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Longitudinal disease progression evaluation between follow-up examinations

relies on precise registration of medical images. Compared to other medical

imaging methods, color fundus photograph, a common retinal examination, is

easily affected by eye movements while shooting, for which we think it is

necessary to develop a reliable longitudinal registration method for this

modality. Thus, the purpose of this study was to propose a robust

registration method for longitudinal color fundus photographs and establish

a longitudinal retinal registration dataset. In the proposed algorithm, radiation-

variation insensitive feature transform (RIFT) feature points were calculated and

aligned, followed by further refinement using a normalized total gradient (NTG).

Experiments and ablation analyses were conducted on both public and private

datasets, using the mean registration error and registration success plot as the

main evaluation metrics. The results showed that our proposed method was

comparable to other state-of-the-art registration algorithms and was

particularly accurate for longitudinal images with disease progression. We

believe the proposed method will be beneficial for the longitudinal

evaluation of fundus images.
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Introduction

Diabetic retinopathy (DR) is one of the major diseases that can cause blindness. It is

estimated that about 600 million people will have diabetes by 2040 [1], a third of whom

will be affected by DR [2]. Regular follow-up and accurate analysis of longitudinal

examinations play an important part in the management of DR [3]. However, the

quantitative analysis of longitudinal images is still challenging, due to the tremendous

discrepancies between the images caused by vastly different photographing conditions,
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involuntary eye movements, and pathological changes [4], which

can disturb the observation and influence the evaluation of

retinal image biomarkers [5]. Registration, which means the

process of establishing pixel-to-pixel correspondence between

two images, grants us the chance to eliminate these discrepancies

before longitudinal assessment [6]. Therefore, a preliminary

registration of two retinal images is required to reduce these

effects and generate a reliable disease progression conclusion.

As a necessary work of retinal image analysis, the registration

of retinal fundus images is a classic topic, in which tremendous

efforts have been put into this area during past decades. From a

methodological point of view, retinal image registration methods

can be classified into three groups: feature-based, intensity-based,

and hybrid methods. In feature-based registration methods,

invariant features of the retinal images are extracted and

utilized for seeking the best geometric transformation between

two images. Retinal vessel bifurcations [7–11], optic disc, and

fovea [12, 13] are previously commonly used features. However,

some of these features rely on the segmentation of retinal

structures and are sensitive to image quality. Therefore, easily-

obtained and stable key-point detection is the premise for robust

registration through feature-based methods, for example, Harris

corner [14], scale invariant feature transform (SIFT) [15], and

Speeded-Up Robust Features (SURF) [16] are classic feature

points that have been extensively studied. Hernandez-Matas

et al. [17, 18] introduced a feature-based registration

framework exploiting the spherical eye model and pose

estimation. In intensity-based methods, the intensity

information is calculated and used to measure the similarity

of the images and the registration performance, such as cross-

correlation [19], mutual information [20], and phase correlation

[21]. Hybrid registration methods combine feature-based and

intensity-based methods together to seek better performance [4,

22]. Compared to single feature-based or intensity-based

methods, hybrid methods have great potential for more

accurate and practical image alignment, but it is less

investigated. Although the registration of color fundus

photographs has been intensively studied, the steps of seeking

higher and more robust performance have never stopped.

Although there has been intensive research work in

registration, further research is still needed. First, novel

registration methods developed on other modalities should be

applied to retinal images to seek better performance. Second,

instead of paying attention to the improvement and development

of registration methods, researchers should focus more on the

clinical applicability of the proposed methods, which is extremely

important for longitudinal follow-up examinations. Third, the

development and evaluation of registration methods rely on the

publication of open-access datasets. To the best of our

knowledge, the Fundus Image Registration (FIRE) dataset is

the only registration dataset that has been made publicly

available [23]. We thought it would be useful to develop a

registration dataset made up of longitudinal images with

clarified medical diagnoses. Therefore, developing registration

methods in clinical settings and establishing registration datasets

would be greatly beneficial for interdisciplinary cooperation and

clinical transformation of computation methods.

In this study, a robust registration method for longitudinal

color fundus photographs based on both feature and intensity is

proposed. An ablation study showed the necessity of combining

the two main parts. A comprehensive comparison between the

proposed algorithm and other state-of-the-art methods was

conducted to investigate its features. The dataset will be

available for registration research. We believe this work will

be beneficial to follow up retinal image analysis and disease

progression assessment.

