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In eukaryotic cells, RNA polymerase II synthesizes mRNA in three stages,

initiation, elongation, and termination, and numerous factors determine how

quickly a gene is transcribed to produce mRNA molecules through these steps.

However, there are few techniques available tomeasure the rate of each step in

living cells, which prevents a better understanding of transcriptional regulation.

Here, we present a quantitative analysis method to extract kinetic rates of

transcription from time-lapse imaging data of fluorescently labeled mRNA in

live cells. Using embryonic fibroblasts cultured from two knock-in mouse

models, we monitored transcription of β-actin and Arc mRNA labeled with

MS2 and PP7 stem–loop systems, respectively. After inhibiting transcription

initiation, we measured the elongation rate and the termination time by fitting

the time trace of transcription intensity with amathematical model function.We

validated our results by comparing them with those from an autocorrelation

analysis and stochastic simulations. This live-cell transcription analysis method

will be useful for studying the regulation of elongation and termination steps,

providing insight into the diverse mechanisms of transcriptional processes.
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Introduction

Complex regulation of eukaryotic gene expression starts with transcription, through which

information in DNA is copied intomRNA. At the site of transcription, RNA polymerase II (Pol

II) reads a DNA code and synthesizes mRNA, and three distinct steps can be considered to

comprise the transcription procedure: initiation, elongation, and termination. Initiation is the

first step in which Pol II binds to a promoter sequence at the 5ʹ end of a gene [1]. In the

elongation step, Pol II reads DNA, synthesizes mRNA, and moves from the 5ʹ end to the 3ʹ end

[2]. Termination is the last step in which mRNA and Pol II are released from the 3ʹ end of the

gene [3, 4]. Thus, three kinetic rates corresponding to each step can be defined: the initiation rate

c (the number of Pol II binding per unit time), the elongation rate k (the number of base pairs

transcribed per unit time), and the termination time Tt (the time for mRNA separated from

DNA after reaching the transcription end site). Despite many efforts to understand how

OPEN ACCESS

EDITED BY

Simonetta Filippi,
Campus Bio-Medico University, Italy

REVIEWED BY

Jong-Bong Lee,
Pohang University of Science and
Technology, South Korea
Sandeep Choubey,
Institute of Mathematical Sciences,
Chennai, India

*CORRESPONDENCE

Hye Yoon Park,
hyp@umn.edu

SPECIALTY SECTION

This article was submitted to
Biophysics, a section of the journal
Frontiers in Physics

RECEIVED 24 June 2022
ACCEPTED 12 October 2022
PUBLISHED 01 November 2022

CITATION

Choi H, Lee BH and Park HY (2022),
Time-resolved analysis of transcription
kinetics in single live mammalian cells.
Front. Phys. 10:977125.
doi: 10.3389/fphy.2022.977125

COPYRIGHT

© 2022 Choi, Lee and Park. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 01 November 2022
DOI 10.3389/fphy.2022.977125

https://www.frontiersin.org/articles/10.3389/fphy.2022.977125/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.977125/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.977125/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.977125&domain=pdf&date_stamp=2022-11-01
mailto:hyp@umn.edu
https://doi.org/10.3389/fphy.2022.977125
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.977125


transcription is regulated, limitations and challenges in quantitative

measurement of these three kinetic rates still remain.

In recent years, various RNA sequencing methods have been

developed to study elongation and pausing of Pol II at the

promoter proximal region, intron-exon junctions, and

nucleosomes [5–7]. These methods revealed not only the

nascent RNA density in the steady state but also the

elongation rate in time-resolved experiments. For such time-

resolved measurements, transcription was induced or inhibited

to track progression of Pol II after drug treatment, whereby the

progression speed of the sequence read density directly reflected

the elongation rate [8–11]. Nevertheless, population studies

cannot resolve the transcriptional processes occurring at a

single gene locus and lack the temporal resolution to

investigate fast dynamics in real time.

Live-cell imaging has been applied to study transcriptional

dynamics in single cells by labeling mRNA, Pol II, or transcription

factors with fluorescent proteins [12, 13]. Fluorescence recovery after

photobleaching (FRAP) technique has been used to measure

transcriptional kinetic rates by fitting recovery curves with various

model functions: half recovery time [14], linear and exponential fitting

[15–17], and solutions of rate equations [18–21]. However, there is

concern about the accuracy of kinetic modeling using FRAP because

recovery curves can be affected by photobleaching, diffusion, and

binding of fluorescent particles; additionally, different kinetic models

can fit the same experimental data almost equally well [22]. More

recently, fluctuation correlation analysis of fluorescently labeled

mRNA was used to measure the transcription initiation rate and

dwell time of a transcript of a yeast gene [23]. In this analysis, the

dwell time consists of the elongation and termination times, which

cannot be separated in the steady state. Nevertheless, the authors were

able to calculate the elongation rate and the termination time by

comparing results from two different constructs bearing a PP7 RNA

stem–loop cassette in either the 5ʹ untranslated region (UTR) or 3ʹ

UTR [23]. Likewise, another study measured the elongation rate of a

reporter gene in living Drosophila embryos by comparing the results

from two different positions of an MS2 stem-loop cassette [24]. After

that, Coulon et al. developed a dual-color fluctuation correlation

analysis for human β-globin reporter mRNA labeled with a

PP7 cassette in the second intron and an MS2 cassette in the 3ʹ

UTR [25]. Using two autocorrelation functions and a single cross-

correlation function, the authors measured the kinetics of

transcription and splicing of single mRNAs. Liu et al. also used a

two-color MS2/PP7 reporter to infer the initiation rate, elongation

rate and termination time of the hunchback gene in developing fruit

fly embryos [26]. However, it would be challenging to insert ~1.5-kb-

long MS2 and PP7 cassettes into two different locations in an

endogenous gene, which limits the general application of the

technique in mammalian cells and tissues.

