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Physics-informed convolutional recurrent network (PhyCRNet) can solve partial

differential equations without labeled data by encoding physics constraints into

the loss function. However, the finite-difference filter makes the solution of 2D

incompressible flow challenging. Hence, this paper proposes a Fourier filter-

based physics-informed convolution recurrent network (named Fourier filter-

based PhyCRNet), which replaces the finite-difference filter in PhyCRNet with

the Fourier filter to solve the 2D incompressible flow problem. The suggested

network improves the accuracy of the partial derivatives, solves the inverse

Laplacian operator, and has similar generalization ability due to inheriting the

framework of PhyCRNet. Four examples, including the 2D viscous Burger,

FitzHugh–Nagumo RD, vorticity and the two-dimensional Navier- Stokes

(N-S) equations, validate the correctness and reliability of the proposed

Fourier filter-based PhyCRNet.
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1 Introduction

Partial differential equations (PDEs), play a crucial role in modeling a wide

variety of problems in applied mathematics, physics, biology, chemistry, and

engineering technology and thus are widely used to express and interpret the

laws involved [1,2]. Although many phenomena can be analyzed and solved

through PDEs modeling, such as weather forecasting [3], communication

technology [4] and electromagnetic induction [5], in many cases, the analytical

solution of PDEs is unavailable, and researchers solve PDEs by numerical methods,

i.e., finite-difference, finite volume, and finite element methods [6]. Although some

classic numerical methods achieve very high accuracy, the balance between

computational cost and accuracy is still a vital issue.

Recently, the rapid development and application of deep learning have provided an

alternative solution to PDEs of positive and inverse problems. Theoretically, the universal

OPEN ACCESS

EDITED BY

André H. Erhardt,
Weierstrass Institute for Applied Analysis
and Stochastics (LG), Germany

REVIEWED BY

Omar Abu Arqub,
Al-Balqa Applied University, Jordan
Harsha Vaddireddy,
Oklahoma State University Stillwater,
United States, in collaboration with
reviewer SP

*CORRESPONDENCE

Fukang Yin,
yinfukang@nudt.edu.cn

SPECIALTY SECTION

This article was submitted to Statistical
and Computational Physics,
a section of the journal
Frontiers in Physics

RECEIVED 17 June 2022
ACCEPTED 01 September 2022
PUBLISHED 30 September 2022

CITATION

Xiao C, Zhu X, Yin F, Cao X, Peng K and
Nie J (2022), Fourier filter-based
physics- information convolutional
recurrent network for 2D
incompressible flow.
Front. Phys. 10:971722.
doi: 10.3389/fphy.2022.971722

COPYRIGHT

© 2022 Xiao, Zhu, Yin, Cao, Peng and
Nie. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 30 September 2022
DOI 10.3389/fphy.2022.971722

https://www.frontiersin.org/articles/10.3389/fphy.2022.971722/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.971722/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.971722/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.971722/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.971722&domain=pdf&date_stamp=2022-09-30
mailto:yinfukang@nudt.edu.cn
https://doi.org/10.3389/fphy.2022.971722
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.971722


approximation theorem proves that deep neural networks can

simulate arbitrarily complex functions [7]. Due to the

development of deep learning and the improvement of

computing power, several studies have been proposed utilizing

deep learning to solve PDEs [8–15]. The latest related research

can be mainly divided into discovering PDEs from data and

solving PDEs. The pioneering work in inverse problem research

is the sparse regression method introduced by Rudy et al. [8]. On

this basis, Long et al [11] proposed an improved neural network,

the PDE-Net, to obtain the PDE coefficients and solve PDE. The

Physics-informed Neural Network (PINN) proposed by Rassi

et al. [16] introduced an innovative approach to encoding

physical constraints into loss functions, with many improved

PINN versions bring used to solve problems in different

scenarios [17–21]. Other researchers propose operator

schemes to solve PDEs. For example, Lu et al. [22] introduced

a neural network of DeepONets for learning nonlinear operators,

while Li et al [23] proposed the Fourier neural operator (FNO)

utilizing the Fourier transform, which afforded a much faster

solution rate and a stronger generalization ability than other

neural networks. Recent research fused neural operators and

PINNs to improve the interpretability and speed up the

network’s fitting [24,25]. Nevertheless, such a strategy requires

quantitative and high-quality training data.