Materials and methods

The proposed registration framework is a combination of

feature-based and intensity-based methods. The flow of this work

is shown in Figure 1.

Retinal image datasets

For the evaluation of the proposed registration method, we

use two datasets, FIRE and FI-LORE, consisting of color fundus

image pairs different from each other in terms of actual

photographing and patient conditions. These datasets are

described in detail hereinafter.

The Fundus Image Registration (FIRE) dataset [23]

comprises 134 image pairs, which are further classified into

three categories according to their characteristics. Category S

contains 71 image pairs with more than 75% overlap area and

super-resolution but no anatomical changes, while category P

contains 49 image pairs with less than 75% overlap area and no

anatomical changes. Category A contains 14 image pairs with

high overlap and large anatomical changes due to retinopathy,

which can be used to mimic practical longitudinal examinations.

All the images have a resolution of 2,912 × 2,912 pixels.

FIRE provides ground truths for the calculation of registration

errors.

The Fundus Image for Longitudinal Registration (FI-LORE)

dataset consists of 83 color fundus image pairs from 78 eyes of

54 diabetic retinopathy patients who underwent longitudinal

examinations at the Second Affiliated Hospital of Zhejiang

University, School of Medicine, from May 2020 to July 2020.

Photograph conditions, involuntary movements of the eye, and

disease progression and treatments, such as laser scars, all

contribute to the differences of each image in a pair.

Additionally, some of them are of low image quality because

of complications, such as cataracts. FI-LORE can fully reflect

practical conditions of the follow-up in clinics and test the

robustness of the proposed method. All the images have a
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resolution of 1,500 × 1,500 pixels. Finally, to compute the

registration error, we follow the annotation rule of the FIRE

dataset [23], carefully choosing 10 corresponding points and

repeatedly correcting the exact location of the points to guarantee

the reliability of the ground truths. The FI-LORE dataset will be

made publicly available.

Proposed registration framework

To normalize the images in different datasets taken at

different examinations, preprocessing is the first step in the

algorithm. First, the mask provided by the FIRE dataset was

utilized to delete the blank margin of the original images.

Second, the cropped images are further resized to 1,500 ×

1,500 pixels to reach unity of the whole dataset. Furthermore,

to simplify the calculation process, the RGB images are

transformed into grayscale images.

Radiation-variation insensitive feature transform (RIFT) is

a feature-based registration method with great robustness to

non-linear radiation distortion (NRD) [24]. NRD is a rather

common phenomenon that can be caused by involuntary

movements of the eye. Therefore, we think it can be used for

retinal image alignment tasks. The detail of the RIFT calculation

can be found in the original article [24]. The alignment process

is realized by the RANdom SAmple Consensus (RANSAC)

algorithm [25]. Then, an affine transformation matrix p is

generated on the resized image pairs (500 × 500 pixels).

NTG, the normalized total gradient, was proposed by Chen

et al [26], working as a registration measure. The employment

of a NTG is based on the observation that the gradient

difference is sparsest when the two images are perfectly

aligned. The NTG is thought to outperform other intensity-

based measures, such as mutual information, residual

complexity, correlation ratio, and normalized cross-

correlation. However, there is no study to assess the validity

of the NTG in retinal images. The detail of NTG calculation is

given by Chen et al. [26].

Registration evaluation

To quantitatively assess the performance of the registration

result, we adopt a widely accepted registration error calculation

method [23], which requires the ground truths of image pairs.

Given the sets of reference points,

YI � {y1
I , y

2
I , y

3
I/y10

I } ⊂ R2and YR � {y1
R, y

2
R, y

3
R/y10

R } ⊂ R2,

where I and R represent the registered image and reference,

FIGURE 1
Flowchart of the proposed algorithm.
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respectively, the mean registration error (MRE) can be

calculated as

MRE(YI, YR, p) � 1
10
∑

10

i�1
����yi

R − p(yi
I)
����2. (1)

The ‖‖2 here represents the Euclidean norm. Hence, the closer

MRE is to 0, the better the registration performance will be. To

assess the registration results of a total dataset, we here utilize the

success plot [18], where the x-axis marks the registration error

threshold under which registration is considered to be successful

and the y-axis marks the percentage of successfully registered image

pairs of the given threshold. The area under the curve (AUC) is

counted to quantitatively assess the registration method.