In this study, we developed a time-resolved transcriptional

analysis method to measure the elongation rate and termination

time of an endogenous mRNA labeled with one stem–loop cassette.

Previously, two knock-in (KI) mouse models, Actb-MBS [27] and

Arc-PBS [28], were generated to label β-actin (Actb) and ArcmRNA,

respectively. In the former, 24 repeats of the MS2 binding site (MBS)

were inserted in the 3′ UTR of the Actb gene [27] (Figure 1A); in the

latter, 24 repeats of the PP7 binding site (PBS) were knocked in the 3′
UTR of the Arc gene [28] (Figure 1B). Using mouse embryonic

fibroblasts (MEFs) derived from these two mouse models, we

investigated the transcriptional dynamics of the Actb and Arc

genes. First, by applying our time-resolved analysis method, we

measured the elongation rate and the termination time of each

transcription allele. Then we measured the initiation rate and the

total dwell time using the autocorrelation analysis method [23] and

compared the total dwell time with the time-resolved analysis results.

We found a highly heterogeneous distribution of the kinetic

parameters in each locus of both Actb and Arc genes. Yet, there

was a significant difference between Actb and Arc regarding the

average transcriptional kinetic rates. This approach allows

quantitative measurement of all three kinetic rates of single-color

labeled mRNA transcription in live cells, providing opportunities to

study diverse transcriptional regulation at the single-allele level with

high spatiotemporal resolution.

Mathematical models

Time-resolved transcription analysis
model

We developed a time-resolved transcription analysis model to

determine the transcription elongation rate k and the termination

time Tt. The dynamics of translation have previously been analyzed

using the SunTag system [29] with a mathematical model describing

the decreasing fluorescence intensity of a translation site after

inhibiting translation initiation [30]. Because RNA stem–loop

systems are analogous to the SunTag system, we adapted this

model for application to transcriptional dynamics. While

translation termination time was not considered in the previous

model, we included transcription termination time in our model and

derived an analytical function for the decreasingfluorescence intensity

after inhibition of transcription initiation.

We assumed that Pol IIs are distributed uniformly on the

gene and move toward the 3ʹ end at a constant speed k. Although

the elongation process can be complex with pausing, traffic jams,

backtracking, etc. [31], we sought to measure the average

elongation rate k over the entire length of a gene. For

simplicity, we modeled transcription termination as a first-

order irreversible process with a rate constant a. Hence, the

number of Pol IIs residing at the 3ʹ end of the gene at time t,N(t)
can be calculated as follows.

dN(t)
dt

� −aN(t) → N(t) � N(0)e−at (1)

The transcription termination time was defined as Tt � 1/a.

Suppose that there is no Pol II at the 3ʹ end and that the first Pol II
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just reaches the end at time t � 0. With the transcription

initiation rate c, the number of Pol II reaching the 3ʹ end of

the gene during the first time interval Δt is cΔt. After another
time interval Δt, the number of Pol II accumulated at the 3ʹ end

becomes

N(n � 2,Δt) � cΔt + cΔte−Δt/Tt . (2)

If we assume that Pol II and nascent RNAs fall off at the same

time from the 3ʹ end of the gene, Eq. 2 also describes the number

of nascent RNAs accumulated at the 3ʹ end at time 2Δt. After an
infinite number of Δt intervals, the number of nascent RNAs at

the 3ʹ end, N(∞,Δt) becomes

N(∞,Δt) � cΔt∑∞
n�1

e−(n−1)Δt/Tt � cΔt
1

1 − e−Δt/Tt
. (3)

In the limit that the time interval Δt goes to zero,

N(∞,Δt → 0) � cTt. (4)

This result shows that cTt nascent RNAs accumulate at the 3ʹ

end in the steady state.

Now let us suppose transcription initiation is blocked at time

t � 0 while in the steady state. After time t, the number of nascent

RNAs in the 3ʹ end becomes

N(t) � cTte
−t/Tt . (5)

Based on the previous study of translational dynamics [30],

we set the nascent RNA density as a function of the position on

the gene and the time after inhibitor addition. Following the

formula for the ribosome probability density in the previous

FIGURE 1
Imaging transcription using MS2 and PP7 stem–loop systems. (A,B) Schematic of the Actb-MBS (A) and Arc-PBS (B) knock-in constructs. The
fluorescence intensity of a nascent RNA increases as Pol II transcribes the binding sites from X1 to X2. In the post stem–loop region from X2 to L, the
intensity remains constant (gray: binding sites, blue: coding sequence, yellow: untranslated region). (C) Schematic of nascent RNAs at a transcription
site. Multiple capsid proteins fused with fluorescent protein (CP-FP) complexes are bound to a single nascent RNA. (D) Maximum z-projected
time-lapse images of serum-stimulated MEFs. Transcription sites are observed as bright points (arrowheads) in the nucleus. Scale bar, 10 μm.
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study [30], we first modeled the nascent RNA density function

R(x, t) using a Heaviside step function:

R(x, t) � c

k
H(x − kt). (6)

Because k is the elongation rate of Pol II, c/k indicates the

number of nascent RNAs per unit length in the Pol II occupied

region. The density function in Eq. 6 propagates to the 3′ end
direction over time. In this model, however, it is not considered

that the nascent RNAs are accumulated at the 3′ end (x � L). We

expressed the nascent RNA accumulation using a Dirac delta

function:

δ(x − L) · cTt(H(L/k − t) +H(t − L/k)e−(t−L/k)/Tt). (7)

In Eq. 7, the summation of two Heaviside functions

H(L/k − t) and H(t − L/k)e−(t−L/k)/Tt is multiplied by the

Dirac delta function. Before the last Pol II enters the 3′ end
(t< L/k), the amplitude of Dirac delta function (the number of

accumulated nascent RNAs) is steady. After the last Pol II enters

the 3′ end (t≥L/k), the amplitude decreases exponentially as

shown in Eq. 5. Thus, the nascent RNA density at position x and

time t, R(x, t) can be described by adding Eq 7 to Eq 6:

R(x, t) � c

k
H(x − kt) + δ(x − L) · cTt(H(L/k − t)
+ e−(t−L/k)/TtH(t − L/k)). (8)

This density function is depicted in Figure 2A. The first term

in Eq. 8 is the nascent RNA density without the termination time

effect. In the second term, the amplitude of the Dirac delta

function means the number of accumulated nascent RNAs at

position L.