Recent studies have revealed that PDEs can be solved by

training the network constraints, such as physical constraints

[26,27], without labeled data. However, due to limitations of

the network training process, the time extrapolation results

are often unsatisfactory. Therefore, researchers have

introduced time series prediction deep learning networks in

the study to solve PDEs [28–30] with the help of classical

numerical methods to solve time-dependent PDEs [31–33].

For instance, the physics-informed based convolutional

recurrent network (PhyCRNet) introduced by Ren et al.

[30] considers all aspects. Indeed, it starts from the initial

conditions without any labeled data, extracts spatial features

using a convolutional neural network (CNN) [34], utilizes a

convolutional long and short term memory network

(ConvLSTM) [35] to learn its evolution, and finally encodes

the output values into the loss function through the finite-

difference filter for physical constraints. Hence, PhyCRNet

solves PDEs using the equations as constraints and supervises

the network’s convergence, without high-quality

training data.

However, the 2D incompressible flow refers to a flow in

which the density remains constant in two-dimensional fluid

parcel, which is characterized by stream function and the

associated velocity fields and vorticity, as defined by the

stream function’s partial derivatives. Typical numerical

methods use pseudo-spectral methods to balance the solution

rate and accuracy by using the vorticity as the initial field,

calculating the partial derivatives in the spectral space, and

solving the equations using time iterations [36–38].

Nevertheless, calculating the stream function from the

vorticity involves calculating the inverse Laplace operator,

which is difficult to solve by the finite-difference method.

Overall, PhyCRNet has the following disadvantages in solving

the 2D incompressible flow problem.

1. The differential accuracy of the finite-difference is not high,

resulting in an inaccurate calculation loss function and

affecting the convergence speed and accuracy of the solution.

2. Calculating the inverse Laplace operator is challenging when

using the finite-difference filter and in the case of calculating

the stream function.

3. Finite-difference differential calculation accuracy is related to

the grid spacing and the number of cells, and the

computational overhead is higher in high-resolution

calculations.

Based on these shortcomings, it is necessary to improve the

PhyCRNet.

Hence, this paper employs the discrete Fourier transform

[39] in the pseudo-spectral method [40] to replace the finite-

difference filter in the PhyCRNet and optimize PhyCRNet. The

main contribution of this method is solving the problem of

efficient solution of the differential operator and the inverse

Laplace operator during the vorticity calculation of the stream

function in PhyCRNet. In the Fourier filter-based PhyCRNet, we

first transform the network’s output into the Fourier space for

partial differentiation and calculate the Laplace and the inverse

operators, followed by the inverse Fourier transform. Finally, the

physical constraints are achieved by encoding and thus effectively

solving PhyCRNet’s problem. This improved network has a faster

solution than the finite-difference method in large-scale

calculations [23].

The remainder of the paper is organized as follows:

Section 2 introduces the Fourier filter-based PhyCRNet,

while Section 3 provides two examples of two-dimensional

viscous Buger’s equation and FitzHugh–Nagumo RD

equations to verify the performance of the Fourier filter-

based PhyCRNet in solving some basic PDEs. Then, two

examples, including the vorticity equation and the 2D

incompressible Navier-Stokes equation, demonstrate the

advantages of the Fourier filter-based PhyCRNet, finally,

Section 5 concludes this work.

2 Methodology

This section introduces the proposed Fourier filter-based

PhyCRNet, whose structure describes the PDEs to be solved

and then introduces the related algorithms and network

frameworks. Finally, the related content of the improved

PhyCRNet (namely, Fourier filter-based PhyCRNet) is

introduced.
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2.1 Problem statement

Our proposed method focuses on the time series prediction

and solution of spatiotemporal PDEs. Numerical experimental

equations such as Burger’s equation are widely used to verify the

method and have the following general form [41,42].

ut + F [u; λ] � 0, x ∈ Ω, t ∈ [0, T] (1)

where u(t, x) represents the possible solutions found in the

time range t ∈ [0, T] and the physical space x ∈ Ω and F [*; λ]
is the nonlinear operator parameterized with λ. Also, for the

initial and boundary conditions, there are characterizations

of the form I(u,F [*; λ], with t � 0, x ∈ Ω) = 0 and

(u,F[*; λ]; t ∈ [0, T], x ∈zΩ) = 0, where x ∈zΩ represents

the boundary interval. The boundary conditions such as

Dirichlet and Neumann have not been discussed in this

work for the time being.

