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The heat transmission process is a prominent issue in current technology. It

occurs when there is a temperature variation between physical processes. It has

several uses in advanced industry and engineering, including power generation

and nuclear reactor cooling. This study addresses Maxwell fluid’s steady, two-

dimensional boundary layer stream across a linearly stretched sheet. The

primary objective of this research is to investigate the impact of the non-

Newtonian fluid parameter (Deborah number) on flow behavior. The secondary

objective is to investigate the effect of linear and quadratic convection to check

which model gives higher heat transfer. The flow is caused by the surface

stretching. The mathematical model containing the underlying partial

differential equations (PDEs) is built using the boundary layer estimations.

The governing boundary layer equations are modified to a set of nonlinear

ordinary differential equations (ODEs) using similarity variables. The bvp4c

approach is employed to tackle the transformed system mathematically. The

impacts of numerous physical parameters like stretching coefficient, mixed

convective parameter, heat source/sink coefficient, magnetic coefficient,

variable thermal conductance, Prandtl number, and Deborah number over

the dimensionless velocity and temperature curves are analyzed via graphs

and calculated via tables. After confirming the similarity of the present findings

with several earlier studies, a great symmetry is shown. The findings show that

the linear convection model gains more heat transport rate than the quadratic

convection model, ultimately giving a larger thermal boundary layer thickness.

Some numeric impacts illustrate that boosting themagnetic coefficient elevates

the fluid’s boundary layer motion, causing an opposite phenomenon of Lorentz

force because the free stream velocity exceeds the stretched surface velocity.
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Introduction

Background study

Magnetohydrodynamics (MHD) is a subfield of fluid

mechanics that analysis how an electrically conductive liquid

moves in the vicinity of magnetism. Liao [1] inspected the exact

solutions for the MHD stream of non-Newtonian fluid over an

enlarging sheet. Datti et al. [2] explored the MHD stream and

thermal transmission in a visco-elastic liquid across a non-

isothermal expanding surface. Ishak et al. [3] analyzed the

MHD stagnating point stream across an expanding sheet.

Ahmad et al. [4] examined the MHD stream of a viscous

liquid in a permeable medium across an exponentially

stretched layer. Hayat et al. [5] provided an analytical solution

for the MHD stream of a micropolar liquid caused by a curved

elongating surface under the impact of homogeneous-

heterogeneous reactions. The transient MHD transportation of

spinning Maxwell nanofluid stream over an extending surface

with doubled diffusion and activating potential was exposed by

Ali et al. [6]. Dawar et al. [7] explored the Lorentz forces and their

effects on the Jaffrey nano liquid stream across a convectively

warmed plain surface. Numerous researchers [8–11] have probed

the MHD influence on fluid flow behavior.

The applications of non-Newtonian fluids cover a wide range

of fundamental challenges in pharmaceutical, crude oil, polymer,

and food production industries. Viscoelastic fluids are non-

Newtonian fluids in which the imposed tension distribution is

non-linearly related to velocity gradient. The Navier-Stokes

equations and Newton’s law of viscosity are insufficient for

characterizing non-Newtonian liquids. Generally, the

mathematical issues in non-Newtonian liquids are more

complex than in Newtonian fluids because of severe non-

linearity and higher-order differential equations. As a result,

several modern scientists are exploring various non-Newtonian

liquid models under varied flow conditions. Exact solutions for

the rotational stream of a modified Burgers fluid over cylindrical

regions were proposed by Jamil and Fetecau [12]. Kamran et al.

[13] disclosed the unstable rotating stream of fractional Oldroyd-

B liquid between two infinite concentric cylinders. Ali et al. [14]

performed the numerical assessment of MHD boundary layer

stream and heat transport in micropolar liquids across a

shrinkable sheet. Rehman et al. [15] probed the numerical

solutions for a stream of Casson fluid caused by the rotating

disk. Riaz et al. [16–19] have studied numerous non-Newtonian

liquids and a detailed analysis of entropy production considering

different flow configurations. Ali et al. [20] discussed Maxwell’s

unsteady (3-D) stream and tangentially hyperbolic nano liquid

across a stretchy surface in the rotational frame.