When Pol II starts to transcribe the stem–loop region

[X1,  X2], the fluorescence intensity of a single nascent RNA

I(x) increases as more stem-loops are synthesized. In the post

stem–loop region [X2 , L], I(x) remains constant (Figures 1A,B).

Then, the intensity with the Pol II position x becomes

I(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 0≤ t<X1

ImRNA

X2 −X1
· (x −X1), X1 ≤ t<X2

ImRNA, X2 ≤ t< L.

(9)

ImRNA is the fluorescence intensity of a single mRNA that is fully

transcribed (all 24 stem–loops). Finally, the fluorescence

intensity of a transcription site at time t, F(t) can be derived

FIGURE 2
Model functional behaviors of the time-resolved transcription analysis. (A) The change in Pol II density distribution from t1 to t2. The
transcription initiation inhibitor was added at t � 0. (B) Themodel function of the transcription intensity over time after adding the inhibitor. (C,D) The
model function calculated for different termination times (C) and elongation rates (D). For (C), the elongation rate was fixed at k � 10 nt/s, and for (D),
the termination time was Tt � 200 s.
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as F(t) � ∫∞
0
R(x, t) · I(x)dx. The fluorescence intensity at t �

0 is

F(0) � ∫∞

0
R(x, 0)I(x) · dx � ImRNA

c

k
(L − (X1 +X2)/2 + kTt).

(10)
The fluorescence intensity at time t becomes

F(t) �

F(0), 0≤ t<X1

k

F(0) − ImRNA
c

k

1
2
(kt −X1)2
X2 −X1

,
X1

k
≤ t<X2

k

F(0) − ImRNA
c

k
(1
2
(X2 −X1) + (kt −X2)), X2

k
≤ t< L

k

F(0) − ImRNA
c

k
(1
2
(X2 −X1) + (L −X2) + kTt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1 − e−(t−L/k)/Tt)), L

k
≤ t<∞ . (11)

In the Eq. 11, the exponential term in the fourth interval is due to

the termination time effect. A normalized fluorescence intensity

Fn(t) is

Fn(t) � F(t)/F(0) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0≤ t<X1

k

1 − 1
2

(kt −X1)2
(X2 −X1)(L + kTt − (X1 +X2)/2),

X1

k
≤ t<X2

k

L + kTt − kt

(L + kTt) − (X1 +X2)/2,
X2

k
≤ t< L

k

kTte
−(t−L/k)/Tt

(L + kTt) − (X1 +X2)/2,
L

k
≤ t<∞ .

(12)
This is the model function of time-resolved transcription

analysis that can be used for fitting experimental data. With the

three fitting parameters, F(0), k and Tt, the elongation and

terminationkineticscanbedistinguishedinasingle-cellexperiment.

Autocorrelation analysis model

Larson et al. introduced a mathematical model to analyze

transcriptional dynamics using an autocorrelation function of a

transcription site intensity trace [23]. We rederived the

autocorrelation function in a more concise manner and

applied the model to Actb-MBS (Figure 1A) and Arc-PBS

(Figure 1B) mRNAs. The autocorrelation function is defined as

G(τ) � 〈δI(t)δI(t + τ)〉
〈I(t)〉2 (13)

where δI(t) � I(t) − 〈I(t)〉 and I(t) is the intensity of a

transcription site. The bracket denotes the average intensity

over time. The experimental data can be fit with the following

mathematical model:

G(τ) �
c
ks
∑N+M

m≤ n ImInP(n, t + τ|m, t)

( c
ks
∑N+M

m�1 Im)
2 (14)

where

N � X2 −X1

ls

M � L −X2

ls

ks � N +M

Td

(15)

N andM are the length of the stem–loop [X1,  X2] and the post

stem–loop [X2,  L] region scaled with the stem–loop size ls. ks is

the effective transition rate of Pol II. Td is the total dwell time,

which includes the elongation time through the fluorescent

region (the stem–loop and the post stem–loop region) and the

termination time. In is the fluorescence intensity of a pre-mRNA

after Pol II transcribes the n th stem–loop from the 5ʹ end of the

stem–loop region. This pre-mRNA intensity is described as

follows:

In � {n · ImRNA , 0≤ n<N
N · ImRNA, N≤ n<N +M

(16)

P(n, t + τ|m, t) in Eq. 14 is the conditional probability that a

Pol II is at position n at time (t + τ) given that it has been at

position m at time t.

Larson et al. approximated the autocorrelation function in

Eq. 14 to consider two special cases in which the position of the

stem–loop region was at either the 5ʹ or 3ʹ end of an mRNA. Such

approximation cannot be applied for Actb-MBS and Arc-PBS

mRNAs; the full autocorrelation function in Eq. 14 needs to be

used for a general position of the stem–loop region. The

autocorrelation function was calculated based on three

assumptions: 1) initiation occurs randomly and evenly; 2) Pol

II elongates only in one direction from the 5ʹ end to the 3ʹ end,

and there is no reverse translocation; and 3) pre-mRNA is

released immediately at the 3ʹ end of the gene.