Results

Results of the ablation study

To better understand the contributions of each part of the

registration framework and validate the effectiveness of the

TABLE 1 Results of the ablation study in the FIRE dataset.

Category Method Mean registration error
(pixels)

AUC of
the success plot

Mean SD

S (n = 71) RIFT 2.436 0.230 0.903

NTG 2.087 0.241 0.917

RIFT + NTG 2.335 0.239 0.907

P (n = 49) RIFT 86.702 44.233 0.510

NTG 740.736 50.607 0.280

RIFT + NTG 86.638 44.235 0.512

A (n = 14) RIFT 7.903 1.280 0.796

NTG 12.704 3.157 0.765

RIFT + NTG 7.706 1.294 0.810

FIRE (n = 134) RIFT 33.327 16.115 0.713

NTG 272.598 35.595 0.556

RIFT + NTG 33.229 16.116 0.717

Bold values represent the highest AUC in the specific category.

FIGURE 2
Registration success plot of the ablation study. The x-axismarks, in pixels, the registration error threshold under which registration is considered
to be successful. The y-axis marks the percentage of successfully registered image pairs for a given threshold.
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combination of RIFT and NTG, we conducted an ablation study

to see the registration performance of these two procedures

themselves. Table 1 shows the registration results of the

ablation study in the FIRE dataset. Figure 2 is the success plot

of the ablation study. From the results, we can see that the NTG

performs better in image pairs with high overlap, but once the

overlap is small, the NTGmethod performance is relatively poor.

However, RIFT is on the opposite side of the NTG. The

combination of the algorithms outperforms each one of them.

Therefore, the combination of RIFT and NTG grants algorithm

robustness to image pairs of different overlap areas.

Comparison to other registrationmethods

To further assess the accuracy of the proposed method in

color fundus image registration, we compare our results to other

state-of-the-art image registration methods which are already

utilized in the FIRE dataset, including GDB-ICP [27], Harris-

PIIFD [28], ED-DB-ICP [29], RIR-BS [30], SIFT + WGTM [31],

SURF + WGTM [31], ATS-RGM [32], EyeSLAM [33], GFEMR

[34], VOTUS [35], REMPE [18], and a deep-learning based

registration method proposed by Rivas-Villar et al [36].

Figure 3 is the qualitative illustration of the proposed method

FIGURE 3
Registration results of the proposed algorithm in the FIRE dataset. The overlap decreases from the top row to bottom. (A) and (B) are image pairs
without registration. (C) Image pairs shown in an overlaying form after registration. (D) Checkerboard comparisons of the proposed method.

TABLE 2Comparisons to state-of-the-art image registrationmethods.

Method Year S P A FIRE

GDB-ICP [27] 2007 0.814 0.303 0.303 0.576

Harris-PIIFD [28] 2010 0.900 0.090 0.443 0.553

ED-DB-ICP [29] 2010 0.604 0.441 0.497 0.533

RIR-BS [30] 2011 0.772 0.049 0.124 0.440

SIFT + WGTM [31] 2012 0.837 0.544 0.407 0.685

SURF + WGTM [31] 2012 0.835 0.061 0.069 0.472

ATS-RGM [32] 2015 0.369 0.000 0.147 0.211

EyeSLAM [33] 2018 0.308 0.224 0.269 0.273

GFEMR [34] 2019 0.812 0.607 0.474 0.702

VOTUS [35] 2019 0.934 0.672 0.681 0.812

REMPE [18] 2020 0.958 0.542 0.660 0.773

Deep learning method [36] 2021 0.908 0.293 0.660 0.657

RIFT + NTG (proposed) 2021 0.907 0.512 0.810 0.717

Bold values represent the highest AUC in the specific category.
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registration results. Table 2 lists the methods used for

comparison and the AUC of the success plot. Figure 4

contains the success plot of the proposed method and some

other methods whose results are publicly available online. From

the aforementioned results, one can conclude that the proposed

method is competitive to the leading registration methods in

FIGURE 4
Registration success plot of the comparisons between the proposed and other registrationmethods. The x-axis marks, in pixels, the registration
error threshold under which registration is considered to be successful. The y-axis marks the percentage of successfully registered image pairs for a
given threshold.