Boundary layer flows across the stretchable sheet are essential

for various applications, including glass blowing, cord depiction,

copper spiraling, paper manufacture, glass blowing, extrusion,

warm progressing, thermal conductivity of heat sinks, and melts

of high molecular weight polymers. Sakiadis [21] illustrated the

boundary layer stream at a continuous elongated surface having

consistent speed. Wang [22] explored the viscid stream produced

by a horizontally extended surface, considering suction and

sliding phenomena. Khan et al. [23] scrutinized the two-

dimensional stream of Prandtl liquid across a stretchy surface

and the influence of homogeneous-heterogeneous reactions. In

the vicinity of a heat source, theMHD boundary layer stream and

heating flux of nano liquid across a vertically expanded sheet was

scrutinized by Ali et al. [24]. Awan et al. [25] inspected second-

grade liquid’s MHD stagnation point stream over the oscillating

extending sheet. Ali et al. [26] inspected the influence of bio-

convection and chemical reaction over MHD nano liquid stream

caused by exponentially enlarging surface. Awan et al. [27]

performed the thermal inspection of an oblique stagnation

point stream of second-grade liquid over an elongating

surface with slip constraints.

The general form of convection is mixed (combined)

convection, which is a composite of natural and driven

convection in which a stream is governed concurrently by

both an outer driving system and interior volumetric (body)

stresses. They are used in various applications, including climatic

boundary-layer streams, thermal radiators, solar cells, nuclear

plants, and auto-electronic devices. Earlier researchers assumed a

linear density change in the buoyancy force factor, which is

typically appropriate with minor temperature variations. The

interplay of forced and natural convection is most noticeable

where the driven flow rate is low and temperature variations are

enormous. Karwe and Jaluria [28] disclosed the transportation of

fluid stream and combined convection from a movable plate in

sliding and erosion processes. Vajravelu et al. [29] revealed the

heat transmission from a dike using nonlinear convection across

a permeable flat plate. Kumar and Sood [30] disclosed the

combined impact of MHD and nonlinear convection in the

stagnation point stream across a shrinkable surface. Hayat

et al. [31] investigated the MHD influence on (3-D) nonlinear

buoyancy stream of Oldroyd-B nano liquid across an extending

sheet. Sampath Kumar et al. [32] inspected the stream of Jaffrey

nano liquid, considering the impact of quadratic convection,

MHD, nonlinear radiations, and multiple convected constraints.

Patil and Kulkarni [33] probed the impact of surface ruggedness

on MHD nonlinear convective nano liquid stream above a

vertically moving plate. The comparative analysis for the

linear and nonlinear buoyancy stream of hybrid nano liquid

was explored by Kumar et al. [34].

After the aforementioned literature review, it is observed that

no initiative has been taken to explore the energy and mass

transport behavior of nonlinear mixed convection flow with

nonhomogeneous material features and linear heat production

around the boundary layer of a stretchy surface. Furthermore,

nonlinear convection occurs due to nonlinear density

temperature differences in the buoyant force term, which

substantially influences flow behavior. Motivated by the
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Bayones et al. [35], the present analysis is carried out to 1) analyze

the rheology attributes of Maxwell fluid, 2) the significance of

variable thermal conductance on the fluid temperature, 3)

incorporate the influence of MHD, nonlinear convection, and

heat absorption/generation. The underlying problem is solved

numerically with the bvp4c technique in MATLAB. For linear

and quadratic convection and varying temperature-dependent

attributes, the velocity and temperature distributions and the

coefficient of skin friction and heat flux are graphically explored.

The validity of the numerical technique is probed by comparative

tables with the existing research work. It is found that flow

velocity enhances quadratic convection versus linear convection.

On the other hand, the thermal boundary layer size and heat

transport rate are higher for linear convection than in the

quadratic model. The lower temperature for the quadratic

convection model versus the linear model offers applications

in manufacturing improved lubricants to minimize machinery

degradation. Moreover, thermal designers can employ the

current numeric outcomes in the industry because varying

thermal conductance achieves higher efficiency than uniform

thermal conductance.