With the assumption that Pol II can progress only in one

direction, the probability density of Pol II dwell time tn in an

arbitrary position n can be calculated for the irreversible process.

n→ks ksn + 1

dPn(tn)
dtn

� −ksPn(tn)

Pn(tn) � kse
−kstn

(17)

The time spent for the transition to the next position is

exponentially distributed. If ti is the time spent for the transition

from the i th stem–loop to the (i + 1) th stem–loop, the

conditional probability P(n, t + τ|m, t) becomes

P(n, t + τ|m, t) � ∫∞

τ−τ′
∫(kse−kstm)(kse−kstm+1) · · · (kse−kstn−1)

(kse−kstn)dn−mt · dtn
(18)

while satisfying constraints given as
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⎧⎪⎨⎪⎩
tm + tm+1 · · · +tn−1 � τ′, 0≤ τ′≤ τ
0≤ tm, tm+1,/, tn−1
τ − τ′≤ tn

(19)

The (n −m) dimensional integral denoted as dn−mt is

dtm/dtn−1. Each exponential term represents the probability

density that Pol II spends time ti at position i. Because Pol II is in

the n th stem–loop at time (t + τ), if Pol II spends time τ′ from
the m th stem–loop to the (n − 1) th stem–loop, the possible

dwell time in the n th stem–loop is from τ − τ′ to ∞. Then, the

conditional probability is described as

P(n, t + τ|m, t) � kn−m+1
s ∫∞

τ−τ′
∫(e−ks(t1+t2 ···+tn−m)e−kstn)dn−mt · dtn.

(20)
By integrating with dtn first,

P(n, t + τ|m, t) � kn−ms ∫dn−mt · (e−ks(τ′))e−ks(τ−τ′)
� kn−ms (e−ksτ)∫ dn−mt. (21)

The last integral term is the (n −m) dimensional volume in

the domain denoted in Eq. 19. This domain is a

(n −m)-dimensional hyper pyramid in which (n −m)

segments are perpendicular to each other, and their lengths

are τ. The last integral in Eq. 21 is τn−m/(n −m)!. Finally, the
conditional probability becomes

P(n, t + τ|m, t) � (ksτ)n−me−ksτ
(n −m)! (22)

This is the Poisson distribution; ksτ is the expected number of

stem–loops transcribed during time τ. The autocorrelation function

can be calculated by substituting Eq. 22 into Eq. 14. The initiation

rate c and the effective transition rate ks can be obtained by fitting

the autocorrelation curve of the experimental data with Eq. 14.

Using the ks value and Eq. 15, we can calculate the total dwell time

Td, which includes the elongation time through the fluorescent

region (the stem–loop and the post stem–loop region) and the

termination time Tt. Although we assumed in our derivation that

pre-mRNA is released immediately at the 3ʹ end of the gene, the

total dwell time calculated from ks effectively includes the

termination time.

Materials and methods

Cell lines and reagents

Two immortalized cell lines, Actb-MBS KI [32] MEFs and Arc-

PBS KI [28] MEFs, were used to image Actb and Arc mRNA,

respectively. Lentiviral transduction was used to express MCP-GFP

and stdPCP-stdGFP [33] fusion proteins inActb-MBS andArc-PBS

MEFs, respectively. Cells were seeded in glass-bottom dishes in

Dulbecco’s modified Eagle’s medium (DMEM) (11995065, Thermo

Fisher Scientific, USA) supplemented with 10% fetal bovine serum

(FBS) (10082147, Gibco, US), 1% penicillin/streptomycin (Pen/

Strep) (15140122, Gibco, US), and 1% GlutaMAX (35050061,

Gibco, USA) and incubated at 37°C and 5% CO2. Prior to

imaging, cells were starved for 15–20 h, and the medium was

changed to Leibovitz’s L-15 medium without phenol red

(21083027 Thermo Fisher Scientific, USA) supplemented with

1% Pen/Strep and 1% GlutaMAX. After placing the cells on a

microscope, we stimulated them with a final concentration of 15%

FBS. For time-resolved measurement, we blocked transcription

initiation by adding 0.5 µM triptolide (T3652, Sigma Aldrich,

USA) or 0.3 µM flavopiridol (F3055, Sigma Aldrich, USA) at

10 min after serum stimulation.

Fluorescence microscopy

All images were taken using a wide-field fluorescence

microscopy system based on an IX-83 inverted microscope

(Olympus) equipped with a UAPON 150×/1.45 NA oil

objective (Olympus), iXon Life 888 electron-multiplying

charge-coupled device (EMCCD) camera (Andor), SOLA SE

u-niR light engine (Lumencor), Chamlide TC top-stage

incubator system (Live Cell Instrument), and ET-EGFP

filter set (Chroma, ET470/40x, T495lpxr, ET525/50 m).

Live-cell imaging was performed at 37°C, and time-lapse

z-stack images were taken at an interval of every 8 s over a

period of 67 min. Z-stacks were imaged at an interval of 0.5 μm

for a total height of 6 μm. The imaging was started right after

the inhibitor addition for the time-resolved measurement and

serum addition for the auto-correlation analysis

(Supplementary Figure S1).

Image analysis

All z-stack images were maximum projected and bleach-

corrected via an exponential bleach correction fit using Fiji [34].

Fluorescence intensity time traces of TSs were generated by using

HybTrack [35]. The background level was determined by the

average intensity of the period in which TS was not automatically

detected by HybTrack. For each time trace, transcription ‘ON’

states were distinguished from ‘OFF’ states by two criteria: 1) the

TS intensity was higher than 1.5 times the background level, and

2) the durations of both ON and OFF states were equal to or

longer than 1 min.

For autocorrelation analysis, we calculated the

autocorrelation function of the time traces in the ON-state;

time traces longer than the average ON-time were used for

analysis. The autocorrelation function was calculated by the

multitau algorithm [36]. This algorithm reduces noise in the

correlation function at a long lag time. To measure the initiation

rate and the total dwell time, we fitted an autocorrelation
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function of a single ON-time trace with Eq. 14. We used weighted

least squares fitting with weights equal to the inverse standard

error of the mean. The fitting parameters were the initiation rate c

and the effective transition rate of Pol II ks.