2.2 PhyCRNet

PhyCRNet proposed by Ren et al adopts ConvLSTM to learn

temporal evolution and constructs the network loss function with

PDE constraints. It propagates information into future times and

solves equations without labeled data as PINN. It has stable

extrapolability after training which makes it better than other

deep learning methods. For more detailed work on PhyCRNet,

refer to the work [30].

2.3 The discrete fourier transform

The discrete Fourier transform (DFT), a fundamental

transformation in digital signal processing, is widely used in

convolution, image processing, and frequency analysis [43–45].

Its implementation is similar to the continuous Fourier

transform, which for a given certain sequence of real numbers

{xn, n � 0, 1, 2 . . . .N − 1}, it is represented as a sequence of

complex numbers {Xn, n � 0, 1, 2 . . . .N − 1} utilizing the

discrete Fourier transform. DFT is defined as follows:

Xk � ∑N−1
n�0 xne

−2πinkN , k � 0, 1, ..,N − 1 (2)

where e−2πinkN � cos(2π nk
N) + isin(2π nk

N). At the same time, the

original discrete function can also be reconstructed by the inverse

discrete Fourier transform (IDFT), defined as:

xn � 1
N

∑N−1
n�0 Xke

2πinkN , k � 0, 1, ..,N − 1 (3)

By considering the 2-dimensional function f(x, y) as an

example, according to Eqs 2, 3:

f(x, y)→DFT
DFTF̂(x, y); F̂(x, y) →IDFT

IDFTf(x, y) (4)

For the function after the discrete Fourier transform, its

corresponding derivative can be quickly obtained in the Fourier

space.

zf

zx
←IDFT

2πi
n

N
F̂(x, y); zf

zy
←IDFT

2πj
n

N
F̂(x, y)

n � −N
2
, . . . ,

N

2
− 1

(5)

Different from the finite difference filter in PhyCRNet to

solve the derivative, the spatial derivative is calculated as the

product of spectrum and ik in the wave number domain after the

discrete Fourier transforms the function. So, the Fourier filter

proposed in this paper is used to calculate spatial derivatives of

loss function by discrete Fourier transform. This strategy is more

adaptable to solving many PDEs types.

Moreover, the pseudo-spectral method has advantages in solving

the 2-dimensional incompressible flow equation [46]. Indeed, given

vorticity (ζ) and the stream function (ψ) at time t, this method first

updates ζ forward at time t + δt. Then the Poisson equation with

periodic boundary is considered as a relationship between the two to

update ψ forward at time t + δt. The Poisson equation involves the

inverse Laplace operator calculation, which is trivial to implement by

the discrete Fourier transform when its mean state is known [47].

This is why the discrete Fourier transform is superior to the finite-

difference. Assuming that the mean state is one, the inverse Laplace

operator is computed as follows:

K �
⎧⎪⎪⎨⎪⎪⎩ (2πi n

N
)2

+ (2πj n

N
)2

n � −N
2
, . . . ,−1, 1, . . . , N

2
− 1

1 n � 0

f ←IDFTΔF̂(x, y)/K
(6)

The improvement proposed in this work is to replace the finite-

difference filter in the PhyCRNet with the discrete Fourier transform,

and then perform the PDE residual connection to integrate the

physical constraints into the neural network (further details are

presented in Section 2.4). The resulting network has two

advantages. First, it overcomes the inability of PhyCRNet to

efficiently solve the inverse Laplace operator. Indeed, the Fourier

filter-based PhyCRNet can solve PDEs similar to describing 2D

incompressible flows, enhancing the network’s generalization ability.

Second, the Fourier transform has higher accuracy than the finite-

difference method when calculating high-order partial derivatives,

and its computational efficiency is faster in large-scale scientific

computing.

2.4 Fourier filter-based PhyCRNet

This section introduces the structure of proposed network.

As illustrated in Figure 1, the network consists of the encoding
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module, time series module, decoding module, input and output

connection module and Fourier filtering module. Firstly, the

encoding module is used to extract spatial features through CNN

and then output to the time series module. Secondly, the time

series module captures the time dependence of spatial features

and establishes time series relationships. In this way, the network

generates the predicted values only under the initial condition.

