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This work proposes a low-profile circularly polarized folded reflectarray antenna

(CPFRA). Compared to traditional CPFRA that comprise the main reflectarray, a

polarization grid (PG), and a linear-to-circular polarization (LP-CP) converter, the

proposed CPFRA utilizes a polarization-sensitive LP-CP converter that plays the

roles of both PG and LP-CP converter tominimize the CPFRA profile. One period

of the polarization-sensitive LP-CP converter consists of an LP and a CP patch on

the bottomand top layer of the substrates, respectively, which are connected by a

metalized via. Due to its frequency-selective characteristic, the polarization-

sensitive LP-CP surface can simultaneously reflect the x-polarized waves and

transfer the received y-polarized waves into the CP state. A 1-bit unit cell at the

bottom layer is adopted for polarization conversion and phase shift. A planar

patch antenna is integrated as the primary feeding source. A high-gain circularly

polarized folded reflectarray antenna at the X-band is designed, fabricated, and

measured. Both simulated and measured results demonstrate the advantages of

high gain and a lower profile of the proposed CPFRA compared to those in its

traditional counterparts.

KEYWORDS

polarization-sensitive, linear-to-circular polarization (LP-CP) converter, circular
polarization, folded reflectarray antenna (FRA), low-profile

Introduction

Printed reflectarrays (RAs) consist of numerous planar elements for phase

compensation and a feeding source assembled over the planar elements at some

distance. RA development has attracted increased attention in recent years due to

the high gain, planar structure, and cost-effectiveness of RAs compared to
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traditional reflector antennas [1–6]. However, the common

RA design has a high profile, including a bulky feeding horn

and a distance between the feeding source and array that

depends on the focal-length-to-diameter (F/D). The use of a

low-profile antenna as the feeding source can reduce the

overall profile [7, 8]. A folded reflectarray (FRA) was

proposed to reduce the RA profile [9–14]. The FRA

consists of a main reflectarray and a polarizer grid (PG)

where the incident wave is reflected in one polarization and

transmitted in the other polarization. The main reflectarray

provides a phase shift to the suitable phase in the farfield

zone and twists the polarization by 90°. Compared to that of

traditional RAs, the profile of FRAs is reduced by one-half

focal length (F). Based on this low-profile feature, various

FRAs have been designed. The wideband polarization

rotating metasurface (PRM) was used to design the

wideband FRA [14–16]. Moreover, a sub-wavelength

element was also used to improve RFA bandwidth [17]. A

dual-band FRA was proposed for the downlink and uplink of

VSAT links [18]. For beam-scanning applications, FRAs

have been developed with reconfigurable beams [10, 19].

An FRA with a high-gain filtering function was recently

reported [20], in which a polarization-sensitive frequency-

selective surface (FSS) was used to replace the polarization

grid of the transitional RFA.

Satellite communications demand high-performance

antennas with high gain that are also circularly polarized (CP)

and with a low profile [21]. CP RAs with high profiles were

proposed in earlier works [22, 23]. FRAs can easily realize the

high-gain and CP performance. Unfortunately, CPFRA is hard to

realize as the polarization-selective polarization grid (PG) is on

the top layer of FRAs. Metasurfaces can powerfully manipulate

electromagnetic waves, including those of polarization, with easy

fabrication and low costs [24–28]. Therefore, there is a simple

method to design the CP antenna by locating the LP-CP

converter or metasurface on the LP antenna [29–31].

Recently, CPFRA was achieved by locating the LP-CP

converter on the top layer, with a suitable distance to the PG

[32, 33], which increased both the FRA profile and assembly

complexity.

The present work describes a polarization-sensitive LP-CP

converter with a dual function to replace the PG and traditional

LP-CP [32, 33]. The planar antenna is integrated as a primary

source. Compared to traditional FRAs, it showed satisfactory

performance with a lower profile.

Antenna design

Design concept

As shown in Figure 1A, the traditional CPFRA is

composed of the polarization-insensitive LP-CP converter

on the top layer to covert the LP plane wave to the CP

wave. The main reflectarray can twist the x-polarized

wave to y-polarization. The phase compensation is also

provided by the main reflectarray for the focusing

director, transforming the spherical wave into a plane

wave. The distance between the PG and the LP-CP

converter should be carefully selected for optimal

performance. Nevertheless, the profile is inevitably

increased as a consequence. To reduce the profile, the

dual functions of LP-CP and PG can be integrated by a

polarization-sensitive LP-CP converter, as shown in

Figure 1B.

Design of the polarization-sensitive LP-CP
converter

The unit cell of the LP-CP converter is shown in Figure 2.

It consisted of an LP and a CP patch that are connected to a

metalized via-hole. Both patches and the ground layer are

printed on surfaces of two substrates (Rogers 4003C) with a

height of 1.524 mm, a relative permittivity of 3.5, and a loss

tangent of 0.0027. The prepreg RO4450F with a relative

permittivity of 3.7 and a thickness of 0.1 mm is adopted

between the two dielectric substrates for integrated design.