For time-resolved measurements after inhibiting

transcription initiation, we analyzed time traces showing a

plateau followed by a decreasing signal. In our analysis, we

assumed that the gene is fully and evenly occupied by Pol IIs

before inhibition of transcription initiation; thus, the

fluorescence intensity of TS cannot increase after inhibition.

Nonetheless, some data exhibited increasing fluorescence

intensity after treatment with triptolide; those time traces were

considered not to satisfy the condition of our kinetic model. The

selected intensity time traces were fit with the model function

with a nonlinear least squares method. The fitting parameters

were the elongation rate k, the termination time Tt, and the

normalization factor F(0).

Results

Time-resolved transcription analysis

To label Actb and Arc mRNAwith green fluorescent proteins

(GFPs), we used the MS2- and PP7-GFP systems, respectively.

TheMS2-GFP system utilizes highly specific binding between the

MS2 bacteriophage capsid protein (MCP) and the MBS RNA

stem–loop [37]. Constitutive expression of MCP fused with GFP

(MCP-GFP) labeled all endogenous β-actin mRNA in mouse

embryonic fibroblasts (MEFs) cultured from Actb-MBS KI mice

in which 24 repeats of theMBS were inserted in the 3′UTR of the

β-actin gene [27] (Figure 1A). In a similar manner, endogenous

Arc mRNA was visualized by expressing PP7 capsid protein

(PCP) fused with GFP (PCP-GFP) in MEFs derived from Arc-

PBS KI mice bearing 24 repeats of PBS in the Arc gene 3′ UTR
[28] (Figure 1B). In Figures 1A,B, the positions of the start and

end of the stem–loop cassettes are denoted as X1 and X2, and the

intensity change of a precursor mRNA (pre-mRNA) is shown as

a function of the Pol II position x. Detailed information of the

stem-loop position is described in Table 1. The MS2 or

PP7 capsid protein fused with GFP (CP-GFP) complexes

carry a nuclear localization sequence (NLS), which targets the

protein to the nucleus. When pre-mRNAs are transcribed,

multiple CP-GFPs bind to the RNA binding sites (Figure 1C),

and the transcription site appears as a bright spot in fluorescence

images (Figure 1D, Supplementary Videos S1, S2).

To induce transcription, we starved homozygous Actb-MBS

and Arc-PBS MEFs overnight and added serum-containing

medium. A few minutes after serum induction, up to four

transcription sites appeared in nuclei (Figure 1D). We

performed time-resolved experiments by using a small

molecule transcription inhibitor, triptolide (Trp) (MW 360.6).

It has been shown that triptolide inhibits transcription initiation

by preventing transcription bubble formation without

significantly affecting the elongation rate [38, 39]. After

inhibiting transcription initiation, the region occupied by Pol

IIs decreased over time in the direction of elongation (Figure 2A).

Then, the normalized intensity of a transcription site declined in

4 steps (Figure 2B). First, the intensity remained constant in

0≤ t<X1/k after inhibitor addition. As the last Pol II entered the

stem–loop region, the intensity decreased quadratically in the

interval of X1/k≤ t<X2/k. After that, the intensity decreased

linearly in the time interval of X2/k≤ t<L/k as the last Pol II

entered the post stem–loop region. After time t � L/k, there were

no elongating Pol IIs, and the intensity decreased exponentially

due to transcription termination and release of Pol II and mRNA.

The model function behaviors for the different values of the

termination time Tt and the elongation rate k are shown in

Figures 2C,D, respectively. The increase in the termination time

Tt resulted in a longer decay time while the time length of the

plateau remained the same (Figure 2C). The length of the plateau

X1/k is solely determined by the elongation rate k (Figure 2D),

which denotes the speed of Pol II in the pre stem–loop region.

Therefore, the elongation rate k and termination time Tt can be

acquired by fitting the normalized transcription site intensity of

the experimental data with the model function in Eq. 12.

Immediately after adding the initiation inhibitor, we imaged

transcription sites in living cells by using fluorescence

microscopy. Representative data of the normalized

fluorescence intensities of transcription sites in Actb-MBS and

Arc-PP7MEFs are shown in Figures 3A,B, respectively. By fitting

the data with Eq. 12, we obtained an average elongation rate of

Actb transcription to be 10.4 ± 2.9 nt/s, which was similar to the

elongation rate measured by fluorescence in situ hybridization

(FISH) in normal rat kidney (NRK) cells [40]. On the other hand,

the average elongation rate of Arc was significantly different from

that of Actb; the average elongation rate of Arc transcription was

29.0 ± 17.0 nt/s, almost 3-fold faster than that of Actb

TABLE 1 Gene structure parameters and measured transcription
parameters in this study.

Actb Arc Unit

Gene Structure X1 3,476 1,640 nt

X2 4,714 3,109 nt

L 5,024 4,958 nt

Experimental Results Tt (Trp + FP) 228 ± 59 65 ± 25 s

k (Trp + FP) 12.0 ± 4.6 29.0 ± 15.5 nt/s

TTR
d 357 ± 77 179 ± 66 s

ON duration 15.4 ± 6.6 8.6 ± 3.4 min

OFF duration 6.5 ± 3.4 9.4 ± 4.0 min

c 0.12 ± 0.10 0.21 ± 0.17 s−1

Td 348 ± 104 179 ± 38 s
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(Figure 3C). Termination times also differed significantly. As

illustrated in Figure 3D, the average termination time of Actb

mRNA (233 ± 59 s) was 2.7-fold longer than that of Arc mRNA

(86 ± 27 s).