Then, the decoding module reconstructs the discrete output of

the time series module by the sub-pixel convolutional layer (pixel

shuffle) to achieve the same resolution as the input. In addition, a

convolution layer without activation function is added at the end

of the module. Finally, the input-output connection module

adopts a forward Eulerian method to establish the relationship

of ui+1 and ui.The Fourier filtering module calculates the spatial

derivative involved in the computation of loss function. The

Fourier filter calculates the spatial partial derivatives by

transforming the input to the spectral space, which turns into

a simple multiplication in the frequency domain compared with

the finite difference. For more details, please refer to 2.3 for the

idea of Fourier filtering and 2.5 for loss construction.

2.5 Fourier transform loss function with
physics-informed

Given that the Fourier filter-based PhyCRNet is trained

without labeled data, the loss function construction controlled

by the PDEs is significant and must preserve high accuracy and

efficiency. The loss function accuracy depends on the partial

derivatives, which unlike the chained derivatives of Physics-

informed Neural Network (PINN) [16], the Fourier filter-

based PhyCRNet uses the Fourier filter formed by the discrete

Fourier transform (as introduced in Section 2.3) to calculate the

partial derivatives in the PDEs. Hence, we calculate F[u; λ] in Eq.

1 and construct the PDEs residual connection to integrate the

physical constraints into the loss function of the neural network.

Then the PDEs residual connection is formed and the physical

constraints are integrated into the loss function in the neural

network. As an example, solving the 2-dimensional PDEs,

f(x, y, t; θ) can be defined according to the left side of Eq. 1:

f(x, y, t; θ): � ut(x, y, t; θ) + F[u(x, y, t; θ); λ] (7)

FIGURE 1
The architecture of Fourier filter-based PhyCRNet. It comprises CNN layers with activation functions in the encoder. In the decoder, Pixel
Shuffle conducts super-resolution reconstruction to obtain the resolution of the input value, and considers a CNN layer without an activation
function for convolution processing. H and C are the hidden state and cell state of ConvLSTM, respectively. All outputs are incorporated into the loss
function using DFT and IDFT. Fourier transform loss function with physics-informed.
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where ut(x, y, t; θ) is obtained by traditional numerical methods.

The shared network parameter θ is obtained during training by

using the minimization loss function L(θ) in Eqs 8, 9, defined as

the sum of squares of the discrete values of f(x, y, t; θ) over all
spatial and temporal periods

L(θ) � ∑n

i�1 ∑m

j�1 ∑T

k�1
�����f(xi, yj, tk; θ)�����22 (8)

θ � argminL(θ) (9)
where ‖ ∗ ‖2 denotes the ℓ2 norm.

3 Numerical experiments

This section validates the proposed Fourier filter-based

PhyCRNet by utilizing nonlinear PDEs and two PDEs for

describing the 2D incompressible fluid flow. The trial

involving two nonlinear PDE (2D viscous Burger’s

equations and FitzHugh–Nagumo RD equations) verifies

that the Fourier filter-based PhyCRNet possesses the

capabilities of PhyCRNet. And two 2D incompressible fluid

flow PDEs test the feasibility and advantages of Fourier filter-

based PhyCRNet. All numerical implementations and

constructed networks are coded using Pytorch [48], and all

models are trained on an NVIDIA GeForce GTX 3090 with

24 GB of memory.

3.1 Network parameters

The main difference between Fourier filter-based physics-

informed convolutional recurrent network (PhyCRNet) and

PhyCRNet is the calculation of the partial derivatives, while

the other remaining structure is the same. In the encoding

part, three convolutional layers are used for feature extraction,

with 8, 32, 128 units respectively using a convolutional kernel

(4×4) and a stride of 2 and ReLU function as the activation

function. In the decoding part, for the standard connection

between the input and output, sub-pixel convolution is

performed through pixel shuffle to complete super-resolution

reconstruction. Then a convolutional layer is added, using a

convolutional kernel (5×5) and a stride of one to ensure constant

resolution without an activation function. The convolution

operation in ConvLSTM involves a convolution kernel (3×3)

and a stride of 1. At the same time, the training of both networks

are trained using the stochastic gradient descent Adam

optimizer [49].

3.2 Evaluation metrics

Three evaluation metrics, mean absolute error (MAE), mean

absolute percentage error (MAPE), and root mean square error

(RMSE), are widely used in the evaluation of deep learning

networks. In order to evaluate the solution accuracy of the

network in this paper, an accumulative root mean square

error (a-RMSE) is defined and the same evaluation metric is

used for training and extrapolation.

