓΛσ] is the effective coupling between the QD and

the lead with continuum spectrum. Under the conditions of λσ = 0

and εd = 0, − Im[KΓΛσ] reduces to Γ of the usual case with πΓρσ(ε =
0) = 1. In the presence of coupling between the QD and the

continuum (λσ ≠ 0), − Im[KΓΛσ] ≡ 0 at ε = 0 indicates the

emergence of a bound state with infinite long-electron dwell

time due to the uncertainty relation of Δt ~ Z/2Γ. The real part

of KΓΛσ, however, is zero at ε = 0, and the position of the peak in

spectral function is unchanged. Note that the value of KΓΛσ also

depends on the dot level εd, which is out of the scope of the present

work because the MBSs exert significant impacts on the electron

transport at zero energy. The spin-polarization of the spectral

functions P is shown in Figure 1C. It is found that the value of P

depends on both λσ and electron energy ε. At ε = 0, the spin-

polarization is 1 for λ↓ = 0. This means now only spin-up electrons

can enter the QD, an ideal case for spintronic devices. With

increasing λ↓, the magnitude of the spin-polarization is reduced.

Now both spin-up and spin-down electrons can occupy the states

on the QD. Interestingly, at sufficiently large λ↓, the value of the
spin-polarization is changed from a positive value to a negative

one. Now the majority spin in the QD is changed from spin-up to

spin-down, and the system can be used as a spin-conversion device

by changing the hybridization between the QD and the lead.

In real cases, the two modes of the MBSs prepared at

opposite ends of the nanowire overlap with each other with

strength δM ~ exp(−l/ζ), where l is the length of the nanowire

and ζ is directly proportional to the magnetic field applied on

the nanowire. The overlap between the MBSs changes their

properties significantly, but this fact has been neglected in

previous work concerning MBSs coupled to continuum [44].

Figure 2A shows the behavior of πΓρ↑(ε) for different values of
δM with fixed λ↑ = 0.1 and λ↓ = 0. As is shown by the black solid

line in Figure 2A, a bound state is formed at ε = 0 characterized

by infinite large πΓρ↑ for δM, which is just the case shown in

Figure 1. Turning on the hybridization between the two modes

of the MBSs (δM ≠ 0), the zero-energy peak of the spin-up

spectral function is split into two. Meanwhile, the two peaks

are broadened and lowered. Importantly, the height of the

central peak in the spin-up spectral function reduces from

FIGURE 2
(Color online) (A)Spin-up and (B) spin-down LDOS as
functions of the electron energy for fixed λ↑ = 0.1, λ↓ = 0, and
different values of δM. The other parameters are as in Figure 1.

Frontiers in Physics frontiersin.org04

Zhang and Sun 10.3389/fphy.2022.985198

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985198


infinity to one as long as δM ≠ 0. For δM = 0.3, as is shown by

the green dash-dot-dot line, the central peak in πΓρ↑ evolves
into a broad resonant one. The spin-down spectral function in

Figure 2B is unchanged regardless of the value of δM, as the

spin-down electrons are decoupled from the MBSs (λ↓ = 0).

The results shown in Figure 2 indicate that the imaginary part

of the effective self-energy − Im[KΓΛσ] no longer equals zero

at ε = 0, and the overlap between the two modes of the MBSs

destroy the bound state induced by them.

We now study the case in which both spin-up and spin-

down electrons are coupled to the MBSs with different

hybridization strengths in Figure 3. Similar to the results in

Figure 2, in which only spin-up electrons on the QD interact

with the MBSs, the single-peak in the spectral functions of the

two spin components is split into a broadened and lowered

double-peak configuration, indicating the destruction of the

bound states by direct hybridization between the two modes of

the MBSs. With increasing δM, the central peaks in both spin-up

and spin-down spectral functions evolve into resonant ones

with a fixed value of πΓρσ(ε = 0) = 1. Comparing Figure 3A,C

and Figure 3B,D, one finds that the width of the central peak in

the spectral function is changed to be non-monotonous by both

λσ and δM. Apart from the Fermi energy ε = 0, the magnitude of

the spectral function is enhanced by increasing δM, indicating

that the impacts of the MBSs on electron transport are

weakened by their direct hybridization.

In submicro-nano structures including QD,

electron–electron Coulomb interaction can generate some

interesting phenomena, such as Coulomb blockade and

Kondo effects, that exert significant influences on transport

processes. We next show the impacts of intradot Coulomb

interaction on the spectral function πΓρσ(ε) for fixed λ↑ and

different values of λ↓ in Figure 4A,B and different δM in

Figure 4C,D. It is found that the spectral functions in the

presence of intradot Coulomb interaction resemble those in

Figures 2, 3, except that an additional peak arises at ε = U. A

bound state is also induced by hybridization between the

electrons on the QD and the MBSs formed at the ends of

the nanowire. As was shown in Ref. [44], even with the

effective self-energy − Im[KΓΛσ] = 0 at both ε = 0 and U,

the state at ε = U is still a resonant one. The values of λσ and δM
mainly change the spectral functions at ε = 0 and have less

FIGURE 3
(Color online) Spin-resolved LDOS varying with respect to the electron energy for fixed λ↑=0.1 and different values of δM. The value of λ↑ in (A,C)
is 0.05, and is fixed at 0.15 in (B,D). The other parameters are as in Figure 1.
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impact on those at ε = U. Moreover, their functions are similar

to the non-interacting cases given in Figures 1–3.

4 Summary

In conclusion, we have studied the properties of a QD

coupled to a lead with a continuum energy spectrum, which

interacts with one mode of the MBSs formed at the ends of a

TSNW. Our results show that the spectral function, which is

detectable experimentally in terms of techniques of transport

spectroscopy, develops a sharp peak with infinite height at

zero energy, indicating a bound state induced by the MBSs

leaked into the QD. This bound state is destroyed as long as

the two modes of the MBSs are overlapped, and the height of

the central peak in the spectral function is suppressed from

infinity to unit. Moreover, the central peak is split into a

double-peak configuration by direct MBS–MBS hybridization.

This bound state induced by the MBSs is robust against the

presence of the intradot Coulomb interaction, although it

generates another peak in the spectral function due to the

Coulomb blockade effect. The present device can be used as an

STM for the non-invasive detection of MBSs.
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