To validate our measurements, we used another transcription

inhibitor, flavopiridol (FP) (MW 438.30), which is known to

inhibit cyclin-dependent kinase 9 (Cdk9) in the positive

transcription elongation factor b (P-TEFb) complex [41]. This

P-TEFb inhibitor FP prohibits Pol II release from the promoter

proximal pausing to the productive elongation phase, whereas

Trp inhibits new Pol II initiation [8]. Although the mechanisms

of inhibition by Trp and FP are different, they result in a similar

physical state that inhibits transcription initiation. Using FP with

the same procedure as in the Trp experiment, we obtained

elongation rate and termination time consistent with the Trp

results. We measured the elongation rates of Actb and Arc

transcription from the FP experiment as 13.3 ± 5.6 and 29.0 ±

15.3 nt/s, respectively, similar to those from the Trp experiment

(Figures 4A,B). The termination times obtained from the FP

experiments were 223 ± 59 and 60 ± 25 s for Actb and Arc

transcription, respectively. These values were also consistent with

the Trp results (Figures 4C,D). The consistency between the two

independent experiments using Trp and FP supports that our

time-resolved analysis approach can measure transcriptional

elongation and termination kinetics without distinct toxicity

effect by the drugs. We determined the average elongation

rate and termination time of each gene by pooling the single-

allele data set from the Trp and FP experiments (Table 1).

Autocorrelation analysis

Next, we examined whether the time-resolved results are

valid by using the autocorrelation analysis described in the

section of mathematical models. For the autocorrelation

analysis, we recorded the intensity of transcription sites,

which showed bursting transcriptional activity without the

initiation inhibitors after serum induction (Figures 5A,B).

Both the Actb and Arc genes exhibited stochastic switching

between active (ON) and inactive (OFF) states after serum

induction. The average duration of the ON-state was 15.4 ±

6.6 min (means ± SD) for Actb, which was significantly longer

FIGURE 3
Time-resolved analysis of Actb and Arc transcription. (A,B) Representative transcription intensity data (blue dots) and the best fit curves (red
lines) of Actb (A) and Arc (B) after the addition of triptolide at t � 0. (C,D) The elongation rates (C) and termination times (D) of Actb (n =
27 transcription sites) and Arc (n = 10 transcription sites). The mean (red line) and standard deviation (SD, gray box) values are indicated (** P < 0.01,
Wilcoxon rank-sum test).
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than the 8.6 ± 3.4 min observed for Arc (p < 0.01, t test;

Figure 5C). The duration of the OFF state was 6.5 ± 3.4 min

for Actb, shorter than the 9.4 ± 4.0 min for Arc (p < 0.01, t test;

Figure 5D). These results demonstrate that Actb exhibits

transcriptional bursts more frequently in longer time periods

than Arc does.

The initiation rate and total dwell time were measured from

the autocorrelation function of transcription intensity traces

during ON-times. Because the autocorrelation analysis model

was developed for a steady-state condition, we calculated the

autocorrelation function from the selected ON-state traces of

which durations were longer than the average ON-time of each

gene. Then, the selected ON-time duration was 28.9 ± 9.9 min

for Actb (183 traces) and 15.5 ± 7.3 min for Arc (82 traces) on

average. Before the autocorrelation analysis, we characterized

the general behavior of the model function shown in Eq. 14.

The autocorrelation amplitude G(0) in Eq. 14 decreases as

either the initiation rate c or the total dwell time Td increases

(Figures 6A,B). The decay time of the autocorrelation function

is independent of c (Figure 6A) but increases as Td increases

(Figure 6B). Representative autocorrelation curves of Actb

and Arc transcription are depicted in Figures 6C,D,

respectively. We plotted c and Td values obtained from

individual ON-traces in Figures 6E,F, respectively. The

average initiation rate and total dwell time were c � 0.12 ±

0.10 s−1 and Td � 348 ± 104 s for Actb and c � 0.21 ± 0.17 s−1

and Td � 179 ± 38 s for Arc. These average total dwell times Td

were about 20% of the average of the subjected ON-time

duration.

TTR
d � Tt + L −X1

k
. (23)

Next, we compared the total dwell times from the time-

resolved measurements with those from the autocorrelation

analysis. Using the results of the time-resolved measurements,

the total dwell time can be calculated as.

With this, the total dwell times from the time-resolved

measurements were calculated as TTR
d � 357 ± 77 s for Actb

FIGURE 4
Comparison of time-resolvedmeasurements after adding triptolide (Trp) and flavopiridol (FP). (A,B) The elongation rates of Actb (A) and Arc (B).
The elongation ratesmeasured after adding Trp and FPwere similar for each gene. (C,D) The termination times of Actb (C) and Arc (D). Themean (red
line) and standard deviation (SD, gray box) values are indicated. No significant difference was observed between experiments using Trp (n =
27 transcription sites for Actb and 10 for Arc) and FP (n = 35 transcription sites for Actb and 42 for Arc) (P > 0.05, Wilcoxon rank-sum test).
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and 179 ± 66 s for Arc transcription. The two different dwell

times, Td and TTR
d , obtained from the autocorrelation and the

time-resolved analyses, respectively, were quite similar for

each gene. We note that the total dwell time was defined as the

nascent RNA dwell time in the fluorescence region (stem-

loop and post stem-loop regions) in the autocorrelation

analysis. In the time-resolved analysis, however, the total

dwell time was calculated using the elongation rate k which

FIGURE 5
Transcription ON and OFF durations of Actb and Arc genes. (A,B) Representative intensity profiles of transcription sites of Actb (A) and Arc (B)
genes. The solid blue lines indicate the baseline normalized by the nuclear background. The dashed blue lines indicate the threshold for
transcriptional ON (red) and OFF (black) states. AU, arbitrary units. (C,D)ON (C) andOFF (D) durations of Actb (n = 449 for ON and 198 for OFF states)
and Arc (n = 234 for ON and 83 for OFF states). The mean (red line) and standard deviation (SD, gray box) values are indicated (* P < 0.05 and **
P < 0.01, Wilcoxon rank-sum test).
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was measured in the region before the stem-loops. Therefore,

we compared Td and TTR
d under the assumption of a constant

Pol II elongation rate k over the whole gene. Although we

made such a simple assumption, Td and TTR
d matched

reasonably well.