Mathematical model

A time-independent, incompressible, two-dimensional,

laminar, MHD flow of the Maxwell fluid across the stretched

surface has been analyzed in the current flow problem. The

impacts of varying thermal conductance, quadratic convection,

and heat source/sink have also been incorporated. The cartesian

coordinates are chosen with the horizontal axis pointing in the

direction of the stretched surface and the vertical axis normal to

the stretchy surface. The flow’s composition is portrayed in

Figure 1. To stabilize the boundary layer flow, a constant

magnetic field B0 is provided perpendicular to the sheet. The

produced magnetic field is ignored since the magnetic Reynolds

number is considered to be quite small. The enlarging velocity is

supposed to be Uw(~x) � b~x with b > 0, and the stream velocity

is taken as Un(~x) � a~x with a > 0. The governing equations for

the considered problem following [34–36] are stated as:

z~u

z~x
+ z~v

z~y
� 0, (1)

~u
z~u

z~x
+ ~v

z~u

z~y
� ]

z2~u

z~y2 + Un
dUn

d~x
+ gβ1( ) ~T − ~T∞( ) + gβ2( ) ~T − ~T∞( )2

−λ1 ~u2z
2~u

z~x2 + ~v2
z2~u

z~y2 + 2~u~v
z2~u

z~xz~y
[ ] − σB2

o

ρ
~u − Un( ),

(2)

~u
z~T

z~x
+ ~v

z~T

z~y
� 1

ρCp( ) z

z~y
k ~T( ) z~T

z~y
( )[ ] + Qo

ρCp( ) ~T − ~T∞( ).
(3)

The suitable boundary constraints are stated as follows:

~u ~x, ~y( ) � Uw ~x( ), ~T ~x, ~y( ) � ~Tw ~x( ) � ~T∞ + c1 ~x, ~v ~x, ~y( ) � 0, for ~y � 0,

~u ~x, ~y( ) → Un ~x( ), ~T ~x, ~y( ) → ~T∞ for ~y → ∞ .

⎫⎬⎭
(4)

Where the velocity coefficients along ~x and ~y axes are

indicated by ~u and ~v, respectively. The density of fluid is ρ, Bo
is the intensity of applied magnetism, λ1 is the fluid’s relaxation

time, σ is electrical conductance of fluid, (β1, β2) depict the

coefficients of thermal expansion, the fluid’s temperature is ~T, g

stands for gravity, the heat diffusivity is α̂, (ρCp) is the volumetric

thermal capability, and Qo reflect the heat generating coefficient.

The ambient temperature and surface temperature are

symbolized by ~T∞ and ~Tw respectively. The variable thermal

conductance is defines as follows:

k ~T( ) � 1 + Λ
~T∞ − ~T
~T∞ − ~Tw

( )k. (5)

The problem is simplified by using similarity variables following

[35, 37, 38]:

~u � f′ ξ( )a~x, ~v � − 
a]

√
f ξ( ), Θ ξ( ) �

~T − ~T∞
~Tw − ~T∞

, ξ � ~y


a

]

√
.

(6)
where ξ is non-dimensional constraint, f ′(ξ) and Θ(ξ) are the

dimensionless velocity and temperature distributions

respectively. Using above mentioned transformation Eq. 1 is

satisfied, and Eqs 2, 3 are altered into dimensionless ODEs.

f‴ + 1 + ff″ − f′( )2 + β 2ff′f″ − f2f‴( ) + Ω Θ + Qc Θ2( )
−M2 f′ − 1( ) � 0,

(7)
Θ″ 1 + ΛΘ( ) + Λ Θ′( )2 + PrfΘ′ + PrS1Θ − PrΘf′ � 0. (8)

FIGURE 1
Flow configuration.
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The associated non-dimensional boundary conditions are

stated as:

f ξ( ) � 0, f′ ξ( ) � ε1, Θ ξ( ) � 1, for ξ → 0,

f′ ξ( ) � 1, Θ ξ( ) � 0, for ξ → ∞ .
} (9)

In above mentioned equations, the prime (′) denotes the

differentiation with regard to the similarity variable ξ.