FIGURE 5
Registration results of the proposed algorithm in FI-LORE. The pairs listed, respectively, represent poor illumination quality, pathological
change, and disease progression, which are common conditions in longitudinal examinations. (A) and (B) are image pairs without registration. (C)
Image pairs shown in an overlaying form after registration. (D) Checkerboard comparisons of the proposed method.
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category S. The AUC of category P clearly underperforms some

algorithms. But the proposed method outperforms all the

methods in category A, which stands for the longitudinal

study. Therefore, we think the proposed method can remain

robust under the anatomical changes and disease progression

and is well worth further study.

Results in the FI-LORE dataset

Retinal images in real clinical conditions may be of poor

quality due to complications such as cataracts, loss of focus, and

various light conditions, posing great problems to the practical

use of registration. As described earlier, FI-LORE is a collection

from real ophthalmologic practice, which can be used to validate

the utility of the proposed method. Figure 5 shows some image

pairs before and after registration. We can see that despite these

image pairs having dissimilar illumination conditions,

pathological changes, and disease progression, our method can

robustly align the longitudinal images to a satisfying extent.

Figure 6 is the success plot of the proposed method and other

state-of-the-art color fundus image registration methods in FI-

LORE. The AUCs of RIFT, NTG, RITF + NTG (proposed),

REMPE, and GFEMR are 0.841, 0.755, 0.850, 0.840, and 0.808,

respectively. Through the quantitative analysis of the registration

results in FI-LORE, we have validated the superior performance

of the registration method in real clinical conditions.

Discussion

Longitudinal assessment of DR retinal images is of great

importance, and longitudinal registration is an important and

fundamental task which has often been neglected in clinical

situations, especially for follow-up examinations. Precise

alignment of different examination images is the premise for

accurate detection and analysis of pathological changes, which

has already been adopted in some automated retinal image

analyzing devices [37]. In this study, we proposed a hybrid

registration method with comprehensive experiments showing

its excellent performance in longitudinal images and established

a color fundus photograph dataset with pixel-wise annotation

ground truth. In Table 1, the NTG shows the best performance in

category S, and RIFT registered better in category P. We can

conclude that the intensity-based registration method, NTG, is

more precise in image pairs with large overlap while RIFT is the

opposite. Thus, the combination of RIFT and NTG is reasonable

and has been proved to be the best on the whole FIRE. Results

from the intensive comparison experiments showed that our

method is comparable to state-of-the-art image registration

methods, such as GFEMR [34], VOTUS [35], and REMPE

[18]. For longitudinal images in category A, the proposed

method outperformed other state-of-the-art methods, for

which we think it is suitable for the clinical evaluation of

disease progression in follow-up examinations. This

conclusion is further validated using a private dataset, FI-

LORE, with more longitudinal images. Taking all of these into

consideration, we believe the proposed method is good at

registering longitudinal retinal images and will be beneficial in

clinical use. It should be noted that in category P, which is made

up of images with partial overlap, the MRE and AUC are far less

than those in the other two classes. The main source of error

came from several misregistered image pairs which show anMRE

of nearly a thousand pixels. The same trends can also be observed

in some state-of-the-art methods. The private dataset also

contains images with less overlap, and the proposed method

can also register them, as shown in Figure 6. Further research is

needed to validate its performance and investigate the reason

why these algorithms did not perform well in category P. During

image pre-processing, we thought resizing might affect the final

results. In the current study, the size of 500 × 500 pixels is

recommended. We conducted experiments on 250 × 250 and

750 × 750 pixels, results of which can be found in Supplementary

Material. Also, mutual information was evaluated to confirm the

performance of the NTG, and relevant results are given in

Supplementary Material.

Most of the development of registration methods focuses

on either feature-based or intensity-based registration. As far

FIGURE 6
Registration success plot of the registration results in FI-
LORE. The x-axis marks, in pixels, the registration error threshold
under which registration is considered to be successful. The y-axis
marks the percentage of successfully registered image pairs
for a given threshold. The AUCs of RIFT, NTG, RITF + NTG
(proposed), REMPE, and GFEMR are 0.841, 0.755, 0.850, 0.840,
and 0.808, respectively.
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as we know, only several studies adopted hybrid methods. In

2016, Saha et al. proposed a hybrid method using Speeded-Up

Robust Features (SURF) and Binary Robust Independent

Elementary Features (BRIEF) [4], which are both well-

known registration methods and their combination

generated better performance. In our study, two registration

methods, RIFT and NTG, were adopted, and further

investigation revealed their own characteristics in image

registration. To the best of our knowledge, this is the first

study that used RIFT and NTG in ophthalmic imaging and

investigated their applicability to different image overlaps. We

think that the two-step hybrid registration method is

promising in retinal imaging.