ϵτ �

������������������������������
1
Nt

∑Nt

k�1

�����u(xi,j, tk) − u(xi,j, θ, tk) �����22
mn

√√
(10)

whereNt represents the number of time steps in the period [0, τ],
and ϵτ represents the full-field a-RMSE. m and n are the

resolutions in the spatial region, while u(xi,j, tk) and

u(xi,j, θ, tk) represent the reference solution and the

prediction, respectively.

3.3 2D viscous Burger’s equations

Considering the following 2D viscous Burger’s equations

with periodic conditions:

ut + u(x, y, t)▽u(x, y, t) � ]Δu(x, y, t)x, y ∈ [0, 1], t ∈ (0, T]
u(x, y, 0) � u0(x, y, 0)x, y ∈ [0, 1]

(11)
where u is the fluid’s velocity (u and v), ] is the viscosity

coefficient, Δ is the Laplace operator, ▽ is the gradient

operator, and u0(x, y, 0) denotes the initial condition. Here,

we set ] = 0.005, and the spatial region is Ω ∈ [0, 1]2 with a

resolution of [128 × 128].

The initial condition u0(x,y, 0) is generated in a Gaussian

random field, according to u0 ~ μ where

μ ~ M(0, 625(−Δ + 25Ι)−2). The experimental reference value is

obtained by a pseudo-spectral method with a fourth-order Runge-

Kutta method (δt � 1 × 10−4). PhyCRNet and the Fourier filter-

based PhyCRNet both are trained with a relatively large time step

(δt � 0.002) for iterative calculation. In the finite-difference filter

module of PhyCRNet, Eq. 12 is used to calculateΔ, and the following
difference filter Eq. 13 is used to calculate ▽:

Dlap �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 − 1 0 0
0 0 16 0 0
−1 16 − 60 16 − 1
0 0 16 0 0
0 0 − 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 1

12(δx)2 (12)

D1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0
0 0 − 8 0 0
1 − 8 0 8 − 1
0 0 8 0 0
0 0 − 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 1
12δx

(13)

Dt � [−1, 0, 1] × 1
2δt

(14)

However, in Fourier filter-based PhyCRNet, Eq. 5 is used to

calculate▽, andΔ is calculated by amethod similar to Eq. 6, while ut
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is calculated by the difference filter in Eq. 14 uniformly. Except for the

calculation of spatial derivatives, all parameters are the same as Ref.

[30]. The learning rate starts at 6 × 10−4 and decays to 99% every

50 epochs. During the period [0,0.4], PhyCRNet and Fourier filter-

based PhyCRNet are trained separately to obtain the numerical

solution of the two-dimensional viscous Burger’s equation for

200 time steps. Then, based on the trained model, the solution

for the last 200 time steps (within time [0.4, 0.8]) is predicted to verify

the model’s extrapolation performance. According to the training

methodmentioned in [30], we pretrain themodel from 100 and then

200 time steps, then extrapolate for another 200 time steps. The

relevant codes and data come from open source [30].

Figure 2 depicts four snapshots of u taken from the training

phase (t = 0.1, 0.3 s) and the extrapolation phase (t = 0.6, 0.8 s),

respectively. Each snapshot from top to bottom are reference

solutions, predictions by PhyCRNet and ours, and errors of

PhyCRNet and ours, respectively. From Figure 2, it can be

found that the results of both networks are very agreement

with the reference in training and extrapolation. It verifies

that the Fourier filter-based PhyCRNet has the same

capability to solve basic PDEs as PhyCRNet.

3.4FitzHugh–Nagumo RD equations

Considering the following the FitzHugh–Nagumo (FN) RD

equations:

ut � γuΔu + u − u3 − v + α
vt � γvΔv + β(u − v) (15)

Same as 3.2, except for the Fourier filter, the network

hyperparameters and equation coefficients are the same as

[30]. u and v are two interactive components. γu, γv, α and β

are equation coefficients by γu � 1, γv � 100, α � 0.01 and

β � 0.25, respectively. The IC is IC_FN1 and the reference

solution is calculated using a method in 2D domain of [0.128]

for 12,000 time steps (δt � 2 × 10−4) [30]. Two model are

trained to solve this PDEs for 200 time steps with time

duration of [0, 1.2] and used to achieve the inference for

[1.2, 2.4], where δt � 0.006. The learning rate is set as 5 × 10–5

and decays by 0.5% every 50 epochs. Besides, we pretrain the

model from 100 and then 200 time steps to extrapolate for

another 200 time steps.