Error estimation by simulations

Using simulations, we estimated the errors in the time-

resolved measurements for each gene structure of Actb and

Arc labeled with the stem-loops. The input parameters of the

FIGURE 6
Autocorrelation analysis of transcription. (A,B) Autocorrelation model function behaviors with varying initiation rate c (A) and total dwell time Td

(B). The termination time was set to Tt � 0. For (A), the total dwell time was fixed at Td � 100 s, and for (B), the initiation rate was c � 0.1 s−1. (C,D)
Representative autocorrelation data (blue dots) and the best fit curves (red lines) of Actb (C) and Arc (D) transcription. (E,F) The initiation rates (E) and
the total dwell times (F) of Actb (n = 183 ON-time traces) and Arc (n = 82 ON-time traces). The mean (red line) and standard deviation (SD, gray
box) values are indicated (** P < 0.01, Wilcoxon rank-sum test).
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simulations were initiation rate c, elongation rate k, and

termination time Tt. For our analytical model, we made a

simple assumption of uniform Pol II distribution with a

constant initiation rate c. However, it is known that the

initiation time interval between two Pol IIs is dependent on

the promoter dynamics [31, 42]. For a Poissonian promoter, the

polymerase initiation time interval follows an exponential

distribution. Therefore, we initiated Pol IIs with an

exponential time interval Tint in computer simulations:

P(Tint) � ce−cTint (24)

The mean time interval is 1/c as in our time-resolved

analytical model.

The elongation process follows the Poisson distribution as

shown in Eq. 22. Then, the probability of x nucleotides elongated

in time Δt is

P(x) � (kΔt)x
x!

e−kΔt (25)

In the simulation, the time Δtwas 8 s, which was the same as

the interval of our time-lapse imaging data. Eq. 25 shows that

the number of nucleotides elongated by Pol II during Δt follows
a Poisson distribution with a mean of kΔt. As Pol II transcribes
a stem loop, the intensity of the transcription site increases by a

unit brightness. After summation of all pre-mRNA intensities,

the simulation generated the intensity time trace of a

transcription site. For the simulation of the time-resolved

analysis, Pol IIs were distributed at random positions on the

gene considering the Poissonian initiation and elongation, and

cTt Pol IIs were placed at position L at time t � 0. The

termination time was given as an exponential random value,

and there was no newly initiated Pol II after t � 0. Figure 7

shows the average normalized simulation intensity of Actb 1)

and Arc 2) transcription sites (blue dots) when transcription

initiation is inhibited at time t � 0. These intensity time traces

were generated by repeating the simulation 100 times with

input parameters from the experimental results (Actb: c � 0.12

s−1, k � 12.0 nt/s, and Tt � 228 s. Arc: c � 0.21 s−1, k � 29.0 nt/s,

and Tt � 179 s). We fitted the single intensity time traces with

the model function from Eq. 12. The red lines in Figures 7A,B

show the model function with the average fitted values. The

average elongation rate and termination time obtained by fitting

the simulation curves were k � 12.4 ± 1.9 nt/s and Tt �
226 ± 45 s for Actb; k � 30.6 ± 13.2 nt/s and Tt � 174 ± 28 s

for Arc. These fitting results are quite similar to their

ground truth values used as the input parameters in the

simulations.

Figure 8 shows the errors in the elongation rate k and the

termination time Tt obtained by fitting the simulation results

corresponding to various input parameters. The input initiation

rate c varied from 0.01 s−1 to 1 s−1 in the x-axis. The input

elongation rate k varied from 100.5 to 102 nt/s in the y-axis. The

input termination time Tt is shown on top in Figure 8. The error

in the output value was defined as |input − output|/input. The
color maps in Figure 8 display the errors in the output values of

elongation rate k and total dwell time Tt. The mean errors are

generally larger for shorter termination times Tt and lower

initiation rates c. Because the assumption of uniformly

distributed Pol IIs is not valid for the low c limits, the time-

resolved analysis is not appropriate in this realm.

The areas inside the magenta lines in Figure 8 indicate the

regime in which the mean errors are under 10%. The valid region of

the time-resolved model is on the lower and right sides of the color

map. The time-resolved analysis of our Actb and Arc transcription

data yielded the elongation rate k and the termination time Tt

within the valid region of less than 10% error. These results support

the overall validity of the elongation rate and termination time

measured by the time-resolved method.

Discussion

In this study, we investigated the transcription kinetics of theActb

and Arc genes by using two analysis methods of live-cell imaging.

Because transcription initiation, elongation, and termination dynamic

factors cannot bemeasured separately in the steady state, we used Trp

and FP to inhibit transcription initiation and performed time-resolved

measurements. For simplicity, we assumed that Pol IIs accumulate at

the end of the gene for transcription termination and described it as a

Dirac delta function in the Pol II density distribution R(x, t). By
fitting our data with this mathematical model, we obtained the

elongation rate and the termination time separately and confirmed

that the total dwell times of Actb and Arc nascent RNAs were

consistent with those from the autocorrelation measurement. To

identify the regime where the model function fittings are valid, we

checked the error behavior of the time-resolved model with various

input parameters. The elongation rates and the termination times of

Actb andArcmeasured in this study were well within the valid region

of our analysis method.