The top-layer metallic structure is shown in Figure 2B. Two

corners of the patch are truncated, and one slot is embedded to

separate two degenerate modes for CP radiation. As shown in

Figure 2C, a circular clearance is used to void the metalized

via-hole connecting to the ground. An LP patch with two slots

is etched on the bottom layer for receiving LP waves, as shown

in Figure 2D. The LP and CP patches and their

interconnection work in an antenna-filter-antenna

topology. It can receive the LP wave from the main

reflectarray on the bottom layer and then transmit it to the

CP patch on the top layer.

The CST-WMS with periodic boundary conditions was

used to study the properties of the unit cell. Figure 3 shows

the reflection coefficients of the polarization-sensitive LP-CP

converter under different oblique incidences with

x-polarization. The reflection coefficients (Rxx) were

larger than -0.5 dB under different incident angles in the

X-band. Therefore, the polarization-sensitive LP-CP

converter can fully replace the PG, reflecting most of the

incident waves with x-polarization. Figure 4 shows the

reflection coefficients and axial ratios (ARs) under normal

incidence waves with y-polarization, demonstrating a

reflection coefficient better than −10 dB at 9.3–10.5 GHz.

Figure 5A shows the transmission coefficients of the unit

cells under the incidence wave with y-polarization. The

magnitudes of Txy and Tyy were −3.3 dB, with a phase

difference of 90°at 10.1 GHz; thus, a circular polarization

wave was obtained with the y-polarization incident wave at
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FIGURE 1
Topology of traditional and proposed CPFRAs. (A) Traditional CPFRA. (B) Proposed CPFRA.

FIGURE 2
Layout of the polarization-sensitive LP-CP converter. (A) Perspective view. (B) Top layer. (C)Middle layer. (D) Bottom layer. The dimensions of
the converter are W1 = 7.2 mm, W2 = 7.2 mm, Ws1 = 3 mm, Ls1 = 3.3 mm, r = 0.3 mm, R = 0.7 mm, Ws2 = 0.3 mm, Ls2 = 3.5 mm, p = 14 mm.
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approximately 10.1 GHz. As shown in Figure 5B, the

polarization efficiency of y-polarization to left-handed

circular polarization (LHCP) was >0.94 at 9.8–10.3 GHz.

Therefore, the polarization-sensitive LP-CP converter

effectively performed the functions of the PG and the

polarization-insensitive LP-CP converter. The

physical properties of the LP-CP converter can be

described by the ellipticity and azimuth rotation angle, as

defined by [34]:

θ � 1
2
(arg(T++) − arg(T−−)) (1)

η � ac tan
|T++| − |T−−|
|T++| + |T−−| (2)

where T++, T-- are the transmission coefficients for

RHCP and LHCP waves, respectively. The ellipticity and

azimuth rotation angle of the proposed LP-CP converter

under the normal incident wave are plotted in Figure 6. The

ellipticity and azimuth rotation angle are 45o and 180o at

10.1GHz, respectively, which represent a pure CP radiating

wave. This result is inconsistent with that shown in

Figure 5B.

1-Bit phase shift unit cell with 90-degree
polarization twisting

An easily designed 1-bit unit cell is used in the main

reflectarray to provide phase compensation and polarization

twisting. The geometry of the 1-bit phase shift unit cell for

the main reflectarray is shown in Figures 7A,B. The two states

of unit cells were designed based on the Rogers 4003, with a

thickness of 1.524 mm and a relative permittivity of 3.55. The 0°-

state unit cell consisted of a circular patch with a stub, rotating

45°anticlockwise. The 180°-state unit cell was obtained by

rotating the 0°-state unit cell clockwise by 90°. According

to the theory in [35], a 180° phase difference exists between

the two states. The simulated S-parameters of the two-state

unit cells are plotted in Figure 7C. The reflection coefficients

of the two unit cells under the normal incidence wave with

x-polarization (Rxx) are better than −10 dB and the

transmission coefficients of x-to y-polarization (Ryx) are

approximately −0.25 dB in the range of 9.5–10.42 GHz.

The simulated phase of the two-unit cells is shown in

Figure 7D, with a phase difference of 180°. To analyze the

angle stability, the reflection and transmission coefficients of

unit cells were simulated under an oblique incident wave at

30° (Figure 7E,F). Figures 7E,F shows that the reflection

coefficients are also better than −10 dB, while the phase

difference of the two units maintains the stability of 180°

at the operating frequency band.

Design of the circularly polarized folded
reflectarray antenna

As shown in Figures 8A, a low-profile and wideband

microstrip antenna coupled with parasitic patches was

designed as the primary source [36] and could be easily

integrated into the bottom layer of the main reflectarray.

FIGURE 3
Simulated reflect coefficients of the polarization-sensitive
LP-CP converter excited by x-polarized wave at different
incidence angles.