During training (t = 0.6, 1.2 s) and extrapolation (t = 1.8,

2.4 s) phases, the reference solutions, predicted solutions and

error maps are shown in Figure 3. Although FitzHugh–Nagumo

RD equations are more complex than Burger’s equation, Fourier

filter-based PhyCRNet and PhyCRNet have the same

outstanding performance with the truth reference both in

training and extrapolation. The error maps of two model

exhibit near-perfect results, especially the extrapolation error

of the field variable v is smaller. Considering that this PDEs has a

more complex nonlinear form, the above two neural network

methods capture the dynamic evolution process in the long-term,

FIGURE 2
The results of Fourier filter-based PhyCRNet and PhyCRNet network solving the two-dimensional viscous Burger’s equation. Four
representative moments are selected for comparison as training (t = 0.1, 0.3 s) and extrapolation (t = 0.6, 0.8 s), and the errors across the interval are
compared. The subfigures from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours,
respectively.
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which is different from the traditional forward Euler integration

scheme.

3.5 Vorticity equation

This section focuses on the experimental validation of the

Fourier filter-based PhyCRNet to solve the problems that the

finite-difference filter of PhyCRNet cannot solve. Since the finite-

difference filter cannot solve problems like inverse Laplace

operators and there is a time iteration relationship between

the input and output modules, the finite-difference method

imposes the solution of some PDEs not to have a good

propagation relationship between the input and output.

Consider a simple equation for describing 2D incompressible

nonviscous fluid flow, namely the vorticity equation, which takes

the following form

Dζ

Dt
� ζ t − ψyζx + ψxζy � 0 x, y ∈ [0, 1], t ∈ (0, T]

ζ(x, y, t) � vx − uy � ψxx + ψyy x, y ∈ [0, 1], t ∈ (0, T]
u � −ψy v � ψx ux + vy � 0 x, y ∈ [0, 1]

(16)

where ζ(x, y, t) represents the vorticity, the stream function

ψ(x, y, t) is used to describe the flow of the fluid, and u, v

represent the velocity of the fluid in the x and y directions,

respectively. The initial flow function for the equation is:

ψ(x, y, 0) � −0.25 exp ([−4(x − 0.5)2 − (y − 0.5)2/2σ2])
(17)

where σ = 0.15. When calculating the reference solution, we

calculate ζ and ψ of the initial state from Eq. 17. On the 2D

region Ω ∈ [0, 1]2 with a resolution of 256 × 256, a pseudo-

spectral method with a fourth-order Runge-Kutta time

integral (δt � 1 × 10−4) is used to solve the vorticity

equation. The solution reveals that the vorticity ζ moves

forward first, then uses the method of Eq. 6 to update the

stream function ψ, and then calculates u, v. Using vorticity as a

bridge between the input-output connection modules of the

network can more effectively capture the time evolution.

During network training and extrapolation, the time step is

chosen to be δt � 0.001. Fourier filter-based PhyCRNet is

trained for 100 time steps within [0,0.1] to solve the

vorticity equation, and the solution is extrapolated based

on the training model for another 100 time steps within

time [0.1,0.2]. The learning rate starts at 5× 10−3 and then

decays to 99% every 100 epochs. The entire training time

is 6.5 h.

Figures 4, 5 compare the vorticity and velocity fields

predicted by Fourier filter-based PhyCRNet and the ground-

truth reference values. Four representative time instances are

selected for the training (t = 0.025, 0.075 s) and extrapolation (t =

0.125, 0.175 s) phases. From Figures 4, 5, we conclude the

following. First, we can see in figures that both the vorticity

FIGURE 3
The results of Fourier filter-based PhyCRNet and PhyCRNet network solving the FitzHugh–Nagumo RD equations. Four representative
moments are selected for comparison as training (t = 0.6, 1.2 s) and extrapolation (t = 1.8, 2.4 s), and the errors across the interval are compared. The
subfigures from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours, respectively.
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and velocity fields are close to the true reference during the

training and extrapolation phases. Especially in the training

phase, many errors are close to zero. As the extrapolation

period increases, the error also increases. However, when the

extrapolation is at the same training time, the shape of the

rotation is still the same. In the region with a larger value, the

FIGURE 4
The vortex results for solving the vorticity equation with Fourier filter-based PhyCRNet. Four representative moments are selected for
comparison, presenting the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) maps, and compare the errors across the interval. From
top to bottom are reference solutions, predictions and errors.