Deep learning has been showing great potential in medical

image processing, including segmentation and registration.

Several methods have been proposed to attempt to utilize deep

learning in retinal image registration [36, 38–45]. However, to

the best of our knowledge, there are two inherent problems

limiting the development of deep learning-based registration.

On the one hand, unlike other image processing issues

(segmentation, enhancement, etc.), registration contains

two steps theoretically, feature recognition and feature

alignment. In retinal image registration, these usually mean

retinal feature extraction (feature points, vessel network, etc.)

and retinal feature alignment. Therefore, an inevitable

question comes up, that is, when and where to adopt deep

learning in the registration workflow. Different researchers

provided various solutions. Some researchers adopted deep

learning in the feature detection process and further aligned

the feature points using conventional image alignment

methods, such as RANSAC[40, 41], while some work

constructed an outlier-rejection network to compute the

image transformation matrix [45, 46]. There is no

consensus on how deep learning should be added to the

registration pipeline [46]. Moreover, in most deep learning-

based registration algorithms, accurate registration relies on

accurate segmentation, which is still an ongoing research topic

in medical image processing. On the other hand, training and

validation of deep learning networks rely on massive labeled

data. In the specific topic of image registration, ground truth

annotation is labor-intensive and time-consuming. For some

deep learning methods using vessel segmentation, the

networks also need large annotated vessel segmentation

datasets. From these two perspectives, we tend to believe

that although deep learning has shed light on medical

image processing and analysis, it is still in the exploration

stage for image registration. In the current study, we compare

a state-of-the-art registration method with the proposed

method, and the results showed that for longitudinal retinal

image registration, our proposed method still stood out. Deep

learning-assisted retinal image registration should be paid

more attention to find out whether it is actually superior to

conventional algorithms.

The development of retinal image registration methods is

limited due to the lack of registration datasets. As far as we know,

FIRE is the only dataset that focuses on retinal image registration

and proposes pixel-level ground truth which can be used for the

development and evaluation of registration methods. However,

the longitudinal category contains only 14 image pairs,

significantly small when compared to other categories. Taking

this situation and the clinical use of registration methods into

account, we collected and annotated 83 image pairs, especially for

longitudinal image registration tasks. These image pairs are

different in photograph conditions, involuntary movements of

the eye, and disease progression and treatments. We believe that

the adoption of this dataset can greatly benefit the study of retinal

image registration.

Because of the specialty of registration in retinal image

analysis, some methods have been claimed to be put into

clinical use. To the best of our knowledge, there is one

registration software, the DualAlign i2k software package

(Clifton Park, NY), that has been made commercial. The

software was developed based on the GDB-ICP algorithm,

which has been compared in our work [27]. With growing

interest in image registration, more novel and efficient methods

have been proposed to ensure better and swifter registration

performance. These methods show promise for medical image

registration tasks. However, due to the lack of interdisciplinary

cooperation of medical and computer science researchers, the

study of these novel methods for medical use is limited. In this

study, we focus on two methods and validate their performance.

We believe more research is needed to provide more possibilities

for more precise and swifter image analysis in real clinical use.

There are some limitations to our current study. First, the

proposed algorithm performed relatively poorly in the category

which stands for images with small overlay. However, there are also

some similar image pairs in the FI-LORE dataset, but the proposed

methods did not perform like that, which is confusing. More image

pairs are needed to further test this method. Second, in the current

study, we still focus on unimodality registration tasks. The

performance of this method in multi-modal tasks needs more

examination. Third, some state-of-the-art methods should be

compared with the local dataset FI-LORE, but due to the lack of

reliable source codes and our inability to completely repeat the

methods, we failed to put them into further comparison. Finally,

there are some artificial intelligence algorithms that have been

developed for retinal image registration tasks [22, 47, 48]. We

have compared one deep learning algorithm, but further studies

are needed to investigate deep learning in the context of retinal

image alignment.

Conclusion

RIFT can better align images with small overlap, while the

NTG is more precise with large overlap image pairs. Thus, the
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combination of RIFT and NTG was reasonable and

outperformed single RIFT or NTG. The proposed method

was comparable to other state-of-the-art registration

algorithms and was especially accurate for longitudinal

images with disease progression. We believe that the

proposed method will be beneficial for the longitudinal

evaluation of fundus images.
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