Furthermore, M2 denotes magnetic parameter, β is the

Deborah number, Ω the mixed convection parameter, S1
represents the heat generating/absorbing parameter, Pr is the

Prandtl number, the heat conductance parameter is Λ,Qc depicts

quadratic convection parameter, and ε1 is the velocity ratio

coefficient. These parameters are stated as follows:

M2 � σB2
o

ρ a
Ω � Gr~x

Re~x( )2, Gr~x �
gβ1 ~Tw − ~T∞( )~x3

] 2 , Re~x �
a ~x( )2
]

,

Qc � β2
β1

( ) ~Tw − ~T∞( ), Pr � μCp

k
, S1 � Qo

ρCp( )a, ε1 � b

a
, β � λ1a.

It would be observed that (Qc > 0) reflects the non-linear

convection, and (Qc � 0) represents linear mixed convection.

Further, (ε1 > 0) for a stretching case, and (ε1 � 0) for the

stationary surface. The skin frictional coefficient and Nusselt

number are two important physical attributes. These quantities

are stated as follows:

Cf~x �
~τw
ρU2

n

, Nu~x �
~xqw

k ~T( ) ~Tw − ~T∞( ), (10)

where ~τw the wall shear stress, and qw the wall heat influx are

stated as:

qw � −k z~T

z~y
( )∣∣∣∣∣∣∣∣∣

~y�0
, ~τw � μ

z~u

z~y
( )∣∣∣∣∣∣∣∣

~y�0
. (11)

By using Eqs 6, 11 in Eq. 10, the dimensionless forms of physical

quantities are stated as:

Cf~x Re~x( )1/2 � f″ 0( ), Nu~x Re~x( )−1/2 � − 1
1 + ΛΘ( )Θ′ 0( ).

(12)
where Re~x � a~x

2

] depicts the local Reynolds number.

Numerical method

Due to the high non-linearity of the coupled ODEs (7–8), the

analytical solution is not feasible. Various numerical methods are

utilized in MATLAB to obtain a valid numerical solution. One of

most significant method is bvp4c technique. The solution

strategy is given as:

f ξ( ) � Z1, f′ ξ( ) � Z2, f″ ξ( ) � Z3, f‴ ξ( ) � Z4, Θ ξ( )
� Z5, Θ′ ξ( ) � Z6, Θ″ ξ( ) � Z7,

Using the above substitution, the subsequent ODEs are

defined as:

Z4 � 1

1 − βZ2
1( ) Z2( )2 − Z1Z3 +M2 Z2 − 1( ) − 1 −Ω Z5([
+Qc Z5( )2) − 2βZ1Z2Z3], (13)

Z7 � 1
1 + ΛZ5( ) Pr Z5Z2 − Z1Z6 − S1Z5( ) − Λ Z6( )2[ ]. (14)

The boundary constraints are stated as:

Z1 � 0, Z2 � ε1, Z5 � 1, for ξ → 0,
Z2 � 1, Z5 � 0, for ξ → ∞ .

} (15)

Numerical findings and discussion

In current article, the flow phenomena arising due the linear

stretching of expanding sheet for two-dimensional Maxwell fluid

with variable thermal conductivity is studied. The numerical

outcomes for the current study are calculated by solving the

dimensionless ODEs (7–8) along with the boundary and initial

constraints (9). The bvp4c method in MATLAB software is

applied to obtain the numeric results. The estimation for the

current analysis is settled by using the specified values for

parameters: Pr = 2.0, M = 0.3, β = 0.2, Ω = 1.0, ε1 = 0.3, S1 =

0.2, Λ = 0.2. The ranges for the involved parameters are: 0.2 ≤ β ≤
2.6, 0.2 ≤Λ ≤ 2.2, 0.2 ≤ ε1 ≤ 1.4, 0 ≤M ≤ 8.6, −8 ≤ S1 ≤ 2, 0.2 ≤Ω ≤
1.4 and 0.7 ≤ Pr ≤ 3 are chosen to observe the smooth behavior of

velocity and temperature curves. Tables 1–3 are constructed to

compare our findings with already published papers. A notable

coincidence has occurred, displaying the validity of the bvp4c

method. Figures 2–8 are plotted to show the significance of

distinct parameters over velocity f ′(ξ) and temperature Θ(ξ)
profiles for two cases: (i) linear convection (Ω = 1, Qc = 0)

(ii) quadratic convection (Ω = 1, Qc = 2).