FIGURE 5
The velocity results for solving the vorticity equation with Fourier filter-based PhyCRNet. Four representative moments are selected for
comparison, presenting the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) maps, and compare the errors of the entire interval.
From top to bottom are reference solutions, predictions and errors.
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error becomes larger, but the evolution trend of the solution can

still be used as a reference. As the extrapolation time increases,

the error also increases. This conclusion is also verified in

Figure 8C according to the time-varying a-RMSE.

3.6 Two-dimensional Navier-Stokes
equation

Weconsider the 2DNavier-Stokes equations for a incompressible

viscous fluid in the form of vorticity on the unit torus [23]:

ztζ(x, y, t) + u(x, y, t) · ∇ζ(x, y, t) � ]Δζ(x, y, t) + f(x, y)
x, y ∈ [0, 1], t ∈ (0, T]∇ · u(x, y, t)

� 0x, y ∈ [0, 1], t ∈ (0, T] (18)

The reference is all from the open source code of [23]. The

initial condition ζ(x, y, 0) with periodic boundary condition are

generated according to ζ(x, y, 0) ~ μ, where

μ � N(0, 73/2(−Δ + 25I)−2.5).We set ] � 1e − 3, and the forcing

is kept fixed f(x, y) � 0.1(sin (2π(x + y)) + cos (2π(x + y))).
The equation is solved by a pseudo-spectral method, where

first, the velocity field is calculated in the Fourier space. The

vorticity field is then differentiated, and the nonlinear term is

calculated in the physical space. In terms of time, we use the

Crank-Nicolson scheme, and the time step is δt � 1 × 10−4.
All data are generated on a grid with 256 × 256 resolution.

The model is trained for 200 timesteps within the [0, 2]

period, and we extrapolate over [2,4], where δt � 0.01. The

entire training time process lasts 12.5 h.

The vorticity and velocity field predicted by the Fourier filter-

based PhyCRNet and the ground-truth are illustrated in Figures

6, 7, respectively. The figures clearly show that the velocity and

vorticity fields agree with the ground truth during the training

phase. According to the error distribution, the error is minimal

and, on many occasions, close to zero. In the extrapolation stage,

although the error is increased compared to the training phase,

the evolution of the vorticity and velocity fields can still be

predicted accurately by the trained model of Fourier filter-

based PhyCRNet. This reveals that Fourier filter-based

PhyCRNet affords appealing stability.

3.7 Errors comparison

The error propagation maps of 2D viscous Burger’s equations

and FitzHugh–Nagumo RD equations are shown in Figures

8A,B, respectively. The performance of the proposed methods

is different in the two experiments. There may be caused by the

Fourier filter performs smooth filtering when calculating spatial

derivatives and the setting of hyperparameters which is not the

optimal setting of Fourier filter based PhyCRNet for solving 2D

viscous Burger’s equations. Overall, the errors of both models are

on the same level, which indicates that Fourier filter-based

PhyCRNet has the same capability to solve the basic PDEs as

PhyCRNet.

In Figure 8C, we observe that the errors of vorticity and

velocity are very small during the training phase, and the errors

gradually increase as the extrapolation time increases. Since both

values are not in the same order of magnitude, the a-RMSE of the

vorticity is significantly larger than the velocity field, below

0.7 and 0.02, respectively. As shown in Figure 8D, the

a-RMSE of vorticity and velocity during the training and

extrapolation phases is below 0.04 and 0.01, respectively. This

further verifies the effectiveness of the Fourier filter-based

PhyCRNet in solving 2D N-S equations.

3.8 Convergence study

It is significant to conduct the convergence study of the

Fourier filter-based PhyCRNet. Fourier method is widely

used to solve PDEs, and its convergence has been verified in

previous studies (Hald, 1981; Tadmor, 1989; Bardos and

Tadmor, 2015). Besides, the convergence of PhyCRNet has

been verified. The Fourier filter that replaces the finite

difference filter has a higher solution accuracy, so the

calculation of the loss function is more accurate. The loss

function is used to evaluate the error between the predicted

value of the network and the target value. The trained

network reaches convergence by back-propagation

algorithm [50–52]. According to Eqs 7, 8, the loss

function with physical constraints is trained to converge

to an acceptable error range, which guarantees the

convergence of the network. Therefore, we focus on the

loss history of the neural network. Since the loss histories of

the four experiments are similar at training phases, we

choose the 2D Navier-Stokes equation as the

representative example to show the convergence

history of the proposed method in Figure 9. It is obvious

that as the number of iterations increases, the loss value

decreases. However, the convergence trend gradually

becomes stable with the iteration. More precisely, the

network training has reached a reasonable convergence

range after training.