We obtained significantly different elongation rates and

termination times for Actb and Arc transcription. The elongation

process can include different events such as pausing, traffic jams,

backtracking, and so forth [31]. Therefore, the elongation rate

obtained in this study represents the overall average elongation

rate affected by those complex processes. The Actb and Arc

elongation rates were 12.0 ± 4.6 bp/s and 29.0 ± 15.5,

respectively. So, it appears that Pol II elongation was interrupted

more often on the Actb gene than on the Arc. There are many

factors that affect the elongation rate of Pol II, such as exon density,

nucleosome structure, and CpG content [8, 11]. Previous studies

have revealed that Pol II pauses or slows down at intron-exon

junctions [8, 9, 11] and that exon density has the greatest effect on

the elongation rate among the factors mentioned above [8]. The

gene lengths of Actb and Arc are similar (Actb: 3,640 bp, Arc:

3,490 bp), but Actb has 6 exons and Arc has 3. Thus, the exon

density of Actb (1.6 exons/kb) is about two times higher than that of
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FIGURE 7
Transcription intensities generated by time-resolved computer simulation. (A,B) The averages of normalized transcription intensities are shown
as blue dots for each case of Actb (A) and Arc (B) transcription (n = 100 simulations for each gene). The error bar (blue bar) depicts standard deviation
of the normalized intensities. The fitting function (red lines) are plotted using the average value of single trace fitting results.

FIGURE 8
Assessment of errors in the time-resolved transcription analysis by using simulations. Simulation input parameters are initiation rate c,
elongation rate k, and termination time Tt. (A,B) Mean errors of k and Tt obtained by fitting the results from 100 simulation runs are shown in color
maps for Actb (A) and Arc (B). All error values over 1 are displayed in dark red color. Regions with a mean error under 10% are denoted with magenta
lines.
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Arc (0.9 exons/kb), which could be the reason why the elongation

rate of Actb is much slower than that of Arc.

Furthermore, the termination time of Actb (228 ± 59 s) was

3.5-fold longer than that of Arc (65 ± 25 s). There are several

different types of transcription termination in mammalian cells

[4], and the termination of human Actb transcription occurs by

Pol II pause-dependent termination type. This Pol II pausing

occurs at the G-rich pause sequence downstream of the poly(A)

signal (PAS) [43]. In the human Actb gene, nascent transcripts

hybridize to the antisense DNA strand and displace the sense

DNA strand, forming a structure called an R-loop [44]. The

R-loop is formed prevalently over G-rich pause sites behind the

elongation complex and induces Pol II pausing. Senataxin, a

DNA-RNA helicase, resolves R-loops to allow the 5ʹ-3ʹ

exonuclease Xrn2 to degrade the nascent RNA fragment from

the poly(A) cleavage site [44]. Similar to human Actb, mouse

Actb also has a G-rich region at 450 nucleotides downstream of

the PAS; hence, transcription of mouse Actb is also likely to be

terminated by the R-loop-dependent pausing mechanism. We

determined the termination time, which was defined as the time

from reaching the transcription end site (TES) to the release of

mRNA, to be approximately 230 s for mouse Actb. This data

provides us with information on the timescale of transcription

termination by R-loop-dependent pausing. In contrast, the

mouse Arc gene does not have a G-rich region downstream of

the PAS and exhibits a much shorter transcription termination

time of ~65 s. Therefore, we presume that Arc transcription

termination occurs via a different mechanism. The Arc gene has

a viral origin and contains sequences that are related to

retrotransposon Gag genes [45, 46]. It is also interesting that

the transcription termination time of Arc is similar to that of an

HIV-1 RNA reporter gene (63.5 s) in U2OS cells [15]. Our new

analysis technique to measure termination time can be useful to

unravel diverse transcription termination processes.

We note that our time-resolved model has some limitations

due to the simple assumption of uniform transcription initiation

and elongation rates. In fact, the initiation and elongation

processes are more complex, depending on the promoter

dynamics [31, 42]. For instance, the inter-polymerase distance

distribution is exponential for a Poissonian promoter and is

much more complicated for a bursty promoter. Although Actb

and Arc genes exhibit ON and OFF transitions as shown in

Figure 5, we investigated the transcriptional activity only during

the ON states. Because the average duration of the ON states was

sufficiently long, on the order of 10 min for both genes, we were

able to analyze the transcription dynamics within a single ON

state. The average number of Pol IIs on a gene can be estimated as

c(L/k) + cTt. Using the data summarized in Table 1, we

estimated the average number of Pol IIs on Actb and Arc

genes to be 77 and 50, respectively. These numbers are

sufficiently large to approximate the Poissonian initiation as a

uniform procedure. Therefore, our simple assumption of the

uniform Pol II distribution did not result in significant errors for

these genes as demonstrated in Figure 8, where we compared our

results from the time-resolved analysis with simulation results.

However, our simple analysis method may not be generally

applicable for a Poissonian promoter with a smaller number

of Pol IIs or a bursty promoter with a much faster switching

behavior.

The transcription initiation rate was not determined by our time-

resolvedmodel because we normalized the decreasing intensity by the

plateau level F(0). If the intensity of a single mRNA ImRNA can be

measured, we can calculate the initiation rate c as

c � F(0)
ImRNA(2L−X1−X2

2k + Tt) (26)

Because of the high GFP background in the nucleus, it was

difficult to measure the intensities of single mRNA and

transcription sites simultaneously in our live-cell experiments.

We expect that background-free RNA imaging techniques such

as the MS2-PP7 hybrid stem–loop system combined with split-GFP

approaches [47, 48] will allow formeasuring both singlemRNA and

transcription site intensities and extracting all three transcription

kinetic rates, c, k, and Tt, simultaneously in a single cell.

In addition, we expect this analysis method to be used in

conjunction with RNA-targeting CRISPR-Cas systems [49–51],

through which we could analyze the transcription kinetics of any

endogenous RNAwithout requiring geneticmanipulation. Our time-

resolved model function was calculated by integrating the product of

the Pol II density function and the fluorescence intensity of a nascent

RNA. Suchmodel function for a different RNA tagging system can be

easily derived following the same steps described herein. This analysis

technique will expand our capability to investigate the transcription

kinetics of endogenous genes in a highly quantitative manner.
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