Figure 2A,B reveal the influence of Deborah no. (β) on the

dimensionless velocity f ′(ξ) and temperature Θ(ξ) profiles for

both the linear and non-linear convection. Deborah no. is the

quotient of fluids relaxation time and the time of observation. It is

used to assess the fluidity of the substances under specified flow

regimes. The case (β = 0) reduces to Newtonian fluid model.

Raising the value of β enhances the velocity and thus the width of

the boundary layer. The velocity fluctuates from zero to a

maximal positive value, then gradually declines taking zero

value outside the boundary layer. It is observed that the fluid

accelerates more strongly for quadratic convection in

comparison to the linear convection. An reverse effect is

visualized for the temperature Θ(ξ), which descends slightly

for the boosting β values. In the temperature boundary layer,

it is depicted that the linear buoyancy (Qc = 0) provides more heat

transfer than the quadratic buoyancy (Qc ≠ 0).
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Figures 3A,B exhibit the non-dimensional velocity and

temperature curves for both the linear and quadratic

convection terms for different values of variable thermal

conductivity parameter Λ. The higher values of Λ improves

the peak velocity of the fluid. Hence, the linear convection

model performs as a lower bound. The thermal conductance

of the liquid rises the non-dimensional temperature as a function

of ξ, as illustrated in Figure 3B, for both linear and quadratic

buoyancy terms. This is due to the fact that thermal conductivity

measures the efficiency with which heat escapes from a fluid. As a

result, heat from the sheet is estimated to be transmitted quickly

into the primary stream due to an elevation in the thermal

conductance value. The heat transmission at the boundary

TABLE 1 Numerical evaluations for f99(0) with fluctuation in Pr.

Pr β = M = Λ = ε1 = Qc = S1 = 0, Ω = 1

Hassanien and Lok et al. Ramachandran Ali et al. Our

Gorla [39] [40] et al. [41] [37] findings

0.7 1.70632 1.7064 1.7063 1.7063 1.70632

1.0 — — — 1.6754 1.67543

7.0 — 1.5180 1.5179 1.5179 1.51791

10 1.49284 — — 1.4929 1.49284

20 — 1.4486 1.4485 1.4485 1.44848

40 — 1.4102 1.4101 1.4101 1.41006

50 1.40686 — — 1.3989 1.39893

60 — 1.3903 1.3903 1.3903 1.39028

80 — 1.3773 1.3774 1.3774 1.37739

100 1.38471 1.3677 1.3680 1.3680 1.36804

TABLE 2 Numerical evaluations for − Θ9(0) with fluctuation in Pr.

Pr β = M = Λ = ε1 = Qc = S1 = 0, Ω = 1

Hassanien and Lok et al. Ramachandran Ishak et al. Our

Gorla [39] [40] et al. [41] [38] findings

0.7 0.76406 0.7641 0.7641 0.7641 0.76406

1.0 — — — 0.8708 0.87078

7.0 — 1.7226 1.7224 1.7224 1.72238

10 1.94461 — — 1.9446 1.94462

20 — 2.4577 2.4576 2.4576 2.45758

40 — 3.1023 3.1011 3.1011 3.10109

50 3.34882 — — 3.3415 3.34146

60 — 3.5560 3.5514 3.5514 3.55141

80 — 3.9195 3.9095 3.9095 3.90950

100 4.23372 4.2289 4.2116 4.2116 4.21168

TABLE 3 Numerical evaluations for − Θ9(0) and f99(0) with fluctuation
in M.

β = Λ = Qc = 0, ε1 = 0.5, S1 = 1.0, Pr = 1.0, Ω = 0.5

Bayones et al. [35] Current results

M f′′(0) −Θ′(0) f′′(0) −Θ′(0)
0.0 0.94096 0.5734 0.94091 0.5735

1.0 1.06964 0.5887 1.06955 0.5888

2.0 1.18340 0.5999 1.18341 0.6007

4.0 1.38201 0.6186 1.38202 0.6184

16 2.22152 0.6673 2.22157 0.6673
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layer is found to be greater for the linear convection than for the

quadratic convection model.

Figures 4A,B depict the impact of velocity ratio coefficient ε1
for both linear and non-linear buoyancy parameters. For larger

values of ε1 (when the stretching velocity Uw is greater than the

free stream speed Un), the fluid’s speed decelerates in the

boundary layers for both the linear and non-linear models.