4 Discussion

As a widely used fluid model, incompressible flow has

many variants for different scenarios and there are many

traditional numerical methods [53–58]. The development of

deep learning in recent years has also made rapid progress in

the exploration and solution of incompressible flow models

[59–61]. This paper develops the Fourier filter-based

PhyCRNet to solve PDEs. Through four numerical
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experiments, we verify the capability of our proposed method

in the solution of general PDEs and equations describing 2D

incompressible flows, respectively. By comparing the

predicted values of the Fourier filter-based PhyCRNet with

the reference solution, it shows that the proposed network

inherits the advantages of PhyCRNet, that is, the ability of

FIGURE 6
The vorticity field results of Fourier filter-based PhyCRNet solving the 2D N_S equation. Four representative snapshots are selected as
comparisons, namely training (t = 0.5, 1.5 s) and extrapolation (t = 2.5, 3.5 s), and compared the errors over the entire interval. From top to bottom are
reference solutions, predictions and errors.

FIGURE 7
The velocity field results of Fourier filter-based PhyCRNet solving the 2D N_S equation. Four representative time instants are selected as
comparisons, namely training (t = 0.5, 1.5 s) and extrapolation (t = 2.5, 3.5 s), and compare the errors of the whole interval one by one. From top to
bottom are reference solutions, predictions and errors.
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FIGURE 8
The a-RMSE of the four Equations. (A) 2D viscous Burger’s equations; (B) FitzHugh–Nagumo RD equations; (C) Vorticity equation; (D) 2D
Navier-Stokes equation.
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extrapolate and encode physical constraints into loss

function, and has the following strengths:

1. The calculation of the inverse Laplace operator. It introduces

the Fourier filter to calculate the inverse Laplace operator,

which the finite-difference filter cannot achieve. In the 2D

incompressible flows, the solution is to iterate forward on the

vorticity field and update the velocity field after the Laplace

inverse operation. The Fourier filter-based PhyCRNet can

efficiently solve 2D incompressible flows with the inverse

Laplace operator.

2. The accuracy of partial derivatives. It adopts a discrete Fourier

transform to calculate partial derivatives improving the

solution accuracy. Here we only consider numerical

experiments in the periodic domain, but after processing

the output with methods such as periodic extension

[62,63], the Fourier filter can extend the proposed method

to the aperiodic domain.

3. The computational efficient of network. Because of Fourier

method, the calculation of the inverse Laplace operator and

partial derivatives is very efficient. Due to the small amount of

experimental computation and the computational cost of the

time series module dominates the entire training process,

there is no noticeable performance in the solution of the 2D

viscous Burger,s equation and FitzHugh–Nagumo RD

equations.

4. The proposed network exploits the powerful fitting

capabilities of deep learning, while avoiding the

dependence of the quality of training data. When carrying

out network constraints, the fusion of physics-informed

adopts the classical numerical method, so the prediction

accuracy after training cannot be better than that of the

traditional numerical method. Overall, the proposed

method provides a reference deep learning method for

scientific computing.

5 Conclusion

In this paper, a Fourier filter-based PhyCRNet is proposed by

replacing the finite-difference filter with the Fourier filter to

improve the accuracy of derivatives and overcome the difficulty

of solving the inverse Laplacian operator. The proposed method

integrates the physics-informed into the loss function by

traditional numerical method to enhance the interpretability

and improve the convergence rate. Numerical results

demonstrate that the Fourier filter based PhyCRNet not only

has the ability to solve general partial differential equations with

PhyCRNet, but also is very effective, accurate and easy to

implement for 2D incompressible flow. Certainly, the method

proposed is not to replace the classical numerical method, but as

an emerging field of deep learning to solve partial differential

equations, it can bring a new method to scientific computing.

In the future, the proposed network can extend to the

solution of problem with irregular regions and various

boundary conditions. Furthermore, the graph neural network

can be used to replace the convolutional network to extract

spatial features more effectively.
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