FIGURE 4
Simulated reflection coefficient of the polarization-sensitive
LP-CP converter excited by y-polarized wave at different
incidence angles.
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The total size of the feeding source, replacing the area of 3 ×

2 unit cells of the main reflectarray, was 42 mm × 28 mm. A

coaxial probe was used to excite the microstrip antenna. The

layout and dimensions of the microstrip antenna are also

shown in Figure 8A. Simulated |S11| is shown in Figure 8B,

while the normalized radiation pattern at 10.1 GHz is shown

in Figure 8C. The microstrip antenna was well matched from

9 to 10.5 GHz, with an |S11| below −10 dB.

The main reflect array consists of 19 × 20 elements and a

total size of 266 mm × 280 mm. The focal-length-to-

diameter (F/D) was set to 0.96, with the distance between

the main reflectarray at the bottom layer and the LP-CP

converter at the top layer set to half of the focal length.

The total height of the antenna was 139.78 mm (4.7λ@
10GHz), while the distance between the main reflectarray

at the bottom layer and the LP-CP converter at the top layer

was 135 mm. As shown in Figure 8D, the direction of the

CPFRA radiation beam xwas along the z-axis. The phase

distributions of the main reflectarray are shown in

Figure 8D. To implement the phase shown in Figure 8D

by using the 1-bit unit cell, it is discretized by using the two-

phase states of 0° and 180°. The discretized phase distribution

is illustrated in Figure 8E.

Fabrication and measurements

Figure 9A shows the CPFRA prototype. Four plastic

columns are used to support the main reflectarray at

the bottom layer and the polarization-sensitive LP-CP

converter. The feeding source of the microstrip antenna is

located at the center of the main reflectarray with the phase

implemented, as shown in Figure 9B. The top and

bottom sides of the LP-CP converter are shown in Figures

9C and D, respectively. As shown in Figure 10A, the

simulated and measured |S11| are better than −10 dB. Due

to the fabrication tolerance, a tiny frequency shift of

reflection zero is observed between these two results. The

measured gain was approximately 21 dBic, which is close to

the simulated result with a modest gain loss (Figure 10B).

The measured and simulated ARs are also plotted in

Figure 10B. A frequency shift was observed between the

measured and simulated results. The simulated −3 dB AR

bandwidth was 9.8–10.3 GHz. The simulated and measured

normalized radiation patterns of the CPFRA at 10 GHz in xz-

and yz-plane are plotted in Figure 11. The simulated

FIGURE 5
Simulated transmission coefficient and phase of the proposed unit cell. (A) Transmission coefficient and phase of x- and y-polarization under
normal incident waves with y-polarization. (B) Transmission magnitudes of LHCP and RHCP under normal incident waves with y-polarization.

FIGURE 6
Ellipticity and azimuth rotation angle of the LP-CP converter.
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and measured LHCP radiation patterns were consistent

with each other in these planes. Finally, the normalized

radiation gain of the RHCP (cross-polarization) was less

than −15 dB.

The results of performance comparisons between other

CP reflectarrays (CP-RA) and the CPFRA are shown in

Table 1. Compared to the CPFRA in [32], the device

described in the present work reduced the number of

FIGURE 7
Geometry and simulated S-parameters of the 1-bit unit cell. (A) Layout of the 0°-state unit cell. (B) Layout of the 180°-state unit cell. (C)
Reflection and transmission coefficients of the two unit cells under normal incident waves. (D) Phase difference under normal incident waves. (E)
Reflection and transmission coefficients of the two unit cells under 30° oblique incident waves. (F) Phase difference under 30° oblique incident waves.
The dimensions are p = 14 mm, Wp = 1.8 mm, Lp = 2.1 mm.
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FIGURE 8
(A) Layout of the main reflect array with planar feeding source. (B) Simulated S-parameter of the feeding antenna. (C) Radiation pattern of the
feeding antenna at 10.1 GHz. (D) Calculated phase distribution the proposed CPFRA at 10.1 GHz. (E) Discretized phase distribution.
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FIGURE 9
Prototype of the proposed CPFRA. (A) Perspective view. (B) Top view of the bottom layer. (C) Top view of the LP-CP converter. (D) Bottom view
of the LP-CP converter.

FIGURE 10
(A) Measured and simulated |S11| of the proposed CP-FRA. (B) Measured and simulated gain and AR.
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layers from three to two. Moreover, the height over the

diameter was 0.47 in the present study, which was smaller

than that of 0.87 in [32]. Compared to the CP-RA in [22, 23],

the profile was effectively reduced. Therefore, the results of

this study demonstrated the successful development of a low

profile.

Conclusion

This work proposed a low-profile CPFRA using a

polarization-sensitive LP-CP converter to replace PG and

polarization-insensitive LP-CP converters. This highly

integrated design reduced the profile with a simple

design process. The CP and LP patch antenna elements were

connected by a metallic via at the two surfaces to provide the

functions of LP-CP transformation. As the LP antenna elements

can only transmit waves of specified polarization, the converter

was polarization-sensitive. The main reflectarray consisted of 1-

bit unit cells that provided 90-degree polarization twisting

and 0 and 180-degree phase shifting. Both simulated and

measured results demonstrated the effectiveness of the

proposed CPFRA. This design concept can be used to

develop high-performance CPFRA with wideband high-gain

and low profile by using a wideband polarization-insensitive

LP-CP converter.
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