Figure 4B indicates the impact of ε1 on Θ(ξ). It is noted that

as ε1 grows, the temperature curve and temperature boundary

layer size for both linear and non-linear convection diminish.

Also, linear buoyancy model generates more heat in comparison

to the quadratic model.

Figures 5A,B are displayed to highlight the effect of magnetic

coefficient M over the f ′(ξ) and Θ(ξ) profiles for both linear and

non-linear convection. This is probed that the velocity of liquid

improves for progressing amounts ofM, which holds for both the

linear and quadratic buoyancy models. However, in an

electrically conductive liquid, the transverse magnetic flux

leads to a retardation force termed as the Lorentz force, that

restricts the motion of the liquid in boundary layer. The opposite

impact ofM over the velocity profile, on the other hand, indicates

that the free stream velocity exceeds the stretched surface speed.

The temperature curve Θ(ξ) declines for higher amounts of

magnetic coefficient M. It is noted that quadratic buoyancy

model works as the lower bound for the heat transport than

the linear convection model.

Figures 6A,B capture the trend of velocity and temperature

curves for heat generation/absorbtion coefficient S1 for the

quadratic and linear buoyancy terms. It is explored that

enhancing the heat generating coefficient improves both the

velocity and the heat propagation of the fluid. The heat

generating coefficient enables fluid surface to absorb this heat

FIGURE 2
The Θ(ξ) and f′(ξ) curves for distinct β values.

FIGURE 3
The Θ(ξ) and f′(ξ) curves for distinct Λ values.
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and so remain effective. This consequence illustrates that the

energy of the heating source is rather high, and the maximum

temperature of the liquid is measured on the surface. As depicted

in Figure 6B, the participation of a heat sink (S1 < 0) causes

decline in the thermal efficiency of the fluid, resulting in the

formation of smaller thermal boundary layers. Furthermore, the

linear convection model acquires higher heat transport rate in

comparison to the quadratic convection model.

Figures 7A,B are plotted to depict the behavior of f ′(ξ) and
Θ(ξ) for both linear and non-linear buoyancy terms along with

diverse values of mixed convective coefficient Ω. Increasing values

of the combined convection coefficient Ω indicate a stronger

buoyant force, which results in more kinetic energy and an

elevation in fluid speed, as plotted in Figure 7A, the velocity

has growing impacts. As the quadratic convective coefficient

grows (Qc > 0), the maximum velocity improves, and the linear

case (Qc = 0) acts as the lowest limit. On the other hand, Figure 7B

depicts a very minor reduction in temperature profile as the

combined convection parameter is enhanced. Furthermore, the

linear buoyancy model serves as a upper bound in case of heat

transport as compared to the quadratic buoyancy.

The tendency of velocity and temperature curve for distinct

values of Prandtl no. is described in Figures 8A,B for the linear

and non-linear Boussinesq estimations. The velocity curve

depicts a declining trend for higher Pr values. However,

quadratic buoyancy model attains larger thickness of

boundary layer in comparison to the linear convection.

Physically, as the Prandtl number raises, the heat diffuseness

reduces, resulting in a reduction in power capacity, which lessens

the temperature boundary layer, as displayed in Figure 8B.

Consequently, heat is dissipated more quickly, and hence,

temperature boundary layer width and temperature of the

FIGURE 4
The Θ(ξ) and f′(ξ) curves for distinct ε1 values.

FIGURE 5
The Θ(ξ) and f′(ξ) curves for distinct M values.
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liquid both diminish. As a result, the Prandtl number is employed

to enhance the cooling tendency of fluids. It is examined that

linear convection gains more heat exchange rate than the

quadratic convection model.

Numerical assessment of skin friction and
nusselt number

Figures 9A,B are plotted to signify the importance of

Deborah no. (β) and magnetic coefficient (M) on coefficient

of skin friction Cf~x(Re~x)0.5 and Nusselt no. Nu~x(Re~x)−0.5. It is
exposed that f ′′(0) and − Θ′(0) grow up for higher values of M

and β. It is visualized that quadratic convection gains higher

values of f ′′(0) and − Θ′(0) as compared to linear buoyancy

model. Figures 10A,B characterize the behavior of Cf~x(Re~x)0.5
andNu~x(Re~x)−0.5 for progressing values of Λ and ε1. It is probed

that coefficient of skin friction has descending trend for

accelerating values of ε1 and Λ for both the linear and

quadratic convection. However, the linear buoyancy model acts

as lower bound against higher values of ε1 and Λ in comparison to

the quadratic buoyancy model. Figure 10B depicts the increasing

fashion of wall heat transfer coefficient for the enhancing values of

ε1 and Λ. The heat flux coefficient accelerates more quickly for

quadratic convection as compared to linear convection.

Concluding remarks

This research has investigated Maxwell fluid’s boundary layer

stream and thermal efficiency across a linear stretchy surface along

withMHD, nonlinear convection, and varying thermal conductance.

The dimensionless nonlinear ODEs are tackled numerically in

MATLAB utilizing the bvp4c technique. The numerical findings

FIGURE 6
The Θ(ξ) and f′(ξ) curves for distinct S1 values.

FIGURE 7
The Θ(ξ) and f′(ξ) curves for distinct Ω values.
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FIGURE 8
The Θ(ξ) and f′(ξ) curves for distinct Pr values.

FIGURE 9
The f′′(0) and − Θ′(0) curves against M and β.

FIGURE 10
The f′′(0) and − Θ′(0) curves against ε1 and Λ.
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for the non-dimensional velocity curve, temperature curve, skin

friction, and Nusselt number are displayed via graphs and verified

through tables. Some crucial outcomes are listed here:

• Increment in the magnetic coefficient (M), varying

thermal conductance (Λ), and Deborah number (β)

value amplified the axial velocity field for both the

linear and quadratic convection. However, the fluid

temperature diminishes for higher inputs of β and M

but amplifies for larger values of Λ in both linear and

nonlinear convection.

• When the velocity ratio coefficient ε1 is raised, the extending

velocity becomes greater than the free streaming speed,

reducing the temperature and velocity fields.

• Higher inputs of Ω depict stronger buoyant force. Hence,

the velocity field boosts, and temperature declines for

larger inputs of Ω.

• As the heat-generating parameter S1 is elevated, the

velocity and thermal profiles increase for both linear

and quadratic buoyancy.

• The thermal boundary layer width declines with increment

in Pr no. values due to the reduction in thermal diffuseness

for both linear and nonlinear buoyancy.

• The coefficient of skin friction Cf~x(Re~x)1/2 and Nusselt

no.Nu~x(Re~x)−1/2 enhance for the larger inputs ofM and β

for both linear and quadratic convection. However, the

elevating fashion of Λ and ε1 has decreased the skin friction

but increased the Nusselt number.

• The linear convectionmodel attains a higher heat transport

rate than the quadratic convection model.
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Nomenclature

~x, ~y Cartesian coordinates (m)

~u, ~v Velocity components along x and y − axes (m/s)

Un(~x) Free stream velocity (m/s)

Uw(~x) Stretching velocity at the surface (m/s)

g Gravity acceleration (m/s2)

~T Temperature of the fluid (K)

~Tw Temperature at wall (K)

~T∞ Ambient temperature (K)

Pr Prandtl no. (−−)

B0 Applied magnetism (kg/s2.A)

Q0 Heat source/sink (J/K.m3.s)

Nu~x Nusselt number (−−)

M2 Magnetic parameter (−−)

Qc Quadratic convection parameter (−−)

Cp Specific heat (J/kg.K)

Re~x Reynolds number (−−)

Gr~x Grashof number (−−)

Cf ~x Coefficient of skin friction (−−)

f Non-dimensional velocity

qw Wall heat flux (W/m2)

Greek symbols

μ Viscosity of fluid (kg/m.s)

ρ Density of fluid (kg/m3)

λ1 Fluid’s relaxation time (s)

(β1, β2) Coefficients of thermal expansion (1/K)

σ Electric conductivity (A2.s3/kg.m3)

α̂ Heat diffusivity (m2/s)

ξ Dimensionless variable (−−)

β Deborah number (−−)

ε1 Velocity ratio parameter (−−)

Ω Mixed convection parameter (−−)

~τw Shear stress at wall (kg/m.s2)

Θ Non-dimensional temperature (−−)
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